
Streaming Min-Max Hypergraph Partitioning

Dan Alistarh
Microsoft Research

Cambridge, United Kingdom
dan.alistarh@microsoft.com

Jennifer Iglesias∗
Carnegie Mellon University

Pittsburgh, PA
jiglesia@andrew.cmu.edu

Milan Vojnovic
Microsoft Research

Cambridge, United Kingdom
milanv@microsoft.com

Abstract

In many applications, the data is of rich structure that can be represented by a
hypergraph, where the data items are represented by vertices and the associations
among items are represented by hyperedges. Equivalently, we are given an input
bipartite graph with two types of vertices: items, and associations (which we refer
to as topics). We consider the problem of partitioning the set of items into a given
number of components such that the maximum number of topics covered by a
component is minimized. This is a clustering problem with various applications,
e.g. partitioning of a set of information objects such as documents, images, and
videos, and load balancing in the context of modern computation platforms.
In this paper, we focus on the streaming computation model for this problem, in
which items arrive online one at a time and each item must be assigned irrevocably
to a component at its arrival time. Motivated by scalability requirements, we focus
on the class of streaming computation algorithms with memory limited to be at
most linear in the number of components. We show that a greedy assignment
strategy is able to recover a hidden co-clustering of items under a natural set of
recovery conditions. We also report results of an extensive empirical evaluation,
which demonstrate that this greedy strategy yields superior performance when
compared with alternative approaches.

1 Introduction

In a variety of applications, one needs to process data of rich structure that can be conveniently
represented by a hypergraph, where associations of the data items, represented by vertices, are rep-
resented by hyperedges, i.e. subsets of items. Such data structure can be equivalently represented
by a bipartite graph that has two types of vertices: vertices that represent items, and vertices that
represent associations among items, which we refer to as topics. In this bipartite graph, each item
is connected to one or more topics. The input can be seen as a graph with vertices belonging to
(overlapping) communities.

There has been significant work on partitioning a set of items into disjoint components such that
similar items are assigned to the same component, see, e.g., [8] for a survey. This problem arises in
the context of clustering of information objects such as documents, images or videos. For example,
the goal may be to partition given collection of documents into disjoint sub-collections such that
the maximum number of distinct topics covered by each sub-collection is minimized, resulting in a

∗Work performed in part while an intern with Microsoft Research.

1

Figure 1: A simple example of a set of items
with overlapping associations to topics.

Figure 2: An example of hidden co-
clustering with five hidden clusters.

parsimonious summary. The same fundamental problem also arises in processing of complex data
workloads, including enterprise emails [10], online social networks [18], graph data processing and
machine learning computation platforms [20, 21, 2], and load balancing in modern streaming query
processing platforms [24]. In this context, the goal is to partition a set of data items over a given
number of servers to balance the load according to some given criteria.

Problem Definition. We consider the min-max hypergraph partitioning problem defined as follows.
The input to the problem is a set of items, a set of topics, a number of components to partition the
set of items, and a demand matrix that specifies which particular subset of topics is associated with
each individual item. Given a partitioning of the set of items, the cost of a component is defined
as the number of distinct topics that are associated with items of the given component. The cost of
a given partition is the maximum cost of a component. In other words, given an input hypergraph
and a partition of the set of vertices into a given number of disjoints components, the cost of a
component is defined to be the number of hyperedges that have at least one vertex assigned to this
component. For example, for the simple input graph in Figure 1, a partition of the set of items into
two components {1, 3} and {2, 4} amounts to the cost of the components each of value 2, thus, the
cost of the partition is of value 2. The cost of a component is a submodular function as the distinct
topics associated with items of the component correspond to a neighborhood set in the input bipartite
graph.

In the streaming computation model that we consider, items arrive sequentially one at a time, and
each item needs to be assigned, irrevocably, to one component at its arrival time. This streaming
computation model allows for limited memory to be used at any time during the execution whose
size is restricted to be at most linear in the number of the components. Both these assumptions arise
as part of system requirements for deployment in web-scale services.

The min-max hypergraph partition problem is NP hard. The streaming computation problem is even
more difficult, as less information is available to the algorithm when an item must be assigned.

Contribution. In this paper, we consider the streaming min-max hypergraph partitioning problem.
We identify a greedy item placement strategy which outperforms all alternative approaches consid-
ered on real-world datasets, and can be proven to have a non-trivial recovery property: it recovers
hidden co-clusters of items in probabilistic inputs subject to a recovery condition.

