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Abstract

Nonlinear component analysis such as kernel Principle Component Analysis
(KPCA) and kernel Canonical Correlation Analysis (KCCA) are widely used in
machine learning, statistics and data analysis, but they cannot scale up to big
datasets. Recent attempts have employed random feature approximations to con-
vert the problem to the primal form for linear computational complexity. How-
ever, to obtain high quality solutions, the number of random features should be
the same order of magnitude as the number of data points, making such approach
not directly applicable to the regime with millions of data points.
We propose a simple, computationally efficient, and memory friendly algorithm
based on the “doubly stochastic gradients” to scale up a range of kernel nonlinear
component analysis, such as kernel PCA, CCA and SVD. Despite the non-convex
nature of these problems, our method enjoys theoretical guarantees that it con-
verges at the rate Õ(1/t) to the global optimum, even for the top k eigen subspace.
Unlike many alternatives, our algorithm does not require explicit orthogonaliza-
tion, which is infeasible on big datasets. We demonstrate the effectiveness and
scalability of our algorithm on large scale synthetic and real world datasets.

1 Introduction
Scaling up nonlinear component analysis has been challenging due to prohibitive computation and
memory requirements. Recently, methods such as Randomized Component Analysis (RCA) [12]
are able to scale to larger datasets by leveraging random feature approximation. Such methods ap-
proximate the kernel function by using explicit random feature mappings, then perform subsequent
steps in the primal form, resulting in linear computational complexity. Nonetheless, theoretical anal-
ysis [18, 12] shows that in order to get high quality results, the number of random features should
grow linearly with the number of data points. Experimentally, one often sees that the statistical
performance of the algorithm improves as one increases the number of random features.

Another approach to scale up the kernel component analysis is to use stochastic gradient descent and
online updates [15, 16]. These stochastic methods have also been extended to the kernel case [9, 5,
8]. They require much less computation than their batch counterpart, converge in O(1/t) rate, and
are naturally applicable to streaming data setting. Despite that, they share a severe drawback: all
data points used in the updates need to be saved, rendering them impractical for large datasets.

In this paper, we propose to use the “doubly stochastic gradients” for nonlinear component analysis.
This technique is a general framework for scaling up kernel methods [6] for convex problems and
has been successfully applied to many popular kernel machines such as kernel SVM, kernel ridge
regressions, and Gaussian process. It uses two types of stochastic approximation simultaneously:
random data points instead of the whole dataset (as in stochastic update rules), and random features
instead of the true kernel functions (as in RCA). These two approximations lead to the following
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benefits: (1) Computation efficiency The key computation is the generation of a mini-batch of
random features and the evaluation of them on a mini-batch of data points, which is very efficient.
(2) Memory efficiency Instead of storing training data points, we just keep a small program for
regenerating the random features, and sample previously used random features according to pre-
specified random seeds. This leads to huge savings: the memory requirement up to step t is O(t),
independent of the dimension of the data. (3) Adaptibility Unlike other approaches that can only
work with a fixed number of random features beforehand, doubly stochastic approach is able to
increase the model complexity by using more features when new data points arrive, and thus enjoys
the advantage of nonparametric methods.

Although on first look our method appears similar to the approach in [6], the two methods are
fundamentally different. In [6], they address convex problems, whereas our problem is highly non-
convex. The convergence result in [6] crucially relies on the properties of convex functions, which
do not translate to our problem. Instead, our analysis centers around the stochastic update of power
iterations, which uses a different set of proof techniques.

In this paper, we make the following contributions.

General framework We show that the general framework of doubly stochastic updates can be
applied in various kernel component analysis tasks, including KPCA, KSVD, KCCA, etc..

Strong theoretical guarantee We prove that the finite time convergence rate of doubly stochastic
approach is Õ(1/t). This is a significant result since 1) the global convergence result is w.r.t. a non-
convex problem; 2) the guarantee is for update rules without explicit orthogonalization. Previous
works require explicit orthogonalization, which is impractical for kernel methods on large datasets.

