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Abstract

Variational inference is an efficient, popular heuristic used in the context of latent
variable models. We provide the first analysis of instances where variational in-
ference algorithms converge to the global optimum, in the setting of topic models.
Our initializations are natural, one of them being used in LDA-c, the most popular
implementation of variational inference. In addition to providing intuition into
why this heuristic might work in practice, the multiplicative, rather than additive
nature of the variational inference updates forces us to use non-standard proof
arguments, which we believe might be of general theoretical interest.

1 Introduction

Over the last few years, heuristics for non-convex optimization have emerged as one of the most
fascinating phenomena for theoretical study in machine learning. Methods like alternating mini-
mization, EM, variational inference and the like enjoy immense popularity among ML practitioners,
and with good reason: they’re vastly more efficient than alternate available methods like convex
relaxations, and are usually easily modified to suite different applications.

Theoretical understanding however is sparse and we know of very few instances where these meth-
ods come with formal guarantees. Among more classical results in this direction are the analyses of
Lloyd’s algorithm for K-means, which is very closely related to the EM algorithm for mixtures of
Gaussians [20], [L3], [14]. The recent work of [9] also characterizes global convergence properties
of the EM algorithm for more general settings. Another line of recent work has focused on a differ-
ent heuristic called alternating minimization in the context of dictionary learning. [1], [6] prove that
with appropriate initialization, alternating minimization can provably recover the ground truth. [22]]
have proven similar results in the context of phase retreival.

Another popular heuristic which has so far eluded such attempts is known as variational infer-
ence [19]. We provide the first characterization of global convergence of variational inference based
algorithms for topic models [12]]. We show that under natural assumptions on the topic-word matrix
and the topic priors, along with natural initialization, variational inference converges to the param-
eters of the underlying ground truth model. To prove our result we need to overcome a number
of technical hurdles which are unique to the nature of variational inference. Firstly, the difficulty
in analyzing alternating minimization methods for dictionary learning is alleviated by the fact that
one can come up with closed form expressions for the updates of the dictionary matrix. We do
not have this luxury. Second, the “norm” in which variational inference naturally operates is KL
divergence, which can be difficult to work with. We stress that the focus of this work is not to iden-
tify new instances of topic modeling that were previously not known to be efficiently solvable, but
rather providing understanding about the behaviour of variational inference, the defacto method for
learning and inference in the context of topic models.



2 Latent variable models and EM

We briefly review EM and variational methods. The setting is latent variable models, where
the observations X; are generated according to a distribution P(X;|0) = P(Z;|0)P(X;|Z;,0)
where 6 are parameters of the models, and Z; is a latent variable. Given the observations X;, a
common task is to find the max likelihood value of the parameter §: argmax, Z log(P(X;]0)).

The EM algorithm is an iterative method to achieve this, dating all the way l;ack to [15] and
[24] in the 70s. In the above framework it can be formulated as the following procedure, main-
taining estimates ¢, Z5t(Z ) of the model parameters and the posterior distribution over the hid-
den variables: In the E-step, we compute the distribution P*(Z) = P(Z|X,0"). In the M-

step, we set T = argmax, ZEﬁt [log P(X;, Z;|0)]. Sometimes even the above two steps

may not be computationally feasible, in which case they can be relaxed by choosing a fam-

ily of simple distributions F', and performing the following updates. In the variational E-step,

we compute the distribution P'(Z) = min KL(P'(2)||P(Z|X,6")). In the M-step, we set
te

0'! = argmax, Z Eg.[log P(X;, Z;|0)]. By picking the family F' appropriately, it’s often possi-

3
ble to make both steps above run in polynomial time. As expected, none of the above two families
of approximations, come with any provable global convergence guarantees. With EM, the problem
is ensuring that one does not get stuck in a local optimum. With variational EM, additionally, we
are faced with the issue of in principle not even exploring the entire space of solutions.

3 Topic models and prior work

We focus on a particular, popular latent variable model - topic models [12]. The generative model
over word documents is the following. For each document in the corpus, a proportion of topics

V1,72, - - - Y& 18 sampled according to a prior distribution a. Then, for each position p in the doc-
ument, we pick a topic Z, according to a multinomial with parameters 7y, ..., y;. Conditioned on
Z, =1, we pick a word j from a multinomial with parameters (53; 1, 5;,2, - - ., Bi,x) to put in position

p. The matrix of values {3; ;} is known as the topic-word matrix.

