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Abstract

Spectral embedding based on the Singular Value Decomposition (SVD) is a
widely used “preprocessing” step in many learning tasks, typically leading to di-
mensionality reduction by projecting onto a number of dominant singular vectors
and rescaling the coordinate axes (by a predefined function of the singular value).
However, the number of such vectors required to capture problem structure grows
with problem size, and even partial SVD computation becomes a bottleneck. In
this paper, we propose a low-complexity compressive spectral embedding algo-
rithm, which employs random projections and finite order polynomial expansions
to compute approximations to SVD-based embedding. For anm×nmatrix with T
non-zeros, its time complexity is O ((T +m+ n) log(m+ n)), and the embed-
ding dimension is O(log(m + n)), both of which are independent of the number
of singular vectors whose effect we wish to capture. To the best of our knowledge,
this is the first work to circumvent this dependence on the number of singular vec-
tors for general SVD-based embeddings. The key to sidestepping the SVD is the
observation that, for downstream inference tasks such as clustering and classifica-
tion, we are only interested in using the resulting embedding to evaluate pairwise
similarity metrics derived from the ℓ2-norm, rather than capturing the effect of the
underlying matrix on arbitrary vectors as a partial SVD tries to do. Our numerical
results on network datasets demonstrate the efficacy of the proposed method, and
motivate further exploration of its application to large-scale inference tasks.

1 Introduction

Inference tasks encountered in natural language processing, graph inference and manifold learning
employ the singular value decomposition (SVD) as a first step to reduce dimensionality while re-
taining useful structure in the input. Such spectral embeddings go under various guises: Principle
Component Analysis (PCA), Latent Semantic Indexing (natural language processing), Kernel Prin-
cipal Component Analysis, commute time and diffusion embeddings of graphs, to name a few. In
this paper, we present a compressive approach for accomplishing SVD-based dimensionality reduc-
tion, or embedding, without actually performing the computationally expensive SVD step.

The setting is as follows. The input is represented in matrix form. This matrix could represent the
adjacency matrix or the Laplacian of a graph, the probability transition matrix of a random walker
on the graph, a bag-of-words representation of documents, the action of a kernel on a set of l points
{x(p) ∈ R

d : p = 1, . . . ,m} (kernel PCA)[1][2] such as

A(p, q) = e−‖x(p)−x(q)‖2/2α2

(or) A(p, q) = I(‖x(p)− x(q)‖ < α), 1 ≤ p, q ≤ l, (1)

where I(·) denotes the indicator function or matrices derived from K-nearest-neighbor graphs con-
structed from {x(p)}. We wish to compute a transformation of the rows of this m × n matrix
A which succinctly captures the global structure of A via euclidean distances (or similarity met-
rics derived from the ℓ2-norm, such as normalized correlations). A common approach is to com-

1



pute a partial SVD of A,
∑l=k

l=1 σlulv
T
l , k ≪ n, and to use it to embed the rows of A into a

k-dimensional space using the rows of E = [f(σ1)u1 f(σ2)u2 · · · f(σk)uk], for some function
f(·). The embedding of the variable corresponding to the l-th row of the matrix A is the l-th row of
E. For example, f(x) = x corresponds to Principal Component Analysis (PCA): the k-dimensional
rows of E are projections of the n-dimensional rows of A along the first k principal components,
{vl, l = 1, . . . , k}. Other important choices include f(x) = constant used to cut graphs [3] and

f(x) = 1
/√

1− x for commute time embedding of graphs [4]. Inference tasks such as (unsuper-
vised) clustering and (supervised) classification are performed using ℓ2-based pairwise similarity
metrics on the embedded coordinates (rows of E) instead of the ambient data (rows of A).

Beyond the obvious benefit of dimensionality reduction from n to k, embeddings derived from the
leading partial-SVD can often be interpreted as denoising, since the “noise” in matrices arising from
real-world data manifests itself via the smaller singular vectors of A (e.g., see [5], which analyzes
graph adjacency matrices). This is often cited as a motivation for choosing PCA over “isotropic”
dimensionality reduction techniques such as random embeddings, which, under the setting of the
Johnson-Lindenstrauss (JL) lemma, can also preserve structure.