Specifically, we show that, given a set of hidden co-clusters to be placed onto k components, the
greedy strategy will tend to place items from the same hidden cluster onto the same component, with
high probability. In turn, this property implies that greedy will provide a constant factor approxima-
tion of the optimal partition on inputs satisfying the recovery property.

The probabilistic input model we consider is defined as follows. The set of topics is assumed to
be partitioned into a given number ℓ ≥ 1 of disjoint hidden clusters. Each item is connected to
topics according to a mixture probability distribution defined as follows. Each item first selects one
of the hidden clusters as a home hidden cluster by drawing an independent sample from a uniform
distribution over the hidden clusters. Then, it connects to each topic from its home hidden cluster
independently with probability p, and it connects to each topic from each other hidden cluster with
probability q ≤ p. This defines a hidden co-clustering of the input bipartite graph; see Figure 2 for
an example.

This model is similar in spirit to the popular stochastic block model of an undirected graph, and
it corresponds to a hidden co-clustering [6, 7, 17, 4] model of an undirected bipartite graph. We
consider asymptotically accurate recovery of this hidden co-clustering.

2

A hidden cluster is said to be asymptotically recovered if the portion of items from the given hidden
cluster assigned to the same partition goes to one asymptotically as the number of items observed
grows large. An algorithm guarantees balanced asymptotic recovery if, additionally, it ensures that
the cost of the most loaded partition is within a constant of the average partition load.

Our main analytical result is showing that a simple greedy strategy provides balanced asymptotic
recovery of hidden clusters (Theorem 1). We prove that a sufficient condition for the recovery of
hidden clusters is that the number of hidden clusters ℓ is at least k log k, where k is the number
of components, and that the gap between the probability parameters q and p is sufficiently large:
q < log r/(kr) < 2 log r/r ≤ p, where r is the number of topics in a hidden cluster. Roughly
speaking, this means that if the mean number of topics to which an item is associated with in its
home hidden cluster of topics is at least twice as large as the mean number of topics to which an
item is associated with from other hidden clusters of topics, then the simple greedy online algorithm
guarantees asymptotic recovery.

The proof is based on a coupling argument, where we first show that assigning an item to a parti-
tion based on the number of topics it has in common with each partition is similar to making the
assignment proportionally to the number of items corresponding to the same hidden cluster present
on each partition. In turn, this allows us to couple the assignment strategy with a Polya urn pro-
cess [5] with “rich-get-richer” dynamics, which implies that the policy converges to assigning each
item from a hidden cluster to the same partition. Additionally, this phenomenon occurs “in parallel”
for each cluster. This recovery property will imply that this strategy will ensure a constant factor
approximation of the optimum assignment.

Further, we provide experimental evidence that this greedy online algorithm exhibits good perfor-
mance for several real-world input bipartite graphs, outperforming more complex assignment strate-
gies, and even some offline approaches.

2 Problem Definition and Basic Results

In this section we provide a formal problem definition, and present some basic results on the com-
putational hardness and lower bounds.

Input. The input is defined by a set of items N = {1, 2, . . . , n}, a set of topics M = {1, 2, . . . ,m},
and a given number of components k. Dependencies between items and topics are given by a demand
matrix D = (di,l) ∈ {0, 1}n×m where di,l = 1 indicates that item i needs topic l, and di,l = 0,
otherwise.1

Alternatively, we can represent the input as a bipartite graph G = (N,M,E) where there is an edge
(i, l) ∈ E if and only if item i needs topic l or as a hypergraph H = (N,E) where a hyperedge
e ∈ E consists of all items that use the same topic.

The Problem. An assignment of items to components is given by x ∈ {0, 1}n×k where xi,j = 1
if item i is assigned to component j, and xi,j = 0, otherwise. Given an assignment of items to
components x, the cost of component j is defined to be equal to the minimum number of distinct
topics that are needed by this component to cover all the items assigned to it, i.e.

cj(x) =
∑
l∈M

min

{∑
i∈N

di,lxi,j , 1

}
.

As defined, the cost of each component is a submodular function of the items assigned to it. We
consider the min-max hypergraph partitioning problem defined as follows:

minimize max{c1(x), c2(x), . . . , ck(x)}
subject to

∑
j∈[k] xi,j = 1 ∀i ∈ [n]

x ∈ {0, 1}n×k
(1)

We note that this problem is an instance of the submodular load balancing, as defined in [23].
1The framework allows for a natural generalization to allow for real-valued demands. In this paper we focus

on {0, 1}-valued demands.