The body of work on topic models is vast [[L1]. Prior theoretical work relevant in the context of
this paper includes the sequence of works by [7]],[4], as well as [2]], [16], [[17] and [10]. [7] and
[4] assume that the topic-word matrix contains “anchor words”. This means that each topic has a
word which appears in that topic, and no other. [2] on the other hand work with a certain expansion
assumption on the word-topic graph, which says that if one takes a subset S of topics, the number
of words in the support of these topics should be at least |\S| + $;nqz, Where S,,4, is the maximum
support size of any topic. Neither paper needs any assumption on the topic priors, and can handle
(almost) arbitrarily short documents.

The assumptions we make on the word-topic matrix will be related to the ones in the above works,
but our documents will need to be long, so that the empirical counts of the words are close to their
expected counts. Our priors will also be more structured. This is expected since we are trying to
analyze an existing heuristic rather than develop a new algorithmic strategy. The case where the
documents are short seems significantly more difficult. Namely, in that case there are two issues to
consider. One is proving the variational approximation to the posterior distribution over topics is not
too bad. The second is proving that the updates do actually reach the global optimum. Assuming
long documents allows us to focus on the second issue alone, which is already challenging. On a
high level, the instances we consider will have the following structure:

e The topics will satisfy a weighted expansion property: for any set S of topics of constant size,
for any topic ¢ in this set, the probability mass on words which belong to ¢, and no other topic in
S will be large. (Similar to the expansion in [2]], but only over constant sized subsets.)

e The number of topics per document will be small. Further, the probability of including a given
topic in a document is almost independent of any other topics that might be included in the
document already. Similar properties are satisfied by the Dirichlet prior, one of the most popular



priors in topic modeling. (Originally introduced by [[12].) The documents will also have a
“dominating topic”, similarly as in [10].

e For each word 7, and a topic % it appears in, there will be a decent proportion of documents that
contain topic ¢ and no other topic containing j. These can be viewed as “local anchor documents”
for that word-pair topic.

We state below, informally, our main result. See Sections @ and for more details.

Theorem. Under the above mentioned assumptions, popular variants of variational inference for
topic models, with suitable initializations, provably recover the ground truth model in polynomial
time.

4 Variational relaxation for learning topic models

In this section we briefly review the variational relaxation for topic models, following closely [12].
Throughout the paper, we will denote by N the total number of words and K the number of topics.
We will assume that we are working with a sample set of D documents. We will also denote by
fa; the fractional count of word j in document d (i.e. fq; = Count(j)/Ng, where Count(j) is the
number of times word j appears in the document, and N is the number of words in the document).

For topic models variational updates are a way to approximate the computationally intractable
E-step [23] as described in Section 2] Recall the model parameters for topic models are the
topic prior parameters « and the topic-word matrix 5. The observable X is the list of words
in the document. The latent variables are the topic assignments Z; at each position j in the
document and the topic proportions . The variational E-step hence becomes P!'(Z,v) =
minpiep KL(PYZ, v)||P(Z,v| X, at, 5¢) for some family F' of distributions. The family F' one

usually considered is P!(vy,Z) = q(*y)H;y:‘ilqg(Zj), i.e. a mean field family. In [12] it’s shown
that for Dirichlet priors « the optimal distributions g, qg are a Dirichlet distribution for ¢, with some
parameter 4, and multinomials for qg, with some parameters ¢;. The variational EM updates are
shown to have the following form. In the E-step, one runs to convergence the following updates on
the ¢ and 4 parameters: ¢ ; ; /nywd.j eFallos(va)l7al Vdi = Ozg)i JrZ;Y:dl ¢d.;,i- In the M-step, one
D Ny
updates the § and parameters by setting ijl x Z Z bu. ;,iWd,j,; Where ¢ ; ; is the converged
d=1j'=1
value of ¢g ; ;; wq,; is the word in document d, position j; wq ;,j+ is an indicator variable which is 1
if the word in position j' in document d is word j. The « Dirichlet parameters do not have a closed
form expression and are updated via gradient descent.

4.1 Simplified updates in the long document limit

From the above updates it is difficult to give assign an intuitive meaning to the 7 and ¢ parameters.