The number of singular vectors k needed to capture the structure of an m× n matrix grows with its
size, and two bottlenecks emerge as we scale: (a) The computational effort required to extract a large
number of singular vectors using conventional iterative methods such as Lanczos or simultaneous
iteration or approximate algorithms like Nystrom [6], [7] and Randomized SVD [8] for computation
of partial SVD becomes prohibitive (scaling as Ω(kT ), where T is the number of non-zeros in A)
(b) the resulting k-dimensional embedding becomes unwieldy for use in subsequent inference steps.

Approach and Contributions: In this paper, we tackle these scalability bottlenecks by focusing on
what embeddings are actually used for: computing ℓ2-based pairwise similarity metrics typically
used for supervised or unsupervised learning. For example, K-means clustering uses pairwise Eu-
clidean distances, and SVM-based classification uses pairwise inner products. We therefore ask the
following question: “Is it possible to compute an embedding which captures the pairwise euclidean
distances between the rows of the spectral embeddingE = [f(σ1)u1 · · · f(σk)uk], while sidestep-
ping the computationally expensive partial SVD?” We answer this question in the affirmative by
presenting a compressive algorithm which directly computes a low-dimensional embedding.

There are two key insights that drive our algorithm:
• By approximating f(σ) by a low-order (L ≪ min{m,n}) polynomial, we can compute the em-
bedding iteratively using matrix-vector products of the form Aq or ATq.
• The iterations can be computed compressively: by virtue of the celebrated JL lemma, the em-
bedding geometry is approximately captured by a small number d = O(log(m + n)) of randomly
picked starting vectors.

The number of passes overA, AT and time complexity of the algorithm are L, L andO(L(T +m+
n) log(m + n)) respectively. These are all independent of the number of singular vectors k whose
effect we wish to capture via the embedding. This is in stark contrast to embedding directly based on
the partial SVD. Our algorithm lends itself to parallel implementation as a sequence of 2L matrix-
vector products interlaced with vector additions, run in parallel across d = O(log(m+n)) randomly
chosen starting vectors. This approach significantly reduces both computational complexity and
embedding dimensionality relative to partial SVD. A freely downloadable Python implementation
of the proposed algorithm that exploits this inherent parallelism can be found in [9].

2 Related work

As discussed in Section 3.1, the concept of compressive measurements forms a key ingredient in our
algorithm, and is based on the JL lemma [10]. The latter, which provides probabilistic guarantees on
approximate preservation of the Euclidean geometry for a finite collection of points under random
projections, forms the basis for many other applications, such as compressive sensing [11].

We now mention a few techniques for exact and approximate SVD computation, before discussing
algorithms that sidestep the SVD as we do. The time complexity of the full SVD of an m × n
matrix is O(mn2) (for m > n). Partial SVDs are computed using iterative methods for eigen

decompositions of symmetric matrices derived from A such as AAT and
[
0 AT ;A 0

]
[12]. The
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complexity of standard iterative eigensolvers such as simultaneous iteration[13] and the Lanczos
method scales as Ω(kT ) [12], where T denotes the number of non-zeros of A.

The leading k singular value, vector triplets {(σl,ul,vl), l = 1, . . . , k} minimize the matrix
reconstruction error under a rank k constraint: they are a solution to the optimization problem