3

Basic Results. This problem is NP-Complete, by reduction from the subset sum problem.
Proposition 1. The min-max hypergraph partitioning problem is NP-Complete.

We now give a lower bound on the optimal value of the problem, using the observation that each
topic needs to be made available on at least one component.
Proposition 2. For every partition of the set of items in k components, the maximum cost of a
component is larger than or equal to m/k, where m is the number of topics.

We next analyze the performance of an algorithm which simply assigns each item independently to
a component chosen uniformly at random from the set of all components upon its arrival. Although
this is a popular strategy commonly deployed in practice (e.g. for load balancing in computation
platforms), the following result shows that it does not yield a good solution for the min-max hyper-
graph partitioning problem.
Proposition 3. The expected maximum load of a component under random assignment is at least
(1−

∑m
j=1(1− 1/k)nj/m) ·m, where nj is the number of items associated with topic j.

For instance, if we assume that nj ≥ k for each topic j, we obtain that the expected maximum load
is of at least (1 − 1/e)m. This suggests that the performance of random assignment is poor: on
an input where m topics form k disjoint clusters, and each item subscribes to a single cluster, the
optimal solution has cost m/k, whereas, by the above claim, random assignment has approximate
cost 2m/3, yielding a competitive ratio that is linear in k.

Balanced Recovery of Hidden Co-Clusters. We relax the worst-case input requirements by defin-
ing a family of hidden co-clustering inputs. Our model is a generalization of the stochastic block
model of a graph to the case of hypergraphs.

We consider a set of topics R, partitioned into ℓ clusters C1, C2, . . . , Cℓ, each of which contains
r topics. Given these hidden clusters, each item is associated with topics as follows. Each item is
first assigned a “home” cluster Ch, chosen uniformly at random among the hidden clusters. The
item then connects to topics inside its home cluster by picking each topic independently with fixed
probability p. Further, the item connects to topics from a fixed arbitrary “noise” set Qh of size at
most r/2 outside its home cluster Ch, where the item is connected to each topic in Qh uniformly at
random, with fixed probability q. (Sampling outside topics from the set of all possible topics would
in the limit lead to every partition to contain all possible topics, which renders the problem trivial.
We do not impose this limitation in the experimental validation.)
Definition 1 (Hidden Co-Clustering). A bipartite graph is in HC(n, r, ℓ, p, q) if it is constructed
using the above process, with n items and ℓ clusters with r topics per cluster, where each item
subscribes to topics inside its randomly chosen home cluster with probability p, and to topics from
the noise set with probability q.

At each time step t, a new item is presented in the input stream of items, and is immediately assigned
to one of the k components, S1, S2, . . . , Sk, according to some algorithm. Algorithms do not know
the number of hidden clusters or their size, but can examine previous assignments.
Definition 2 (Asymptotic Balanced Recovery.). Given a hidden co-clustering HC(n, r, ℓ, p, q), we
say an algorithm asymptotically recovers the hidden clusters C1, C2, . . . , Cℓ if there exists a recov-
ery time tR during its execution after which, for each hidden cluster Ci, there exists a component
Sj such that each item with home cluster Ci is assigned to component Sj with probability that goes
to 1 as the number of items grows large. Moreover, the recovery is balanced if the ratio between
the maximum cost of a component and the average cost over components is upper bounded by a
constant B > 0.

3 Streaming Algorithm and the Recovery Guarantee

Recall that we consider the online problem, where we receive one item at a time together with all its
corresponding topics. The item must be immediately and irrevocably assigned to some component.
In the following, we describe the greedy strategy, specified in Algorithm 1.

4

Data: Hypergraph H = (V,E), received one item (vertex) at a time, k partitions, capacity bound c
Result: A partition of V into k parts

1 Set initial partitions S1, S2, . . . , Sk to be empty sets
2 while there are incoming items do
3 Receive the next item t, and its topics R
4 I ← {i : |Si| ≤ minj |Sj |+ c} /* components not exceeding capacity */
5 Compute ri = |Si ∩R| ∀i ∈ I /* size of topic intersection */
6 j ← argmaxi∈I ri /* if tied, choose a least loaded component */
7 Sj ← Sj ∪R /* item t and its topics are assigned to Sj */
8 return S1, S2, . . . , Sk

Algorithm 1: The greedy algorithm.