(Indeed, it’s not even clear what one would like them to be ideally at the global optimum.) We will

be however working in the large document limit - and this will simplify the updates. In particular,

in the E-step, in the large document limit, the first term in the update equation for 4 has a vanishing

. . . . . N,

contribution. In this case, we can simplify the E-update as: ¢q ;; /J’f Vdyis Vdi X > j:dl Ddji-

Notice, importantly, in the second update we now use variables ~y, ; instead of 4 ;, which are nor-
K

malized such that Z va,; = 1. These correspond to the max-likelihood topic proportions, given
i=1

our current estimates nyj for the model parameters. The M-step will remain as is - but we will

focus on the S only, and 1gnore the « updates - as the « estimates disappeared from the E updates:

D
ijl o< Z fd7 jfyfl,i, where 'Yfi,i is the converged value of vy ;. In this case, the intuitive mean-
d=1
ing of the 3 and ~* variables is clear: they are estimates of the the model parameters, and the
max-likelihood topic proportions, given an estimate of the model parameters, respectively.

The way we derived them, these updates appear to be an approximate form of the variational updates
in [12]. However it is possible to also view them in a more principled manner. These updates



approximate the posterior distribution P(Z,~|X, at, 3%) by first approximating this posterior by
P(Z|X,~*, at, B%), where v* is the max-likelihood value for +, given our current estimates of
a, 3, and then setting P(Z|X,~*,at, %) to be a product distribution. It is intuitively clear that
in the large document limit, this approximation should not be much worse than the one in [12],
as the posterior concentrates around the maximum likelihood value. (And in fact, our proofs will

work for finite, but long documents.) Finally, we will rewrite the above equations in a slightly
K

more convenient form. Denoting fq; = E wvlﬂf s the E-step can be written as: iterate until
i=1 }
- D faj t
ad dyj ot t+1 ¢ 2= 7y, i
convergence Ya; = Yd.i E P The M-step becomes: 8;;" = f; ;——p—,— Where
j=1 JdJ dd=1 Vi

K
fdtj = E o fj and 7} , is the converged value of 74 ;.
i=1

4.2 Alternating KL. minimization and thresholded updates

We will further modify the E and M-step update equations we derived above. In a slightly modified
form, these updates were used in a paper by [21] in the context of non-negative matrix factorization.
There the authors proved that under these updates ZdD=1 KL(f, é} j || fa,;) is non-decreasing. One can
easily modify their arguments to show that the same property is preserved if the E-step is replaced
by a step 7}, = min,eea, KL(fal|fa), where A is the K-dimensional simplex - i.e. minimizing
the KL divergence between the counts and the ”predicted counts” with respect to the «y variables. (In
fact, iterating the y updates above is a way to solve this convex minimization problem via a version
of gradient descent which makes multiplicative updates, rather than additive updates.)

Thus the updates are performing alternating minimization using the KL divergence as the distance
measure (with the difference that for the S variables one essentially just performs a single gradient
step). In this paper, we will make a modification of the M-step which is very natural. Intuitively, the
update for va ; goes over all appearances of the word j and adds the “fractional assignment” of the
word j to topic ¢ under our current estimates of the variables (3, . In the modified version we will
only average over those documents d, where 'yft ;> 73) +» V1" # i. The intuitive reason behind this
modification is the following. The EM updates we are studying work with the KL divergence, which
puts more weight on the larger entries. Thus, for the documents in D;, the estimates for fy}}’ ; should
be better than they might be in the documents D \ D;. (Of course, since the terms f 37 ; involve all
the variables 7] ;, it is not a priori clear that this modification will gain us much, but we will prove
that it in fact does.) Formally, we discuss the three modifications of variational inference specified
as Algorithm 1, 2 and 3 (we call them tEM, for thresholded EM):

Algorithm 1 KL-tEM

1

(E-step) Solve the following convex program for each document d: min.. > fa;log( f‘f" ), s.t.

J

aqf

Y5 >0,3075,; = Land v ; = 0if 4 is not in the support of document d
(M-step) Let D; to be the set of documents d, s.t. 75 ; > 75 ;,, Vi’ # i.

fdj ¢
Sdep, LG
Set g+l = gt S fay
©J bJ Xaep, Vi

5 Initializations

We will consider two different strategies for initialization. First, we will consider the case where
we initialize with the topic-word matrix, and the document priors having the correct support. The
analysis of tEM in this case will be the cleanest. While the main focus of the paper is tEM, we’ll
show that this initialization can actually be done for our case efficiently. Second, we will consider
an initialization that is inspired by what the current LDA-c implementation uses. Concretely, we’ll



Algorithm 2 Iterative tEM
(E-step) Initialize -4 ; uniformly among the topics in the support of document d.