Strong empirical performance Our algorithm can scale to datasets with millions of data points.
Moreover, the algorithm can often find much better solutions thanks to the ability to use many more
random features. We demonstrate such benefits on both synthetic and real world datasets.

Since kernel PCA is a typical task, we focus on it in the paper and provide a description of other
tasks in Section 4.3. Although we only state the guarantee for kernel PCA, the analysis naturally
carries over to the other tasks.

2 Related work
Many efforts have been devoted to scale up kernel methods. The random feature approach [17, 18]
approximates the kernel function with explicit random feature mappings and solves the problem
in primal form, thus circumventing the quadratic computational complexity. It has been applied
to various kernel methods [11, 6, 12], among which most related to our work is RCA [12]. One
drawback of RCA is that their theoretical guarantees are only for kernel matrix approximation: it
does not say anything about how close the solution obtained from RCA is to the true solution. In
contrast, we provide a finite time convergence rate of how our solution approaches the true solution.
In addition, even though a moderate size of random features can work well for tens of thousands of
data points, datasets with tens of millions of data points require many more random features. Our
online approach allows the number of random features, hence the flexibility of the function class,
to grow with the number of data points. This makes our method suitable for data streaming setting,
which is not possible for previous approaches.

Online algorithms for PCA have a long history. Oja proposed two stochastic update rules for ap-
proximating the first eigenvector and provided convergence proof in [15, 16], respectively. These
rules have been extended to the generalized Hebbian update rules [19, 20, 3] that compute the top
k eigenvectors (the subspace case). Similar ones have also been derived from the perspective of
optimization and stochastic gradient descent [20, 2]. They are further generalized to the kernel
case [9, 5, 8]. However, online kernel PCA needs to store all the training data, which is impracti-
cal for large datasets. Our doubly stochastic method avoids this problem by using random features
and keeping only a small program for regenerating previously used random features according to
pre-specified seeds. As a result, it can scale up to tens of millions of data points.

For finite time convergence rate, [3] proved the O(1/t) rate for the top eigenvector in linear PCA
using Oja’s rule. For the same task, [21] proposed a noise reduced PCA with linear convergence rate,
where the rate is in terms of epochs, i.e., number of passes over the whole dataset. The noisy power
method presented in [7] provided linear convergence for a subspace, although it only converges
linearly to a constant error level. In addition, the updates require explicit orthogonalization, which
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Algorithm 1: {αi}t1 = DSGD-KPCA(P(x), k)

Require: P(ω), φω(x).
1: for i = 1, . . . , t do
2: Sample xi ∼ P(x).
3: Sample ωi ∼ P(ω) with seed i.
4: hi = Evaluate(xi, {αj}i−1

j=1) ∈ Rk.
5: αi = ηiφωi(xi)hi.
6: αj = αj − ηiα>j hihi, for j = 1, . . . , i− 1.
7: end for

Algorithm 2: h = Evaluate(x, {αi}ti=1)

Require: P(ω), φω(x).
1: Set h = 0 ∈ Rk.
2: for i = 1, . . . , t do
3: Sample ωi ∼ P(ω) with seed i.
4: h = h+ φωi(x)αi.
5: end for

is impractical for kernel methods. In comparison, our method converges in O(1/t) for a subspace,
without the need for orthogonalization.

3 Preliminaries
Kernels and Covariance Operators A kernel k(x, y) : X × X 7→ R is a function that is
positive-definite (PD), i.e., for all n > 1, c1, . . . , cn ∈ R, and x1, . . . , xn ∈ X , we have∑n
i,j=1 cicjk(xi, xj) ≥ 0. A reproducing kernel Hilbert space (RKHS) F on X is a Hilbert

space of functions from X to R. F is an RKHS if and only if there exists a k(x, x′) such
that ∀x ∈ X , k(x, ·) ∈ F , and ∀f ∈ F , 〈f(·), k(x, ·)〉F = f(x). Given P(x), k(x, x′) with
RKHS F , the covariance operator A : F 7→ F is a linear self-adjoint operator defined as
Af(·) := Ex[f(x) k(x, ·)], ∀f ∈ F , and furthermore 〈g,Af〉F = Ex[f(x) g(x)], ∀g ∈ F .

