
Deep Generative Image Models using a
Laplacian Pyramid of Adversarial Networks

Emily Denton∗
Dept. of Computer Science

Courant Institute
New York University

Soumith Chintala∗ Arthur Szlam Rob Fergus
Facebook AI Research

New York

Abstract

In this paper we introduce a generative parametric model capable of producing
high quality samples of natural images. Our approach uses a cascade of convo-
lutional networks within a Laplacian pyramid framework to generate images in
a coarse-to-fine fashion. At each level of the pyramid, a separate generative con-
vnet model is trained using the Generative Adversarial Nets (GAN) approach [11].
Samples drawn from our model are of significantly higher quality than alternate
approaches. In a quantitative assessment by human evaluators, our CIFAR10 sam-
ples were mistaken for real images around 40% of the time, compared to 10% for
samples drawn from a GAN baseline model. We also show samples from models
trained on the higher resolution images of the LSUN scene dataset.

1 Introduction
Building a good generative model of natural images has been a fundamental problem within com-
puter vision. However, images are complex and high dimensional, making them hard to model well,
despite extensive efforts. Given the difficulties of modeling entire scene at high-resolution, most
existing approaches instead generate image patches. In contrast, we propose an approach that is
able to generate plausible looking scenes at 32 × 32 and 64 × 64. To do this, we exploit the multi-
scale structure of natural images, building a series of generative models, each of which captures
image structure at a particular scale of a Laplacian pyramid [1]. This strategy breaks the original
problem into a sequence of more manageable stages. At each scale we train a convolutional network-
based generative model using the Generative Adversarial Networks (GAN) approach of Goodfellow
et al. [11]. Samples are drawn in a coarse-to-fine fashion, commencing with a low-frequency resid-
ual image. The second stage samples the band-pass structure at the next level, conditioned on the
sampled residual. Subsequent levels continue this process, always conditioning on the output from
the previous scale, until the final level is reached. Thus drawing samples is an efficient and straight-
forward procedure: taking random vectors as input and running forward through a cascade of deep
convolutional networks (convnets) to produce an image.

Deep learning approaches have proven highly effective at discriminative tasks in vision, such as
object classification [4]. However, the same level of success has not been obtained for generative
tasks, despite numerous efforts [14, 26, 30]. Against this background, our proposed approach makes
a significant advance in that it is straightforward to train and sample from, with the resulting samples
showing a surprising level of visual fidelity.

1.1 Related Work

Generative image models are well studied, falling into two main approaches: non-parametric and
parametric. The former copy patches from training images to perform, for example, texture synthesis
[7] or super-resolution [9]. More ambitiously, entire portions of an image can be in-painted, given a
sufficiently large training dataset [13]. Early parametric models addressed the easier problem of tex-

∗denotes equal contribution.

1

ture synthesis [3, 33, 22], with Portilla & Simoncelli [22] making use of a steerable pyramid wavelet
representation [27], similar to our use of a Laplacian pyramid. For image processing tasks, models
based on marginal distributions of image gradients are effective [20, 25], but are only designed for
image restoration rather than being true density models (so cannot sample an actual image). Very
large Gaussian mixture models [34] and sparse coding models of image patches [31] can also be
used but suffer the same problem.

A wide variety of deep learning approaches involve generative parametric models. Restricted Boltz-
mann machines [14, 18, 21, 23], Deep Boltzmann machines [26, 8], Denoising auto-encoders [30]
all have a generative decoder that reconstructs the image from the latent representation. Variational
auto-encoders [16, 24] provide probabilistic interpretation which facilitates sampling. However, for
all these methods convincing samples have only been shown on simple datasets such as MNIST
and NORB, possibly due to training complexities which limit their applicability to larger and more
realistic images.

Several recent papers have proposed novel generative models. Dosovitskiy et al. [6] showed how a
convnet can draw chairs with different shapes and viewpoints. While our model also makes use of
convnets, it is able to sample general scenes and objects. The DRAW model of Gregor et al. [12]
used an attentional mechanism with an RNN to generate images via a trajectory of patches, showing
samples of MNIST and CIFAR10 images. Sohl-Dickstein et al. [28] use a diffusion-based process
for deep unsupervised learning and the resulting model is able to produce reasonable CIFAR10 sam-
ples. Theis and Bethge [29] employ LSTMs to capture spatial dependencies and show convincing
inpainting results of natural textures.

Our work builds on the GAN approach of Goodfellow et al. [11] which works well for smaller
images (e.g. MNIST) but cannot directly handle large ones, unlike our method. Most relevant to our
approach is the preliminary work of Mirza and Osindero [19] and Gauthier [10] who both propose
conditional versions of the GAN model. The former shows MNIST samples, while the latter focuses
solely on frontal face images. Our approach also uses several forms of conditional GAN model but
is much more ambitious in its scope.