This strategy places each incoming item onto the component whose incremental cost (after adding
the item and its topics) is minimized. The immediate goal is not balancing, but rather clustering
similar items. This could in theory lead to large imbalances; to prevent this, we add a balancing
constraint specifying the maximum load imbalance. If adding the item to the first candidate compo-
nent would violate the balancing constraint, then the item is assigned to the first valid component,
in decreasing order of the intersection size.

3.1 The Recovery Theorem

In this section, we present our main theoretical result, which provides a sufficient condition for the
greedy strategy to guarantee balanced asymptotic recovery of hidden clusters.

Theorem 1 (The Recovery Theorem). For a random input consisting of a hidden co-cluster graph
G in HC(n, r, ℓ, p, q) to be partitioned across k ≥ 2 components, if the number of clusters is ℓ ≥
k log k, and the probabilities p and q satisfy p ≥ 2 log r/r, and q ≤ log r/(rk), then the greedy
algorithm ensures balanced asymptotic recovery of the hidden clusters.

Remarks. Specifically, we prove that, under the given conditions, recovery occurs for each hidden
cluster by the time r/ log r cluster items have been observed, with probability 1−1/rc, where c ≥ 1
is a constant. Moreover, clusters are randomly distributed among the k components.

Together, these results can be used to bound the maximum cost of a partition to be at most a con-
stant factor away the lower bound of rℓ/k given by Lemma 2. The extra cost comes from incorrect
assignments before the recovery time, and from the imperfect balancing of clusters over the compo-
nents.

Corollary 1. The expected maximum load of a component is at most 2.4rℓ/k.

3.2 Proof Overview

We now provide an overview of the main ideas of the proof, which is available in the full version of
the paper.

Preliminaries. We say that two random processes are coupled if their random choices are the
same. We say that an event occurs with high probability (w.h.p.) if it occurs with probability at least
1 − 1/rc, where c ≥ 1 is a constant. We make use of a Polya urn process [5], which is defined as
follows. We start each of k ≥ 2 urns with one ball, and, at each step t, observe a new ball. We assign
the new ball to urn i ∈ {1, . . . , k} with probability proportional to (bi)

γ , where γ > 0 is a fixed real
constant, and bi is the number of balls in urn i at time t. We use the following classic result.

Lemma 1 (Polya Urn Convergence [5]). Consider a finite k-bin Polya urn process with exponent
γ > 1, and let xt

i be the fraction of balls in urn i at time t. Then, almost surely, the limit Xi =
limt→∞ xt

i exists for each 1 ≤ i ≤ k. Moreover, we have that there exists an urn j such that
Xj = 1, and that Xi = 0, for all i ̸= j.

Step 1: Recovering a Single Cluster. We first prove that, in the case of a single home cluster
for all items, and two components (k = 2), with no balance constraints, the greedy algorithm
with no balance constraints converges to a monopoly, i.e., eventually assigns all the items from

5

Dataset Items Topics # of Items # of Topics # edges
Book Ratings Readers Books 107,549 105,283 965,949

Facebook App Data Users Apps 173,502 13,604 5,115,433
Retail Data Customers Items bought 74,333 16,470 947,940

Zune Podcast Data Listeners Podcasts 80,633 7928 1,037,999

Figure 3: A table showing the data sets and information about the items and topics.

this cluster onto the same component, w.h.p. Formally, there exists some convergence time tR and
some component Si such that, after time tR, all future items will be assigned to component Si, with
probability at least 1− 1/rc.

Our strategy will be to couple greedy assignment with a Polya urn process with exponent γ >
1, showing that the dynamics of the two processes are the same, w.h.p. There is one significant
technical challenge that one needs to address: while the Polya process assigns new balls based on
the ball counts of urns, greedy assigns items (and their respective topics) based on the number of
topic intersections between the item and the partition. We resolve this issue by taking a two-tiered
approach. Roughly, we first prove that, w.h.p., we can couple the number of items in a component
with the number of unique topics assigned to the same component. We then prove that this is enough
to couple the greedy assignment with a Polya urn process with exponent γ > 1. This will imply that
greedy converges to a monopoly, by Lemma 1.