Let F = (f1(·), f2(·), . . . , fk(·)) be a list of k functions in the RKHS, and we define matrix-like
notation AF (·) := (Af1(·), . . . , Afk(·)), and F>AF is a k × k matrix, whose (i, j)-th element
is 〈fi, Afj〉F . The outer-product of a function v ∈ F defines a linear operator vv> such that
(vv>)f(·) := 〈v, f〉F v(·), ∀f ∈ F . Let V = (v1(·), . . . , vk(·)) be a list of k functions, then the
weighted sum of a set of linear operators can be denoted using matrix-like notation as V ΣkV

> :=∑k
i=1 λiviv

>
i , where Σk is a diagonal matrix with λi on the i-th entry of the diagonal.

Eigenfunctions and Kernel PCA A function v is an eigenfunction of A with the corresponding
eigenvalue λ if Av(·) = λv(·). Given a set of eigenfunctions {vi} and associated eigenvalues {λi},
where 〈vi, vj〉F = δij , we can write the eigen-decomposion asA = V ΣkV

>+V⊥Σ⊥V
>
⊥ , where V

is the list of top k eigenfunctions, Σk is a diagonal matrix with the corresponding eigenvalues, V⊥ is
the list of the rest of the eigenfunctions, and Σ⊥ is a diagonal matrix with the rest of the eigenvalues.

Kernel PCA aims to identify the the top k subspace V . In the finite data case, the empirical co-
variance operator is A = 1

n

∑
i k(xi, ·) ⊗ k(xi, ·). According to the representer theorem, we have

vi =
∑n
j=1 α

j
ik(xj , ·), where {αi}ki=1 ∈ Rn are weights for the data points. Using Av(·) = λv(·)

and the kernel trick, we have Kαi = λiαi, where K is the n× n Gram matrix.

Random feature approximation The random feature approximation for shift-invariant ker-
nels k(x, y) = k(x − y), e.g., Gaussian RBF kernel, relies on the identity k(x − y) =∫
Rd e

iω>(x−y) dP(ω) = E [φω(x)φω(y)] since the Fourier transform of a PD function is non-
negative, thus can be considered as a (scaled) probability measure [17]. We can therefore ap-
proximate the kernel function as an empirical average of samples from the distribution. In other
words, k(x, y) ≈ 1

B

∑
i φωi(x)φωi(y), where {(ωi)}Bi are i.i.d. samples drawn from P(ω). For

Gaussian RBF kernel, k(x − x′) = exp(−‖x − x′‖2/2σ2), this yields a Gaussian distribution
P(ω) = exp(−σ2‖ω‖2/2). See [17] for more details.

4 Algorithm
In this section, we describe an efficient algorithm based on the “doubly stochastic gradients” to
scale up kernel PCA. KPCA is essentially an eigenvalue problem in a functional space. Traditional
approaches convert it to the dual form, leading to another eigenvalue problem whose size equals
the number of training points, which is not scalable. Other approaches solve it in the primal form
with stochastic functional gradient descent. However, these algorithms need to store all the training
points seen so far. They quickly run into memory issues when working with millions of data points.

We propose to tackle the problem with “doubly stochastic gradients”, in which we make two unbi-
ased stochastic approximations. One stochasticity comes from sampling data points as in stochastic
gradient descent. Another source of stochasticity is from random features to approximate the kernel.
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One technical difficulty in designing doubly stochastic KPCA is an explicit orthogonalization step
required in the update rules, which ensures the top k eigenfunctions are orthogonal. This is infeasible
for kernel methods on a large dataset since it requires solving an increasingly larger KPCA problem
in every iteration. To solve this problem, we formulate the orthogonality constraints into Lagrange
multipliers which leads to an Oja-style update rule. The new update enjoys small per iteration
complexity and converges to the ground-truth subspace.