argmin‖A−∑l=k
l=1 σlulv

T
l ‖2F , where ‖ · ‖F denotes the Frobenius norm. Approximate SVD algo-

rithms strive to reduce this error while also placing constraints on the computational budget and/or
the number of passes over A. A commonly employed approximate eigendecomposition algorithm
is the Nystrom method [6], [7] based on random sampling of s columns of A, which has time com-
plexityO(ksn+ s3). A number of variants of the Nystrom method for kernel matrices like (1) have
been proposed in the literature. These aim to improve accuracy using preprocessing steps such as
K-means clustering [14] or random projection trees [15]. Methods to reduce the complexity of the
Nystrom algorithm to O(ksn+ k3)[16], [17] enable Nystrom sketches that see more columns of A.
The complexity of all of these grow as Ω(ksn). Other randomized algorithms, involving iterative
computations, include the Randomized SVD [8]. Since all of these algorithms set out to recover
k-leading eigenvectors (exact or otherwise), their complexity scales as Ω(kT ).
We now turn to algorithms that sidestep SVD computation. In [18], [19], vertices of a graph are
embedded based on diffusion of probability mass in random walks on the graph, using the power
iteration run independently on random starting vectors, and stopping “prior to convergence.” While
this approach is specialized to probability transition matrices (unlike our general framework) and
does not provide explicit control on the nature of the embedding as we do, a feature in common with
the present paper is that the time complexity of the algorithm and the dimensionality of the resulting
embedding are independent of the number of eigenvectors k captured by it. A parallel implementa-
tion of this algorithm was considered in [20]; similar parallelization directly applies to our algorithm.
Another specific application that falls within our general framework is the commute time embedding
on a graph, based on the normalized adjacency matrix and weighing function f(x) = 1/

√
1− x [4],

[21]. Approximate commute time embeddings have been computed using Spielman-Teng solvers
[22], [23] and the JL lemma in [24]. The complexity of the latter algorithm and the dimensionality of
the resulting embedding are comparable to ours, but the method is specially designed for the normal-
ized adjacency matrix and the weighing function f(x) = 1/

√
1− x. Our more general framework

would, for example, provide the flexibility of suppressing small eigenvectors from contributing to
the embedding (e.g, by setting f(x) = I(x > ǫ)/

√
1− x).

Thus, while randomized projections are extensively used in the embedding literature, to the best
of our knowledge, the present paper is the first to develop a general compressive framework for
spectral embeddings derived from the SVD. It is interesting to note that methods similar to ours
have been used in a different context, to estimate the empirical distribution of eigenvalues of a large
hermitian matrix [25], [26]. These methods use a polynomial approximation of indicator functions
f(λ) = I(a ≤ λ ≤ b) and random projections to compute an approximate histogram of the number
of eigenvectors across different bands of the spectrum: [a, b] ⊆ [λmin, λmax].

3 Algorithm

We first present the algorithm for a symmetric n × n matrix S. Later, in Section 3.5, we show
how to handle a general m × n matrix by considering a related (m + n) × (m + n) symmetric
matrix. Let λl denote the eigenvalues of S sorted in descending order and vl their corresponding
unit-norm eigenvectors (chosen to be orthogonal in case of repeated eigenvalues). For any func-

tion g(x) : R 7→ R, we denote by g(S) the n × n symmetric matrix g(S) =
∑l=n

l=1 g(λl)vlv
T
l .

We now develop an O(n log n) algorithm to compute a d = O(log n) dimensional embedding
which approximately captures pairwise euclidean distances between the rows of the embedding
E = [f (λ1)v1 f (λ2)v2 · · · f (λn)vn].

Rotations are inconsequential: We first observe that rotation of basis does not alter ℓ2-based sim-
ilarity metrics. Since V = [v1 · · ·vn] satisfies V V T = V TV = In, pairwise distances be-
tween the rows of E are equal to corresponding pairwise distances between the rows of EV T =∑l=n

l=1 f(λl)vlv
T
l = f(S). We use this observation to compute embeddings of the rows of f(S)

rather than those of E.
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3.1 Compressive embedding

Suppose now that we know f(S). This constitutes an n-dimensional embedding, and similarity
queries between two “vertices” (we refer to the variables corresponding to rows of S as vertices,
as we would for matrices derived from graphs) requires O(n) operations. However, we can reduce
this time to O(log n) by using the JL lemma, which informs us that pairwise distances can be
approximately captured by compressive projection onto d = O(log n) dimensions.

Specifically, for d > (4 + 2β) logn
/(
ǫ2/2− ǫ3/3

)
, let Ω denote an n× d matrix with i.i.d. entries

drawn uniformly at random from {±1/
√
d}. According to the JL lemma, pairwise distances between

the rows of f(S)Ω approximate pairwise distances between the rows of f(S) with high probability.