Repeat
N
Yd,i = Vd,i Z
Jj=1

g, 4.1)
5]

until convergence.
(M-step) Same as above.

Algorithm 3 Incomplete tEM
(E-step) Initialize 7,4 ; with the values gotten in the previous iteration, then perform just one step

of
(M-step) Same as before.

assume that the user has some way of finding, for each topic i, a seed document in which the
proportion of topic ¢ is at least C;. Then, when initializing, one treats this document as if it were
pure: namely one sets 53 ; to be the fractional count of word j in this document. We do not attempt
to design an algorithm to find these documents.

6 Case study 1: Sparse topic priors, support initialization

We start with a simple case. As mentioned, all of our results only hold in the long documents
regime: we will assume for each document d, the number of sampled words is large enough, so that
one can approximate the expected frequencies of the words, i.e., one can find values 7} ;, such that

fd, = (1=%e) Efil Ya.i01 ;- We'll split the rest of the assumptions into those that apply to the topic-
word matrix, and the topic priors. Let’s first consider the assumptions on the topic-word matrix. We

will impose conditions that ensure the topics don’t overlap too much. Namely, we assume:

e Words are discriminative: Each word appears in o( K') topics.
e Almost disjoint supports: Vi, i', if the intersection of the supports of i and i' is S, >, ¢ 87 ; <

o
o) - 3, 65

We also need assumptions on the topic priors. The documents will be sparse, and all topics will
be roughly equally likely to appear. There will be virtually no dependence between the topics:
conditioning on the size or presence of a certain topic will not influence much the probability of
another topic being included. These are analogues of distributions that have been analyzed for
dictionary learning [6]. Formally:

e Sparse and gapped documents: Each of the documents in our samples has at most ' = O(1)
topics. Furthermore, for each document d, the largest topic ig = argmax, 7, ; is such that for any
other topic ¢/, Yair — Vai, > P for some (arbitrarily small) constant p.

e Dominant topic equidistribution: The probability that topic ¢ is such that v ; > 7§7i,,Vi’ #1is
O(1/K).

e Weak topic correlations and independent topic distribution: For all sets S with o( K) topics, it
must be the case that: E[v] ;[ ; is dominating] = (1 & o(1))E[y; ,;|v; ; is dominating, v} ;, =
0,i" € S]. Furthermore, for any set S of topics, s.t. [S| < T — 1, Prly;,; > 0]y, Vi’ € 5] =
O(%)

These assumptions are a less smooth version of properties of the Dirichlet prior. Namely, it’s a
folklore result that Dirichlet draws are sparse with high probability, for a certain reasonable range of
parameters. This was formally proven by [25]] - though sparsity there means a small number of large

coordinates. It’s also well known that Dirichlet essentially cannot enforce any correlation between
different topics. [[]

"We show analogues of the weak topic correlations property and equidistribution in the supplementary
material for completeness sake.



The above assumptions can be viewed as a local notion of separability of the model, in the following
sense. First, consider a particular document d. For each topic ¢ that participates in that document,
consider the words 7, which only appear in the support of topic ¢ in the document. In some sense,
these words are local anchor words for that document: these words appear only in one topic of that
document. Because of the “almost disjoint supports” property, there will be a decent mass on these
words in each document. Similarly, consider a particular non-zero element /7 ; of the topic-word
matrix. Let’s call D, the set of documents where 3}, ; = 0 for all other topics i’ # i appearing in
that document. These documents are like local anchor documents for that word-topic pair: in those
documents, the word appears as part of only topic 7. It turns out the above properties imply there is
a decent number of these for any word-topic pair.

Finally, a technical condition: we will also assume that all nonzero ~; ;, 5/ ; are at least m.

Intuitively, this means if a topic is present, it needs to be reasonably large, and similarly for words
in topics. Such assumptions also appear in the context of dictionary learning [6]].

We will prove the following

Theorem 1. Given an instance of topic modelling satisfying the properties specified above, where
2
the number of documents is Q(%) if we initialize the supports of the 5 and ’yd ; variables
correctly, after O (log(1/€') 4+ log N) KL-tEM, iterative-tEM updates or mcomplete tEM updates,
we recover the topic -word matrix and topic proportions to multiplicative accuracy 1 + €, for any €'

st 14 € <(1 a7

Theorem 2. If the number of documents is Q(K* log? K ), there is a polynomial time procedure
which with probability 1 — Q( K) correctly identifies the supports of the B ; and ;) ; variables.