We present the algorithm by first deriving the stochastic functional gradient update without random
feature approximations, then introducing the doubly stochastic updates. For simplicity of presenta-
tion, the following description uses one data point and one random feature at a time, but typically a
mini-batch of data points and random features are used in each iteration.

4.1 Stochastic functional gradient update
Kernel PCA can be formulated as the following non-convex optimization problem

max
G

tr
(
G>AG

)
s.t.G>G = I, (1)

where G :=
(
g1, . . . , gk

)
and gi is the i-th function.

Gradient descent on the Lagrangian leads to Gt+1 = Gt + ηt
(
I −GtG>t

)
AGt. Using a stochastic

approximation for A: Atf(·) = f(xt) k(xt, ·), we have AtGt = k(xt, ·)g>t and G>t AtGt = gtg
>
t ,

where gt =
[
g1t (xt), . . . , g

k
t (xt)

]>
. Therefore, the update rule is

Gt+1 = Gt
(
I − ηtgtg>t

)
+ ηtk(xt, ·)g>t . (2)

This rule can also be derived using stochastic gradient and Oja’s rule [15, 16].

4.2 Doubly stochastic update
The update rule (2) must store all the data points it has seen so far, which is impractical for large scale
datasets. To address this issue, we use the random feature approximation k(x, ·) ≈ φωi

(x)φωi
(·).

Denote Ht the function we get at iteration t, the update rule becomes

Ht+1 = Ht

(
I − ηththt>

)
+ ηtφωt(xt)φωt(·)ht

>, (3)

where ht is the evaluation ofHt at the current data point: ht =
[
h1t (xt), . . . , h

k
t (xt)

]>
. The specific

updates in terms of the coefficients are summarized in Algorithms 1 and 2. Note that in theory new
random features are drawn in each iteration, but in practice one can revisit these random features.

4.3 Extensions
Locating individual eigenfunctions The algorithm only finds the eigen subspace, but not necessar-
ily individual eigenfunctions. A modified version, called Generalized Hebbian Algorithm (GHA)
[19] can be used for this purpose: Gt+1 = Gt + ηtAtGt − ηtGt UT

[
G>t AtGt

]
, where UT [·] is an

operator that sets the lower triangular parts to zero.

Latent variable models and kernel SVD Recently, spectral methods have been proposed to learn
latent variable models with provable guarantees [1, 22], in which the key computation is SVD. Our
algorithm can be straightforwardly extended to solve kernel SVD, with two simultaneous update
rules. The algorithm is summarized in Algorithm 3. See the supplementary for derivation details.

Kernel CCA and generalized eigenvalue problem Given two variables X and Y , CCA finds two
projections such that the correlations between the two projected variables are maximized. It is
equivalent to a generalized eigenvalue problem, which can also be solved in our framework. We
present the updates for coefficients in Algorithm 4, and derivation details in the supplementary.

Kernel sliced inverse regression Kernel sliced inverse regression [10] aims to do sufficient dimen-
sion reduction in which the found low dimension representation preserves the statistical correlation
with the targets. It also reduces to a generalized eigenvalue problem, and has been shown to find the
same subspace as KCCA [10].