In particular, the following statement holds with probability at least 1 − n−β : (1 − ǫ) ‖u− v‖2 ≤
‖(u− v) Ω‖2 ≤ (1 + ǫ) ‖u− v‖2, for any two rows u,v of f(S).

The key take-aways are that (a) we can reduce the embedding dimension to d = O(log n), since we
are only interested in pairwise similarity measures, and (b) We do not need to compute f(S). We
only need to compute f(S)Ω. We now discuss how to accomplish the latter efficiently.

3.2 Polynomial approximation of embedding

Direct computation of E′ = f(S)Ω from the eigenvectors and eigenvalues of S, as f(S) =∑
f(λl)vlv

T
l would suggest, is expensive (O(n3)). However, we now observe that computation

of ψ(S)Ω is easy when ψ(·) is a polynomial. In this case, ψ(S) =
∑p=L

p=0 bpS
p for some bp ∈ R, so

that ψ(S)Ω can be computed as a sequence of L matrix-vector products interlaced with vector ad-
ditions run in parallel for each of the d columns of Ω. Therefore, they only require LdT +O(Ldn)

flops. Our strategy is to approximate E′ = f(S)Ω by Ẽ = f̃L(S)Ω, where f̃L(x) is an L-th order
polynomial approximation of f(x). We defer the details of computing a “good” polynomial approx-

imation to Section 3.4. For now, we assume that one such approximation f̃L(·) is available and give
bounds on the loss in fidelity as a result of this approximation.

3.3 Performance guarantees

The spectral norm of the “error matrix” Z = f(S)− f̃(S) = ∑r=n
r=1 (f(λr)− f̃L(λr))vrv

T
r satisfies

‖Z‖ = δ = maxl|f(λl)− f̃L(λl)| ≤ max{|f(x)− f̃L(x)|}, where the spectral norm of a matrix
B, denoted by ‖B‖ refers to the induced ℓ2-norm. For symmetric matrices, ‖B‖ ≤ α ⇐⇒ |λl| ≤
α ∀l, where λl are the eigenvalues of B. Letting ip denote the unit vector along the p-th coordinate

of Rn, the distance between the p, q-th rows of f̃(S) can be written as

‖f̃L(S) (ip − iq)‖ = ‖f(S) (ip − iq)− Z (ip − iq)‖ ≤ ‖ET (ip − iq)‖+ δ
√
2. (2)

Similarly, we have that ‖f̃L(S) (ip − iq)‖ ≥ ‖ET (ip − iq)‖ − δ
√
2. Thus pairwise distances be-

tween the rows of f̃L(S) approximate those between the rows of E. However, the distortion term

δ
√
2 is additive and must be controlled by carefully choosing f̃L(·), as discussed in Section 4.

Applying the JL lemma [10] to the rows of f̃L(S), we have that when d > O
(
ǫ−2 logn

)
with i.i.d.

entries drawn uniformly at random from {±1/
√
d}, the embedding Ẽ = f̃L(S)Ω captures pairwise

distances between the rows of f̃L(S) up to a multiplicative distortion of 1± ǫ with high probability:

∥∥∥ẼT (ip − iq)
∥∥∥ =

∥∥∥ΩT f̃L(S) (ip − iq)
∥∥∥ ≤
√
1 + ǫ

∥∥∥f̃L(S) (ip − iq)
∥∥∥

Using (2), we can show that ‖ẼT (ip − iq)‖ ≤
√
1 + ǫ

(
‖ET (ip − iq)‖+ δ

√
2
)
. Similarly,

‖ẼT (ip − iq)‖ ≥
√
1− ǫ

(
‖ET (ip − iq)‖ − δ

√
2
)
. We state this result in Theorem 1.