2 Approach
The basic building block of our approach is the generative adversarial network (GAN) of Goodfellow
et al. [11]. After reviewing this, we introduce our LAPGAN model which integrates a conditional
form of GAN model into the framework of a Laplacian pyramid.

2.1 Generative Adversarial Networks

The GAN approach [11] is a framework for training generative models, which we briefly explain in
the context of image data. The method pits two networks against one another: a generative model G
that captures the data distribution and a discriminative model D that distinguishes between samples
drawn from G and images drawn from the training data. In our approach, both G and D are convo-
lutional networks. The former takes as input a noise vector z drawn from a distribution pNoise(z) and
outputs an image h̃. The discriminative network D takes an image as input stochastically chosen
(with equal probability) to be either h̃ – as generated from G, or h – a real image drawn from the
training data pData(h). D outputs a scalar probability, which is trained to be high if the input was
real and low if generated from G. A minimax objective is used to train both models together:

min
G

max
D

Eh∼pData(h)[logD(h)] + Ez∼pNoise(z)[log(1−D(G(z)))] (1)

This encourages G to fit pData(h) so as to fool D with its generated samples h̃. Both G and D are
trained by backpropagating the loss in Eqn. 1 through both models to update the parameters.

The conditional generative adversarial net (CGAN) is an extension of the GAN where both networks
G and D receive an additional vector of information l as input. This might contain, say, information
about the class of the training example h. The loss function thus becomes

min
G

max
D

Eh,l∼pData(h,l)[logD(h, l)] + Ez∼pNoise(z),l∼pl(l)[log(1−D(G(z, l), l))] (2)

where pl(l) is, for example, the prior distribution over classes. This model allows the output of
the generative model to be controlled by the conditioning variable l. Mirza and Osindero [19] and
Gauthier [10] both explore this model with experiments on MNIST and faces, using l as a class
indicator. In our approach, l will be another image, generated from another CGAN model.

2

2.2 Laplacian Pyramid

The Laplacian pyramid [1] is a linear invertible image representation consisting of a set of band-pass
images, spaced an octave apart, plus a low-frequency residual. Formally, let d(.) be a downsampling
operation which blurs and decimates a j× j image I , so that d(I) is a new image of size j/2× j/2.
Also, let u(.) be an upsampling operator which smooths and expands I to be twice the size, so u(I)
is a new image of size 2j × 2j. We first build a Gaussian pyramid G(I) = [I0, I1, . . . , IK], where
I0 = I and Ik is k repeated applications of d(.) to I , i.e. I2 = d(d(I)). K is the number of levels in
the pyramid, selected so that the final level has very small spatial extent (≤ 8× 8 pixels).

The coefficients hk at each level k of the Laplacian pyramid L(I) are constructed by taking the
difference between adjacent levels in the Gaussian pyramid, upsampling the smaller one with u(.)
so that the sizes are compatible:

hk = Lk(I) = Gk(I)− u(Gk+1(I)) = Ik − u(Ik+1) (3)
Intuitively, each level captures image structure present at a particular scale. The final level of the
Laplacian pyramid hK is not a difference image, but a low-frequency residual equal to the final
Gaussian pyramid level, i.e. hK = IK . Reconstruction from a Laplacian pyramid coefficients
[h1, . . . , hK] is performed using the backward recurrence:

Ik = u(Ik+1) + hk (4)
which is started with IK = hK and the reconstructed image being I = Io. In other words, starting
at the coarsest level, we repeatedly upsample and add the difference image h at the next finer level
until we get back to the full resolution image.

2.3 Laplacian Generative Adversarial Networks (LAPGAN)

Our proposed approach combines the conditional GAN model with a Laplacian pyramid represen-
tation. The model is best explained by first considering the sampling procedure. Following training
(explained below), we have a set of generative convnet models {G0, . . . , GK}, each of which cap-
tures the distribution of coefficients hk for natural images at a different level of the Laplacian pyra-
mid. Sampling an image is akin to the reconstruction procedure in Eqn. 4, except that the generative
models are used to produce the hk’s:

Ĩk = u(Ĩk+1) + h̃k = u(Ĩk+1) +Gk(zk, u(Ĩk+1)) (5)

The recurrence starts by setting ĨK+1 = 0 and using the model at the final level GK to generate a
residual image ĨK using noise vector zK : ĨK = GK(zK). Note that models at all levels except the
final are conditional generative models that take an upsampled version of the current image Ĩk+1 as
a conditioning variable, in addition to the noise vector zk. Fig. 1 shows this procedure in action for
a pyramid with K = 3 using 4 generative models to sample a 64× 64 image.