5 Analysis
In this section, we provide finite time convergence guarantees for our algorithm. As discussed
in the previous section, explicit orthogonalization is not scalable for the kernel case, therefore we
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Algorithm 3: DSGD-KSVD

Require: P(ω), φω(x), k.
Output: {αi, βi}t1
1: for i = 1, . . . , t do
2: Sample xi ∼ P(x). Sample yi ∼ P(y).
3: Sample ωi ∼ P(ω) with seed i.
4: ui = Evaluate(xi, {αj}i−1

j=1) ∈ Rk.
5: vi = Evaluate(yi, {βj}i−1

j=1) ∈ Rk.
6: W = uiv

>
i + viu

>
i

7: αi = ηiφωi(xi)vi.
8: βi = ηiφωi(yi)ui.
9: αj = αj − ηiWαj , for j = 1, . . . , i− 1.

10: βj = βj − ηiWβj , for j = 1, . . . , i− 1.
11: end for

Algorithm 4: DSGD-KCCA

Require: P(ω), φω(x), k.
Output: {αi, βi}t1
1: for i = 1, . . . , t do
2: Sample xi ∼ P(x). Sample yi ∼ P(y).
3: Sample ωi ∼ P(ω) with seed i.
4: ui = Evaluate(xi, {αj}i−1

j=1) ∈ Rk.
5: vi = Evaluate(yi, {βj}i−1

j=1) ∈ Rk.
6: W = uiv

>
i + viu

>
i

7: αi = ηiφωi(xi) [vi −Wui].
8: βi = ηiφωi(yi) [ui −Wvi].
9: end for

need to provide guarantees for the updates without orthogonalization. This challenge is even more
prominent when using random features, since it introduces additional variance.

Furthermore, our guarantees are w.r.t. the top k-dimension subspace. Although the convergence
without normalization for a top eigenvector has been established before [15, 16], the subspace case
is complicated by the fact that there are k angles between k-dimension subspaces, and we need to
bound the largest angle. To the best of our knowledge, our result is the first finite time convergence
result for a subspace without explicit orthogonalization.

Note that even though it appears our algorithm is similar to [6] on the surface, the underlying analysis
is fundamentally different. In [6], the result only applies to convex problems where every local
optimum is a global optimum while the problems we consider are highly non-convex. As a result,
many techniques that [6] builds upon are not applicable.

Conditions and Assumptions We will focus on the case when a good initialization V0 is given:

V >0 V0 = I, cos2 θ(V, V0) ≥ 1/2. (4)
In other words, we analyze the later stage of the convergence, which is typical in the literature (e.g.,
[21]). The early stage can be analyzed using established techniques (e.g., [3]). In practice, one can
achieve a good initialization by solving a small RCA problem [12] with, e.g. thousands, of data
points and random features.

Throughout the paper we suppose |k(x, x′)| ≤ κ, |φω(x)| ≤ φ and regard κ and φ as constants.
Note that this is true for all the kernels and corresponding random features considered. We further
regard the eigengap λk−λk+1 as a constant, which is also true for typical applications and datasets.

5.1 Update without random features

Our guarantee is on the cosine of the principal angle between the computed subspace and the ground

truth eigen subspace (also called potential function): cos2 θ(V,Gt) = minw
‖V >Gtw‖2
‖Gtw‖2

.

Consider the two different update rules, one with explicit orthogonalization and another without
Ft+1 ← orth(Ft + ηtAtFt)

Gt+1 ← Gt + ηt
(
I −GtG>t

)
AtGt

where At is the empirical covariance of a mini-batch. Our final guarantee for Gt is the following.

Theorem 1 Assume (4) and suppose the mini-batch sizes satisfy that for any 1 ≤ i ≤ t, ‖A−Ai‖ <
(λk − λk+1)/8. There exist step sizes ηi = O(1/i) such that

1− cos2 θ(V,Gt) = O(1/t).

The convergence rate O(1/t) is in the same order as that of computing only the top eigenvector in
linear PCA [3]. The bound requires the mini-batch size is large enough so that the spectral norm of
A is approximated up to the order of the eigengap. This is because the increase of the potential is in
the order of the eigengap. Similar terms appear in the analysis of the noisy power method [7] which,
however, requires orthogonalization and is not suitable for the kernel case. We do not specify the
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mini-batch size, but by assuming suitable data distributions, it is possible to obtain explicit bounds;
see for example [23, 4].