We then extend this argument to a single cluster and k ≥ 3 components, but with no load balanc-
ing constraints. The crux of the extension is that we can apply the k = 2 argument to pairs of
components to yield that some component achieves a monopoly.
Lemma 2. Given a single cluster instance in HC(n, r, ℓ, p, q) with ℓ = 1, p ≥ 2 log r/r and q = 0 to
be partitioned in k components, the greedy algorithm with no balancing constraints will eventually
place every item in the cluster onto the same component w.h.p.

Second Step: The General Case. We complete the proof of Theorem 1 by considering the general
case with ℓ ≥ 2 clusters and q > 0. We proceed in three sub-steps. We first show the recovery claim
for general number of clusters ℓ ≥ 2, but q = 0 and no balance constraints. This follows since, for
q = 0, the algorithm’s choices with respect to clusters and their respective topics are independent.
Hence clusters are assigned to components uniformly at random.

Second, we extend the proof for any value q ≤ log r/(rk), by showing that the existence of “noise”
edges under this threshold only affects the algorithm’s choices with very low probability. Finally,
we prove that the balance constraints are practically never violated for this type of input, as clusters
are distributed uniformly at random. We obtain the following.
Lemma 3. For a hidden co-cluster input, the greedy algorithm with q = 0 and without capacity
constraints can be coupled with a version of the algorithm with q ≤ log r/(rk) and a constant
capacity constraint, w.h.p.

Final Argument. Putting together Lemmas 2 and 3, we obtain that greedy ensures balanced re-
covery for general inputs in HC(n, r, ℓ, p, q), for parameter values ℓ ≥ k log k, p ≥ 2 log r/r, and
q ≤ log r/(rk).

4 Experimental Results

Datasets and Evaluation. We first consider a set of real-world bipartite graph instances with a
summary provided in Table 3. All these datasets are available online, except for Zune podcast
subscriptions. We chose the consumer to be the item and the resource to be the topic. We provide an
experimental validation of the analysis on synthetic co-cluster inputs in the full version of our paper.

In our experiments, we considered partitioning of items onto k components for a range of values
going from two to ten components. We report the maximum number of topics in a component
normalized by the cost of a perfectly balanced solution m/k, where m is the total number of topics.

Online Assignment Algorithms. We compared the following other online assignment strategies:

6

2 3 4 5 6 7 8 9 10

k

1

2

3

4

5

6

7

8

9

10

N
o
rm

a
li
z
e
d
 M

a
x
im

u
m

 L
o
a
d

All on One

Proportional Greedy (Decreasing Order)

Balance Big

Prefer Big

Random

Greedy (Random Order)

Greedy (Decreasing Order)

(a) Book Ratings

2 3 4 5 6 7 8 9 10

k

1

2

3

4

5

6

7

8

9

10

N
o
rm

a
li
z
e
d
 M

a
x
im

u
m

 L
o
a
d

All on One

Proportional Greedy (Decreasing Order)

Balance Big

Prefer Big

Random

Greedy (Random Order)

Greedy (Decreasing Order)

(b) Facebook App Data

2 3 4 5 6 7 8 9 10

k

1

2

3

4

5

6

7

8

9

10

N
o
rm

a
li
z
e
d
 M

a
x
im

u
m

 L
o
a
d

All on One

Proportional Greedy (Decreasing Order)

Balance Big

Prefer Big

Random

Greedy (Random Order)

Greedy (Decreasing Order)

(c) Retail Data

2 3 4 5 6 7 8 9 10

k

1

2

3

4

5

6

7

8

9

10

N
o
rm

a
li
z
e
d
 M

a
x
im

u
m

 L
o
a
d

All on One

Proportional Greedy (Decreasing Order)

Balance Big

Prefer Big

Random

Greedy (Random Order)

Greedy (Decreasing Order)

(d) Zune Podcast Data

Figure 4: The normalized maximum load for various online assignment algorithms under different
input bipartite graphs versus the numbers of components.

• All-on-One: trivially assign all items and topics to one component.

• Random: assign each item independently to a component chosen uniformly at random from the
set of all components.

• Balance Big: inspect the items in a random order and assign the large items to the least loaded
component, and the small items according to greedy. An item is considered large if it subscribes to
more than 100 topics, and small otherwise.

• Prefer Big: inspect the items in a random order, and keep a buffer of up to 100 small items; when
receiving a large item, put it on the least loaded component; when the buffer is full, place all the
small items according to greedy.