Provable convergence of tEM: The correctness of the tEM updates is proven in 3 steps:

e [dentifying dominating topic: First, we prove that if ’yfi, ; 1s the largest one among all topics in the
document, topic ¢ is actually the largest topic.

e Phase I: Getting constant multiplicative factor estimates: After initialization, after O(log N)
rounds, we will get to variables ,8; > 'yfl, , Which are within a constant multiplicative factor from

b Vi

e Phase II (Alternating minimization - lower and upper bound evolution): Once the 3 and ~ es-
timates are within a constant factor of their true values, we show that the lone words and docu-
ments have a boosting effect: they cause the multiplicative upper and lower bounds to improve
at each round.

The updates we are studying are multiplicative, not additive in nature, and the objective they are
optimizing is non-convex, so the standard techniques do not work. The intuition behind our proof in
Phase II can be described as follows. Consider one update for one of the variables, say ﬁ . We show

that ﬂfjrl ~apl;+ (1—-a)C B; ; for some constant C" at time step t. « is somethlng falrly large

(one should think of it as 1 — o(1 )) and comes from the existence of the local anchor documents.
A similar equation holds for the v variables, in which case the “good” term comes from the local
anchor words. Furthermore, we show that the error in the ~ decreases over time, as does the value
of C*, so that eventually we can reach B; ;- The analysis bears a resemblance to the state evolution
and density evolution methods in error decodlng algorithm analysis - in the sense that we maintain
a quantity about the evolving system, and analyze how it evolves under the specified iterations. The
quantities we maintain are quite simple - upper and lower multiplicative bounds on our estimates at
any round ¢.

Initialization: Recall the goal of this phase is to recover the supports - i.e. to find out which topics
are present in a document, and identify the support of each topic. We will find the topic supports
first. This uses an idea inspired by [8] in the setting of dictionary learning. Roughly, we devise a
test, which will take as input two documents d, d’, and will try to determine if the two documents
have a topic in common or not. The test will have no false positives, i.e., will never say YES, if the
documents don’t have a topic in common, but might say NO even if they do. We then ensure that
with high probability, for each topic we find a pair of documents intersecting in that topic, such that
the test says YES.

’The detailed initialization algorithm is included in the supplementary material.



7 Case study 2: Dominating topics, seeded initialization

Next, we’ll consider an initialization which is essentially what the current implementation of LDA-c
uses. Namely, we will call the following initialization a seeded initialization:

e For each topic 7, the user supplies a document d, in which v, > C;.
e We treat the document as if it only contains topic ¢ and initialize with 62 =Tl

We show how to modify the previous analysis to show that with a few more assumptions, this
strategy works as well. Firstly, we will have to assume anchor words, that make up a decent fraction
of the mass of each topic. Second, we also assume that the words have a bounded dynamic range, i.e.
the values of a word in two different topics are within a constant B from each other. The documents
are still gapped, but the gap now must be larger. Finally, in roughly 1/B fraction of the documents
where topic ¢ is dominant, that topic has proportion 1 — 4, for some small (but still constant) §. A
similar assumption (a small fraction of almost pure documents) appeared in a recent paper by [[10]].
Formally, we have:

e Small dynamic range and large fraction of anchors: For each discriminative words, if 37 ; # 0
and 3}, J # 0, B; i < B3 g Furthermore, each topic ¢ has anchor words, such that their total
weight 1s at least p.

e Gapped documents: In each document, the largest topic has proportion at least Cj, and all the
other topics are at most C, s.t.