Proof sketch We first prove the guarantee for the orthogonalized subspace Ft which is more conve-
nient to analyze, and then show that the updates for Ft andGt are first order equivalent soGt enjoys
the same guarantee. To do so, we will require lemma 2 and 3 below

Lemma 2 1− cos2 θ(V, Ft) = O(1/t).

Let c2t denote cos2 θ(V, Ft), then a key step in proving the lemma is to show the following recurrence

c2t+1 ≥ c2t (1 + 2ηt(λk − λk+1 − 2 ‖A−At‖)(1− c2t ))−O(η2t ). (5)
We will need the mini-batch size large enough so that 2 ‖A−At‖ is smaller than the eigen-gap.

Another key element in the proof of the theorem is the first order equivalence of the two update
rules. To show this, we introduce F (Gt)← orth(Gt + ηtAtGt) to denote the subspace by applying
the update rule of Ft on Gt. We show that the potentials of Gt+1 and F (Gt) are close:

Lemma 3 cos2 θ(V,Gt+1) = cos2 θ(V, F (Gt))±O(η2t ).

The lemma means that applying the two update rules to the same input will result in two sub-
spaces with similar potentials. Then by (5), we have 1 − cos2 θ(V,Gt) = O(1/t) which
leads to our theorem. The proof of Lemma 3 is based on the observation that cos2 θ(V,X) =
λmin(V >X(X>X)−1X>V ). Comparing the Taylor expansions w.r.t. ηt for X = Gt+1 and
X = F (Gt) leads to the lemma.

5.2 Doubly stochastic update
The Ht computed in the doubly stochastic update is no longer in the RKHS so the principal angle is
not well defined. Instead, we will compare the evaluation of functions fromHt and the true principal
subspace V respectively on a point x. Formally, we show that for any function v ∈ V with unit norm
‖v‖F = 1, there exists a function h in Ht such that for any x, err := |v(x)− h(x)|2 is small with
high probability.

To do so, we need to introduce a companion update rule: G̃t+1 ← G̃t + ηtk(xt, ·)h>t − ηtG̃thth>t
resulting in function in the RKHS, but the update makes use of function values from ht ∈ Ht which
is outside the RKHS. Let w = G̃>v be the coefficients of v projected onto G̃, h = Htw, and
z = G̃tw. Then the error can be decomposed as

|v(x)− h(x)|2 = |v(x)− z(x) + z(x)− h(x)|2 ≤ 2 |v(x)− z(x)|2 + 2 |z(x)− h(x)|2

≤ 2κ2 ‖v − z‖2F︸ ︷︷ ︸
(I: Lemma 5)

+ 2 |z(x)− h(x)|2︸ ︷︷ ︸
(II: Lemma 6)

. (6)

By definition, ‖v − z‖2F = ‖v‖2F−‖z‖
2
F ≤ 1−cos2 θ(V, G̃t), so the first error term can be bounded

by the guarantee on G̃t, which can be obtained by similar arguments in Theorem 1. For the second
term, note that G̃t is defined in such a way that the difference between z(x) and h(x) is a martingale,
which can be bounded by careful analysis.

Theorem 4 Assume (4) and suppose the mini-batch sizes satisfy that for any 1 ≤ i ≤ t, ‖A−Ai‖ <
(λk−λk+1)/8 and are of order Ω(ln t

δ ). There exist step sizes ηi = O(1/i), such that the following
holds. If Ω(1) = λk(G̃>i G̃i) ≤ λ1(G̃>i G̃i) = O(1) for all 1 ≤ i ≤ t, then for any x and any
function v in the span of V with unit norm ‖v‖F = 1, we have that with probability at least 1 − δ,
there exists h in the span of Ht satisfying |v(x)− h(x)|2 = O

(
1
t ln t

δ

)
.