• Greedy: assign the items to the component they have the most topics in common with. We consider
two variants: items arrive in random order, and items arrive in decreasing order of the number of
topics. We allow a slack (parameter c) of up to 100 topics.

• Proportional Allocation: inspect the items in decreasing order of the number of topics; the proba-
bility an item is assigned to a component is proportional to the number of common topics.

Results. Greedy generally outperforms other online heuristics (see Figure 4). Also, its performance
is improved if items arrive in decreasing order of number of topics. Intuitively, items with larger
number of topics provide more information about the underlying structure of the bipartite graph than
the items with smaller number of topics. Interestingly, adding randomness to the greedy assignment
made it perform far worse; most times Proportional Assignment approached the worst case scenario.
Random assignment outperformed Proportional Assignment and regularly outperformed Prefer Big
and Balance Big item assignment strategies.

Offline methods. We also tested the streaming algorithm for a wide range of synthetic input bi-
partite graphs according to the model defined in this paper, and several offline approaches for the
problem including hMetis [11], label propagation, basic spectral methods, and PARSA [13]. We
found that label propagation and spectral methods are extremely time and memory intensive on our
inputs, due to the large number of topics and item-topic edges. hMetis returns within seconds, how-
ever the assignments were not competitive. However, hMetis provides balanced hypergraph cuts,
which are not necessarily a good solution to our problem.

7

Compared to PARSA on bipartite graph inputs, greedy provides assignments with up to 3x higher
max partition load. On social graphs, the performance difference can be as high as 5x. This discrep-
ancy is natural since PARSA has the advantage of performing multiple passes through the input.

5 Related Work

The related problem of min-max multi-way graph cut problem, originally introduced in [23], is
defined as follows: given an input graph, the objective is to component the set of vertices such
that the maximum number of edges adjacent to a component is minimized. A similar problem was
recently studied, e.g. [1], with respect to expansion, defined as the ratio of the sum of weights of
edges adjacent to a component and the minimum between the sum of the weights of vertices within
and outside the given component. The balanced graph partition problem is a bi-criteria optimization
problem where the goal is to find a balanced partition of the set of vertices that minimizes the total
number of edges cut. The best known approximation ratio for this problem is poly-logarithmic in
the number of vertices [12]. The balanced graph partition problem was also considered for the set of
edges of a graph [2]. The related problem of community detection in an input graph data has been
commonly studied for the planted partition model, also well known as stochastic block model. Tight
conditions for recovery of hidden clusters are known from the recent work in [16] and [14], as well
as various approximation algorithms, e.g. see [3]. Some variants of hypergraph partition problems
were studied by the machine learning research community, including balanced cuts studied by [9]
using relaxations based on the concept of total variation, and the maximum likelihood identification
of hidden clusters [17]. The difference is that we consider the min-max multi-way cut problem for
a hypergraph in the streaming computation model. PARSA [13] considers the same problem in an
offline model, where the entire input is initially available to the algorithm, and provides an efficient
distributed algorithm for optimizing multiple criteria. A key component of PARSA is a procedure for
optimizing the order of examining vertices. By contrast, we focus on performance under arbitrary
arrival order, and provide analytic guarantees under a stochastic input model.

Streaming computation with limited memory was considered for various canonical problems such
as principal component analysis [15], community detection [22], balanced graph partition [20, 21],
and query placement [24]. For the class of (hyper)graph partition problems, most of the work is
restricted to studying various streaming heuristics using empirical evaluations with a few notable
exceptions. A first theoretical analysis of streaming algorithms for balanced graph partitioning was
presented in [19] using the framework similar to the one deployed in this paper. The paper gives
sufficient conditions for a greedy streaming strategy to recover clusters of vertices for the input graph
according to stochastic block model, which makes irrevocable assignments of vertices as they are
observed in the input stream and uses memory limited to grow linearly with the number of clusters.
As in our case, the argument uses a reduction to Polya urn processes. The two main differences with
our work is that we consider a different problem (min-max hypergraph partition) and this requires a
novel proof technique based on a two-step reduction to Polya urn processes. Streaming algorithms
for the recovery of clusters in a stochastic block model were also studied in [22], under a weaker
computation model, which does not require irrevocable assignments of vertices at instances they are
presented in the input stream and allows for memory polynomial in the number of vertices.