C,—Cs > % (\/2 <plog(cl,l) +(1-p) log(BCl)) + /log(1+ e)) +e

o Small fraction of 1 — 6 dominant documents: Among all the documents where topic ¢ is domi-
nating, in a 8/ B fraction of them, 737 > 1 — ¢, where

1 1
d := min (235 -5 <\/2 (plog(cl) +(1—p) log(BC’g)> + /log(1 + 6)) —€1— \/Cl>
The dependency between the parameters B, p, C; is a little difficult to parse, but if one thinks of C}
as 1—n fornsmall,andp > 1— ﬁ, since log(cil) ~ 1+4n, roughly we want that C; —C > %\/ﬁ
(In other words, the weight we require to have on the anchors depends only logarithmically on the
range B.) In the documents where the dominant topic has proportion 1 — §, a similar reasoning as
1—-2n
2B3

. . . 2 . .
above gives that we want is approximately ~;,; > 1 — + —+/n. The precise statement is as
' p

follows:

Theorem 3. Given an instance of topic modelling satisfying the properties specified above,
2
where the number of documents is Q(W) if we initialize with seeded initialization, after
O (log(1/€') + log N) of KL-tEM updates, we recover the topic-word matrix and topic proportions

to multiplicative accuracy 1 + €, if 1 + €' > ﬁ

The proof is carried out in a few phases:

e Phase I: Anchor identification: We show that as long as we can identify the dominating topic in
each of the documents, anchor words will make progress: after O(log V') number of rounds, the
values for the topic-word estimates will be almost zero for the topics for which word w is not an
anchor. For topic for which a word is an anchor we’ll have a good estimate.

e Phase II: Discriminative word identification: After the anchor words are properly identified in
the previous phase, if 3;; = 0, @t ; will keep dropping and quickly reach almost zero. The
values corresponding to @* ; 7 0 will be decently estimated.

o Phase III: Alternating minimization: After Phase I and II above, we are back to the scenario of
the previous section: namely, there is improvement in each next round.

During Phase I and II the intuition is the following: due to our initialization, even in the beginning,
each topic is “correlated” with the correct values. In a + update, we are minimizing K L(f4|| fa)
with respect to the -y, variables, so we need a way to argue that whenever the 5 estimates are not too
bad, minimizing this quantity provides an estimate about how far the optimal v, variables are from
;- We show the following useful claim:



Lemma 4. If, for all topics i, KL(B}||3!) < Rg, and min,,en, KL(faj||fa;) < Ry, after
running a KL divergence minimization step with respect to the 4 variables, we get that || —4||1 <

%Rﬂ + %\/Rf) + e

This lemma critically uses the existence of anchor words - namely we show ||5*v||; > p|\v||1

Intuitively, if one thinks of v as v* —~%, || 3*v||; will be large if ||v]|; is large. Hence, if || 3* — 8¢||1
is not too large, whenever || f* — ft| |1 is small, so is ||v* — ~*|[1. We will be able to maintain Rg
and Ry small enough throughout the iterations, so that we can identify the largest topic in each of
the documents.

8 On common words

We briefly remark on common words: words such that B < k% ;,Vi,i', k < B. In this case, the

i3
proofs above, as they are, will not work, [’} Ismce common words do not have any lone documents.
However, if 1 — 100 fraction of the documents where topic ¢ is dominant contains topic ¢ with
proportion 1 - 1100 and furthermore, in each topic, the weight on these words is no more than

100 , then our proofs still work with either 1n1t1ahzat10rﬂ The idea for the argument is s1mple when

*

, so these

the dominating topic is very large, we show that ;f is very highly correlated with ﬂ,
i J

documents behave like anchor documents. Namely, one can show:

Theorem 5. If we additionally have common words satisfying the properties specified above, after

O(log(1/€') + log N) KL-tEM updates in Case Study 2, or any of the tEM variants in Case Study 1,

and we use the same initializations as before, we recover the topic-word matrix and topic proportions

to multiplicative accuracy 1 + €', if 1 + € > ﬁ

9 Discussion and open problems

In this work we provide the first characterization of sufficient conditions when variational inference
leads to optimal parameter estimates for topic models. Our proofs also suggest possible hard cases
for variational inference, namely instances with large dynamic range compared to the proportion of
anchor words and/or correlated topic priors. It’s not hard to hand-craft such instances where support
initialization performs very badly, even with only anchor and common words. We made no effort to
explore the optimal relationship between the dynamic range and the proportion of anchor words, as
it’s not clear what are the “worst case” instances for this trade-off.

Seeded initialization, on the other hand, empirically works much better. We found that when C; >
0.6, and when the proportion of anchor words is as low as 0.2, variational inference recovers the
ground truth, even on instances with fairly large dynamic range. Our current proof methods are too
weak to capture this observation. (In fact, even the largest topic is sometimes misidentified in the
initial stages, so one cannot even run tEM, only the vanilla variational inference updates.) Analyzing
the dynamics of variational inference in this regime seems like a challenging problem which would
require significantly new ideas.
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