The point-wise error scales as Õ(1/t) with the step t. Besides the condition that ‖A−Ai‖ is up
to the order of the eigengap, we additionally need that the random features approximate the kernel
function up to constant accuracy on all the data points up to time t, which eventually leads to Ω(ln t

δ )

mini-batch sizes. Finally, we need G̃>i G̃i to be roughly isotropic, i.e., G̃i is roughly orthonormal.
Intuitively, this should be true for the following reasons: G̃0 is orthonormal; the update for G̃t is
close to that for Gt, which in turn is close to Ft that are orthonormal.
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Figure 1: (a) Convergence of our algorithm on
the synthetic dataset. It is on par with the Õ(1/t)
rate denoted by the dashed red line. (b) Recovery
of the top three eigenfunctions. Our algorithm (in
red) matches the ground-truth (dashed blue).

(a) (b)

Figure 2: Visualization of the molecular space
dataset by the first two principal components.
Bluer dots represent lower PCE values while red-
der dots are for higher PCE values. (a) Kernel
PCA; (b) linear PCA. (Best viewed in color)

Proof sketch In order to bound term I in (6), we show that

Lemma 5 1− cos2 θ(V, G̃t) = O
(
1
t ln t

δ

)
.

This is proved by following similar arguments to get the recurrence (5), except with an additional
error term, which is caused by the fact that the update rule for G̃t+1 is using the evaluation ht(xt)
rather than g̃t(xt). Bounding this additional term thus relies on bounding the difference between
ht(x)− g̃t(x), which is also what we need for bounding term II in (6). For this, we show:

Lemma 6 For any x and unit vector w, with probability ≥ 1 − δ over (Dt, ωt), |g̃t(x)w −
ht(x)w|2 = O

(
1
t ln

(
t
δ

))
.

The key to prove this lemma is that our construction of G̃t makes sure that the difference between
g̃t(x)w and ht(x)w consists of their difference in each time step. Furthermore, the difference forms
a martingale and thus can be bounded by Azuma’s inequality. See the supplementary for the details.

6 Experiments
Synthetic dataset with analytical solution We first verify the convergence rate of DSGD-KPCA
on a synthetic dataset with analytical solution of eigenfunctions [24]. If the data follow a Gaussian
distribution, and we use a Gaussian kernel, then the eigenfunctions are given by the Hermite poly-
nomials. We generated 1 million such 1-D data points, and ran DSGD-KPCA with a total of 262144
random features. In each iteration, we use a data mini-batch of size 512, and a random feature mini-
batch of size 128. After all random features are generated, we revisit and adjust the coefficients of
existing random features. The kernel bandwidth is set as the true bandwidth. The step size is sched-
uled as ηt = θ0/(1 + θ1t), where θ0 and θ1 are two parameters. We use a small θ1 ≈ 0.01 such
that in early stages the step size is large enough to arrive at a good initial solution. Figure 1a shows
the convergence rate of the proposed algorithm seeking top k = 3 subspace. The potential function
is the squared sine of the principle angle. We can see the algorithm indeed converges at the rate
O(1/t). Figure 1b show the recovered top k = 3 eigenfunctions compared with the ground-truth.
The solution coincides with one eigenfunction, and deviates only slightly from two others.

Kernel PCA visualization on molecular space dataset MolecularSpace dataset contains 2.3 mil-
lion molecular motifs [6]. We are interested in visualizing the dataset with KPCA. The data are
represented by sorted Coulomb matrices of size 75 × 75 [14]. Each molecule also has an attribute
called power conversion efficiency (PCE). We use a Gaussian kernel with bandwidth chosen by
the “median trick”. We ran kernel PCA with a total of 16384 random features, with a feature
mini-batch size of 512, and data mini-batch size of 1024. We ran 4000 iterations with step size
ηt = 1/(1 + 0.001 ∗ t). Figure 2 presents visualization by projecting the data onto the top two prin-
ciple components. Compared with linear PCA, KPCA shrinks the distances between the clusters
and brings out the important structures in the dataset. We can also see higher PCE values tend to lie
towards the center of the ring structure.