Theorem 1. Let f̃L(x) denote an L-th order polynomial such that: δ = maxl|f(λl)− f̃L(λl)| ≤
max|f(x)− f̃L(x)| and Ω an n × d matrix with entries drawn independently and uniformly at

random from {±1/
√
d}, where d is an integer satisfying d > (4 + 2β) log n

/
(ǫ2/2− ǫ3/3) . Let
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g : R
p → R

d denote the mapping from the i-th row of E = [f (λ1)v1 · · · f (λn)vn] to the i-th

row of Ẽ = f̃L(S)Ω. The following statement is true with probability at least 1− n−β:
√
1− ǫ(‖u− v‖ − δ

√
2) ≤ ‖g(u)− g(v)‖ ≤

√
1 + ǫ(‖u− v‖+ δ

√
2)

for any two rows u, v of E. Furthermore, there exists an algorithm to compute each of the d =

O(log n) columns of Ẽ in O(L(T + n)) flops independent of its other columns which makes L
passes over S (T is the number of non-zeros in S).

3.4 Choosing the polynomial approximation

We restrict attention to matrices which satisfy ‖S‖ ≤ 1, which implies that |λl| ≤ 1. We observe
that we can trivially center and scale the spectrum of any matrix to satisfy this assumption when
we have the following bounds: λl ≤ σmax and λl ≥ σmin via the rescaling and centering operation
given by: S′ = 2S/(σmax − σmin) − (σmax + σmin) In/(σmax − σmin) and by modifying f(x) to
f ′(x) = f (x (σmax − σmin)/2 + (σmax + σmin)/2).

In order to compute a polynomial approximation of f(x), we need to define the notion of “good”
approximation. We showed in Section 3.3 that the errors introduced by the polynomial approx-
imation can be summarized by furnishing a bound on the spectral norm of the error matrix

Z = f(S) − f̃L(S): Since ‖Z‖ = δ = maxl|f(λl) − f̃L(λl)|, what matters is how well we
approximate the function f(·) at the eigenvalues {λl} of S. Indeed, if we know the eigenvalues,

we can minimize ‖Z‖ by minimizing maxl|f(λl) − f̃L(λl)|. This is not a particularly useful ap-
proach, since computing the eigenvalues is expensive. However, we can use our prior knowledge
of the domain from which the matrix S comes from to penalize deviations from f(λ) differently
for different values of λ. For example, if we know the distribution p(x) of the eigenvalues of

S, we can minimize the average error ∆L =
∫ 1

−1 p(λ)|f(λ) − f̃L(λ)|2dx. In our examples, for

the sake of concreteness, we assume that the eigenvalues are uniformly distributed over [−1, 1]
and give a procedure to compute an L-th order polynomial approximation of f(x) that minimizes

∆L = (1/2)
∫ 1

−1
|f(x)− f̃L(x)|2dx.

A numerically stable procedure to generate finite order polynomial approximations of a function

over [−1, 1] with the objective of minimizing
∫ 1

−1
|f(x) − f̃L(x)|2dx is via Legendre polynomials

p(r, x), r = 0, 1, . . . , L. They satisfy the recursion p(r, x) = (2 − 1/r)xp(r − 1, x) − (1 −
1/r)p(r − 2, x) and are orthogonal:

∫ 1

−1
p(k, x)p(l, x)dx = 2I(k = l)/(2r + 1) . Therefore we

set f̃L(x) =
∑r=L

r=0 a(r)p(r, x) where a(r) = (r + 1/2)
∫ 1

−1 p(r, x)f(x)dx. We give a method

in Algorithm 1 that uses the Legendre recursion to compute p(r, S)Ω, r = 0, 1, . . . , L using Ld

matrix-vector products and vector additions. The coefficients a(r) are used to compute f̃L(S)Ω by
adding weighted versions of p(r, S)Ω.

Algorithm 1 Proposed algorithm to compute approximate d-dimensional eigenvector embedding of
a n× n symmetric matrix S (such that ‖S‖ ≤ 1) using the n× d random projection matrix Ω.