6 Conclusion

We studied the min-max hypergraph partitioning problem in the streaming computation model with
the size of memory limited to be at most linear in the number of the components of the partition.
We established first approximation guarantees for inputs according to a random bipartite graph with
hidden co-clusters, and evaluated performance on several real-world input graphs. There are sev-
eral interesting open questions for future work. It is of interest to study the tightness of the given
recovery condition, and, in general, better understand the trade-off between the memory size and
the accuracy of the recovery. It is also of interest to consider the recovery problem for a wider set
of random bipartite graph models. Another question of interest is to consider dynamic graph inputs
with addition and deletion of items and topics.

8

References

[1] N. Bansal, U. Feige, R. Krauthgamer, K. Makarychev, V. Nagarajan, J. SeffiNaor, and
R. Schwartz. Min-max graph partitioning and small set expansion. SIAM J. on Computing,
43(2):872–904, 2014.

[2] F. Bourse, M. Lelarge, and M. Vojnovic. Balanced graph edge partition. In Proc. of ACM
KDD, 2014.

[3] Y. Chen, S. Sanghavi, and H. Xu. Clustering sparse graphs. In Proc. of NIPS, 2012.
[4] Y. Cheng and G. M. Church. Biclustering of expression data. In Ismb, volume 8, pages 93–103,

2000.
[5] F. Chung, S. Handjani, and D. Jungreis. Generalizations of Polya’s urn problem. Annals of

Combinatorics, (7):141–153, 2003.
[6] I. S. Dhillon. Co-clustering documents and words using bipartite spectral graph partitioning.

In Proc. of ACM KDD, 2001.
[7] I. S. Dhillon, S. Mallela, and D. S. Modha. Information-theoretic co-clustering. In Proc. of

ACM KDD, 2003.
[8] S. Fortunato. Community detection in graphs. Physics Reports, 486(75), 2010.
[9] M. Hein, S. Setzer, L. Jost, and S. S. Rangapuram. The total variation on hypergraphs - learning

hypergraphs revisited. In Proc. of NIPS, 2013.
[10] T. Karagiannis, C. Gkantsidis, D. Narayanan, and A. Rowstron. Hermes: clustering users in

large-scale e-mail services. In Proc. of ACM SoCC, 2010.
[11] G. Karypis and V. Kumar. Multilevel k-way hypergraph partitioning. VLSI Design, 11(3),

2000.
[12] R. Krauthgamer, J. S. Naor, and R. Schwartz. Partitioning graphs into balanced components.

2009.
[13] M. Li, D. G. Andersen, and A. J. Smola. Graph partitioning via parallel submodular approxi-

mation to accelerate distributed machine learning. arXiv preprint arXiv:1505.04636, 2015.
[14] L. Massoulié. Community detection thresholds and the weak Ramanujan property. In Proc. of

ACM STOC, 2014.
[15] I. Mitliagkas, C. Caramanis, and P. Jain. Memory limited, streaming PCA. In Proc. of NIPS,

2013.
[16] E. Mossel, J. Neeman, and A. Sly. Reconstruction and estimation in the planted partition

model. Probability Theory and Related Fields, pages 1–31, 2014.
[17] L. O’Connor and S. Feizi. Biclustering using message passing. In Proc. of NIPS, 2014.
[18] J. M. Pujol et al. The little engine(s) that could: Scaling online social networks. IEEE/ACM

Trans. Netw., 20(4):1162–1175, 2012.
[19] I. Stanton. Streaming balanced graph partitioning algorithms for random graphs. In Proc. of

ACM-SIAM SODA, 2014.
[20] I. Stanton and G. Kliot. Streaming graph partitioning for large distributed graphs. In Proc. of

ACM KDD, 2012.
[21] C. E. Tsourakakis, C. Gkantsidis, B. Radunovic, and M. Vojnovic. FENNEL: streaming graph

partitioning for massive scale graphs. In Proc. of ACM WSDM, 2014.
[22] S.-Y. Yun, M. Lelarge, and A. Proutiere. Streaming, memory limited algorithms for community

detection. In Proc. of NIPS, 2014.
[23] Z. Z. Svitkina and E. Tardos. Min-max multiway cut. In K. Jansen, S. Khanna, J. Rolim, and

D. Ron, editors, Proc. of APPROX/RANDOM, pages 207–218. 2004.
[24] B. Zong, C. Gkantsidis, and M. Vojnovic. Herding small streaming queries. In Proc. of ACM

DEBS, 2015.

9