Nonparametric Latent Variable Model We learn latent variable models with DSGD-KSVD using
one million data points [22], achieving higher quality solutions compared with two other approaches.
The dataset consists of two latent components, one is a Gaussian distribution and the other a Gamma
distribution with shape parameter α = 1.2. DSGD-KSVD uses a total of 8192 random features, and
uses a feature mini-batch of size 256 and a data mini-batch of size 512. We compare with 1) random
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Figure 3: Recovered latent components: (a) DSGD-KSVD, (b) 2048
random features, (c) 2048 Nystrom features.
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Figure 4: Comparison on
KUKA dataset.

Fourier features, and 2) random Nystrom features, both of fixed 2048 functions [12]. Figures 3
shows the learned conditional distributions for each component. We can see DSGD-KSVD achieves
almost perfect recovery, while Fourier and Nystrom random feature methods either confuse high
density areas or incorrectly estimate the spread of conditional distributions.

KCCA MNIST8M We compare our algorithm on MNIST8M in the KCCA task, which consists of
8.1 million digits and their transformations. We divide each image into the left and right halves, and
learn their correlations. The evaluation criteria is the total correlations on the top k = 50 canonical
correlation directions measured on a separate test set of size 10000. We compare with 1) random
Fourier and 2) random Nystrom features on both total correlation and running time. Our algorithm
uses a total of 20480 features, with feature mini-batches of size 2048 and data mini-batches of size
1024, and with 3000 iterations. The kernel bandwidth is set using the “median trick” and is the same
for all methods. All algorithms are run 5 times, and the mean is reported. The results are presented
in Table 1. Our algorithm achieves the best test-set correlations in comparable run time with random
Fourier features. This is especially significant for random Fourier features, since the run time would
increase by almost four times if double the number of features were used. In addition, Nystrom
features generally achieve better results than Fourier features since they are data dependent. We can
also see that for large datasets, it is important to use more random features for better performance.

Table 1: KCCA results on MNIST 8M (top 50 largest correlations)

# of feat Random features Nystrom features
corrs. minutes corrs. minutes

256 25.2 3.2 30.4 3.0
512 30.7 7.0 35.3 5.1

1024 35.3 13.9 38.0 10.1
2048 38.8 54.3 41.1 27.0
4096 41.5 186.7 42.7 71.0

DSGD-KCCA (20480)
corrs. minutes
43.5 183.2

linear CCA
corrs. minutes
27.4 1.1

Kernel sliced inverse regression on KUKA dataset We evaluate our algorithm under the setting
of kernel sliced inverse regression [10], a way to perform sufficient dimension reduction (SDR)
for high dimension regression. After performing SDR, we fit a linear regression model using the
projected input data, and evaluate mean squared error (MSE). The dataset records rhythmic motions
of a KUKA arm at various speeds, representing realistic settings for robots [13]. We use a variant
that contains 2 million data points generated by the SL simulator. The KUKA robot has 7 joints,
and the high dimension regression problem is to predict the torques from positions, velocities and
accelerations of the joints. The input has 21 dimensions while the output is 7 dimensions. Since there
are seven independent joints, we set the reduced dimension to be seven. We randomly select 20% as
test set and out of the remaining training set, we randomly choose 5000 as validation set to select step
sizes. The total number of random features is 10240, with mini-feature batch and mini-data batch
both equal to 1024. We run a total of 2000 iterations using step size ηt = 15/(1+0.001∗t). Figure 4
shows the regression errors for different methods. The error decreases with more random features,
and our algorithm achieves lowest MSE by using 10240 random features. Nystrom features do not
perform as well in this setting probably because the spectrum decreases slowly (there are seven
independent joints) as Nystrom features are known to work well for fast decreasing spectrum.
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