1: Procedure FASTEMBEDEIG(S, f(x), L, Ω):

2: //* Compute polynomial approximation f̃L(x) which minimizes
∫ 1

−1
|f(x) − f̃L(x)|2dx *//

3: for r = 0, . . . , L do

4: a(r)← (r + 1/2)
∫ x=1

x=−1
f(x)p(r, x)dx //* p(r, x): Order r Legendre polynomial *//

5: Q(0)← Ω, Q(−1)← 0, Ẽ ← a(0)Q(0)
6: for r = 1, 2, . . . , L do
7: Q(r)← (2− 1/r)SQ(r − 1)− (1− 1/r)Q(r − 2) //* Q(r) = p(r, S)Ω *//

8: Ẽ ← Ẽ + a(r)Q(r) //* Ẽ now holds f̃r(S)Ω *//

9: return Ẽ //* Ẽ = f̃L(S)Ω *//

As described in Section 4, if we have prior knowledge of the distribution of eigenvalues (as we do for
many commonly encountered large matrices), then we can “boost” the performance of the generic
Algorithm 1 based on the assumption of eigenvalues uniformly distributed over [−1, 1].
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3.5 Embedding general matrices

We complete the algorithm description by generalizing to any m × n matrix A (not neces-
sarily symmetric) such that ‖A‖ ≤ 1. The approach is to utilize Algorithm 1 to compute
an approximate d-dimensional embedding of the symmetric matrix S = [0 AT ;A 0]. Let
{(σl,ul,vl) : l = 1, . . . ,min{m,n}} be an SVD of A =

∑
l σlulv

T
l (‖A‖ ≤ 1 ⇐⇒

σl ≤ 1). Consider the following spectral mapping of the rows of A to the rows of Erow =
[f(σ1)u1 · · · f(σm)um] and the columns of A to the rows of Ecol = [f(σ1)v1 · · · f(σn)vn].

It can be shown that the unit-norm orthogonal eigenvectors of S take the form [vl;ul]
/√

2

and [vl;−ul]
/√

2 , l = 1, . . . ,min{m,n}, and their corresponding eigenvalues are σl and −σl
respectively. The remaining |m − n| eigenvalues of S are equal to 0. Therefore, we call

Ẽall ← FASTEMBEDEIG(S, f ′(x), L,Ω) with f ′(x) = f(x)I(x ≥ 0) − f(−x)I(x < 0) and Ω
is an (m + n)× d, d = O(log(m + n)) matrix (entries drawn independently and uniformly at ran-

dom from {±1/
√
d}). Let Ẽcol and Ẽrow denote the first n and lastm rows of Ẽall. From Theorem 1,

we know that, with overwhelming probability, pairwise distances between any two rows of Ẽrow ap-
proximates those between corresponding rows of Erow. Similarly, pairwise distances between any

two rows of Ẽcol approximates those between corresponding rows of Ecol.

4 Implementation considerations

We now briefly go over implementation considerations before presenting numerical results in Sec-
tion 5.

Spectral norm estimates In order to ensure that the eigenvalues of S are within [−1, 1] as we have
assumed, we scale the matrix by its spectral norm (‖S‖ = max|λl|). To this end, we obtain a tight
lower bound (and a good approximation) on the spectral norm using power iteration (20 iterates on
6 logn randomly chosen starting vectors), and then scale this up by a small factor (1.01) for our
estimate (typically an upper bound) for ‖S‖.

Polynomial approximation order L: The error in approximating f(λ) by f̃L(λ), as measured by

∆L =
∫ 1

−1 |f(x)− f̃L(x)|2dx is a non-increasing function of the polynomial order L. Reduction

in ∆L often corresponds to a reduction in δ that appears as a bound on distortion in Theorem 1.
“Smooth” functions generally admit a lower order approximation for the same target error ∆L, and
hence yield considerable savings in algorithm complexity, which scales linearly with L.

Polynomial approximation method: The rate at which δ decreases as we increase L depends on

the function p(λ) used to compute f̃L(λ) (by minimizing ∆L =
∫
p(λ)|f(λ) − f̃L(λ)|2dx). The

choice p(λ) ∝ 1 yields the Legendre recursion used in Algorithm 1, whereas p(λ) ∝ 1/
√
1− λ2

corresponds to the Chebyshev recursion, which is known to result in fast convergence. We defer to
future work a detailed study of the impact of alternative choices for p(λ) on δ.

Denoising by cascading In large-scale problems, it may be necessary to drive the contribution from
certain singular vectors to zero. In many settings, singular vectors with smaller singular values cor-
respond to noise. The number of such singular values can scale as fast asO(min{m,n}). Therefore,
when we place nulls (zeros) in f(λ), it is desirable to ensure that these nulls are pronounced after

we approximate f(λ) by f̃L(λ). We do this by computing
(
g̃L/b(S)

)b
Ω, where g̃L/b(λ) is an L/b-

th order approximation of g(λ) = f1/b(λ). The small values in the polynomial approximation of

f1/b(λ) which correspond to f(λ) = 0 (nulls which we have set) get amplified when we pass them
through the xb non-linearity.

5 Numerical results

While the proposed approach is particularly useful for large problems in which exact eigendecom-
position is computationally infeasible, for the purpose of comparison, our results are restricted to
smaller settings where the exact solution can be computed. We compute the exact partial eigende-
composition using the ARPACK library (called from MATLAB). For a given choice of weighing
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Figure 1: DBLP collaboration network normalized correlations

function f(λ), the associated embedding E = [f(λ1)v1 · · · f(λn)vn] is compared with the com-

pressive embedding Ẽ returned by Algorithm 1. The latter was implemented in Python using the
Scipy’s sparse matrix-multiplication routines and is available for download from [9].

We consider two real world undirected graphs in [27] for our evaluation, and compute embeddings

for the normalized adjacency matrix Ã (= D−1/2AD−1/2, where D is a diagonal matrix with row

sums of the adjacency matrix A; the eigenvalues of Ã lie in [−1, 1]) for graphs. We study the ac-
curacy of embeddings by comparing pairwise normalized correlations between i, j-th rows of E
given by < E(i, :), E(j, :) >/‖E(i, :)‖‖E(j, :)‖ with those predicted by the approximate embed-

ding < Ẽ(i, :), Ẽ(j, :) > /‖Ẽ(i, :)‖‖Ẽ(j, :)‖ (E(i, :) is short-hand for the i-th row of E).

DBLP collaboration network [27] is an undirected graph on n = 317080 vertices with 1049866

edges. We compute the leading 500 eigenvectors of the normalized adjacency matrix Ã. The small-

est of the five hundred eigenvalues is 0.98, so we set f(λ) = I(λ ≥ 0.98) and S = Ã in Algorithm 1

and compare the resulting embedding Ẽ with E = [v1 · · · v500]. We demonstrate the dependence

of the quality of the embedding Ẽ returned by the proposed algorithm on two parameters: (i) num-
ber of random starting vectors d, which gives the dimensionality of the embedding and (ii) the
boosting/cascading parameter b using this dataset.

Dependence on the number of random projections d: In Figure (1a), d ranges from 1 to 120 ≈ 9 logn
and plot the 1-st, 5-th, 25-th, 50-th, 75-th, 95-th and 99-th percentile values of the deviation between

the compressive normalized correlation (from the rows of Ẽ) and the corresponding exact normal-
ized correlation (rows of E). The deviation decreases with increasing d, corresponding to ℓ2-norm
concentration (JL lemma), but this payoff saturates for large values of d as polynomial approxima-
tion errors start to dominate. From the 5-th and 95-th percentile curves, we see that a significant

fraction (90%) of pairwise normalized correlations in Ẽ lie within ±0.2 of their corresponding val-
ues in E when d = 80 ≈ 6 logn. For Figure (1a), we use L = 180 matrix-vector products for each
randomly picked starting vector and set cascading parameter b = 2 for the algorithm in Section 4.

Dependence on cascading parameter b: In Section 4 we described how cascading can help suppress

the contribution to the embedding Ẽ of the eigenvectors whose eigenvalues lie in regions where we
have set f(λ) = 0. We illustrate the importance of this boosting procedure by comparing the quality

of the embedding Ẽ for b = 1 and b = 2 (keeping the other parameters of the algorithm in Section 4
fixed: L = 180 matrix-vector products for each of d = 80 randomly picked starting vectors).
We report the results in Figure (1b) where we plot percentile values of compressive normalized

correlation (from the rows of Ẽ) for different values of the exact normalized correlation (rows of
E). For b = 1, the polynomial approximation of f(λ) does not suppress small eigenvectors. As a
result, we notice a deviation (bias) of the 50-percentile curve (green) from the ideal y = x dotted
line drawn (Figure 1b left). This disappears for b = 2 (Figure 1b right).

The running time for our algorithm on a standard workstation was about two orders of magnitude
smaller than partial SVD using off-the-shelf sparse eigensolvers (e.g., the 80 dimensional embedding
of the leading 500 eigenvectors of the DBLP graph took 1 minute whereas their exact computation
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took 105 minutes). A more detailed comparison of running times is beyond the scope of this paper,
but it is clear that the promised gains in computational complexity are realized in practice.

Application to graph clustering for the Amazon co-purchasing network [27] : This is an undi-
rected graph on n = 334863 vertices with 925872 edges. We illustrate the potential downstream
benefits of our algorithm by applying K-means clustering on embeddings (exact and compressive)

of this network. For the purpose of our comparisons, we compute the first 500 eigenvectors for Ã ex-

plicitly using an exact eigensolver, and use an 80-dimensional compressive embedding Ẽ which cap-
tures the effect of these, with f(λ) = I(λ ≥ λ500), where λ500 is the 500th eigenvalue. We compare

this against the usual spectral embedding using the first 80 eigenvectors of Ã: E = [v1 · · · v80].
We keep the dimension fixed at 80 in the comparison because K-means complexity scales linearly
with it, and quickly becomes the bottleneck. Indeed, our ability to embed a large number of eigen-
vectors directly into a low dimensional space (d ≈ 6 logn) has the added benefit of dimensionality
reduction within the subspace of interest (in this case the largest 500 eigenvectors).

We consider 25 instances of K-means clustering with K = 200 throughout, reporting the median
of a commonly used graph clustering score, modularity [28] (larger values translate to better clus-

tering solutions). The median modularity for clustering based on our embedding Ẽ is 0.87. This is
significantly better than that for E, which yields median modularity of 0.835. In addition, the com-

putational cost for Ẽ is one-fifth that for E (1.5 minutes versus 10 minutes). When we replace the
exact eigenvector embedding E with approximate eigendecomposition using Randomized SVD [8]
(parameters: power iterates q = 5 and excess dimensionality l = 10), the time taken reduces from
10 minutes to 17 seconds, but this comes at the expense of inference quality: median modularity
drops to 0.748. On the other hand, the median modularity increases to 0.845 when we consider ex-
act partial SVD embedding with 120 eigenvectors. This indicates that our compressive embedding
yields better clustering quality because it is able to concisely capture more eigenvectors(500 in this
example, compared to 80 and 120 with conventional partial SVD). It is worth pointing out that, even
for known eigenvectors, the number of dominant eigenvectors k that yields the best inference per-
formance is often unknown a priori, and is treated as a hyper-parameter. For compressive spectral

embedding Ẽ, an elegant approach for implicitly optimizing over k is to use the embedding function
f(λ) = I(λ ≥ c), with c as a hyper-parameter.

6 Conclusion

We have shown that random projections and polynomial expansions provide a powerful approach for
spectral embedding of large matrices: for anm×nmatrixA, ourO((T +m+n) log(m+n)) algo-
rithm computes anO(log(m+n))-dimensional compressive embedding that provably approximates
pairwise distances between points in the desired spectral embedding. Numerical results for several
real-world data sets show that our method provides good approximations for embeddings based on
partial SVD, while incurring much lower complexity. Moreover, our method can also approximate
spectral embeddings which depend on the entire SVD, since its complexity does not depend on the
number of dominant vectors whose effect we wish to model. A glimpse of this potential is provided
by the example ofK-means based clustering for estimating sparse-cuts of the Amazon graph, where
our method yields much better performance (using graph metrics) than a partial SVD with signifi-
cantly higher complexity. This motivates further investigation into applications of this approach for
improving downstream inference tasks in a variety of large-scale problems.
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