The generative models {G0, . . . , GK} are trained using the CGAN approach at each level of the
pyramid. Specifically, we construct a Laplacian pyramid from each training image I . At each level
we make a stochastic choice (with equal probability) to either (i) construct the coefficients hk either
using the standard procedure from Eqn. 3, or (ii) generate them using Gk:

h̃k = Gk(zk, u(Ik+1)) (6)

G2

~ I3

G3

z2

~ h2

z3

G1

z1
G0

z0

~ I2 l2

~ I0

h0
~

I1
~

~ h1

l1

l0

Figure 1: The sampling procedure for our LAPGAN model. We start with a noise sample z3 (right side) and
use a generative model G3 to generate Ĩ3. This is upsampled (green arrow) and then used as the conditioning
variable (orange arrow) l2 for the generative model at the next level, G2. Together with another noise sample
z2, G2 generates a difference image h̃2 which is added to l2 to create Ĩ2. This process repeats across two
subsequent levels to yield a final full resolution sample I0.

3

G0

l2

~ I3

G3

D0

z0

D1

D2

h2
~ h2 z3

D3

I3
I2 I2 I3

Real/Generated?

Real/
Generated?

G1

z1

G2

z2

Real/Generated?

Real/
Generated?

l0

I = I0

h0

I1 I1

l1

~ h1 h1

h0
~

Figure 2: The training procedure for our LAPGAN model. Starting with a 64x64 input image I from our
training set (top left): (i) we take I0 = I and blur and downsample it by a factor of two (red arrow) to produce
I1; (ii) we upsample I1 by a factor of two (green arrow), giving a low-pass version l0 of I0; (iii) with equal
probability we use l0 to create either a real or a generated example for the discriminative model D0. In the real
case (blue arrows), we compute high-pass h0 = I0 − l0 which is input to D0 that computes the probability of
it being real vs generated. In the generated case (magenta arrows), the generative network G0 receives as input
a random noise vector z0 and l0. It outputs a generated high-pass image h̃0 = G0(z0, l0), which is input to
D0. In both the real/generated cases, D0 also receives l0 (orange arrow). Optimizing Eqn. 2, G0 thus learns
to generate realistic high-frequency structure h̃0 consistent with the low-pass image l0. The same procedure is
repeated at scales 1 and 2, using I1 and I2. Note that the models at each level are trained independently. At
level 3, I3 is an 8×8 image, simple enough to be modeled directly with a standard GANs G3 & D3.

Note that Gk is a convnet which uses a coarse scale version of the image lk = u(Ik+1) as an input,
as well as noise vector zk. Dk takes as input hk or h̃k, along with the low-pass image lk (which is
explicitly added to hk or h̃k before the first convolution layer), and predicts if the image was real or
generated. At the final scale of the pyramid, the low frequency residual is sufficiently small that it
can be directly modeled with a standard GAN: h̃K = GK(zK) andDK only has hK or h̃K as input.
The framework is illustrated in Fig. 2.

Breaking the generation into successive refinements is the key idea in this work. Note that we give
up any “global” notion of fidelity; we never make any attempt to train a network to discriminate
between the output of a cascade and a real image and instead focus on making each step plausible.
Furthermore, the independent training of each pyramid level has the advantage that it is far more
difficult for the model to memorize training examples – a hazard when high capacity deep networks
are used.

As described, our model is trained in an unsupervised manner. However, we also explore variants
that utilize class labels. This is done by add a 1-hot vector c, indicating class identity, as another
conditioning variable for Gk and Dk.

3 Model Architecture & Training
We apply our approach to three datasets: (i) CIFAR10 [17] – 32×32 pixel color images of 10
different classes, 100k training samples with tight crops of objects; (ii) STL10 [2] – 96×96 pixel
color images of 10 different classes, 100k training samples (we use the unlabeled portion of data);
and (iii) LSUN [32] – ∼10M images of 10 different natural scene types, downsampled to 64×64
pixels.

For each dataset, we explored a variety of architectures for {Gk, Dk}. Model selection was
performed using a combination of visual inspection and a heuristic based on `2 error in pixel
space. The heuristic computes the error for a given validation image at level k in the pyramid
as Lk(Ik) = min{zj}||Gk(zj , u(Ik+1)) − hk||2 where {zj} is a large set of noise vectors, drawn
from pnoise(z). In other words, the heuristic is asking, are any of the generated residual images
close to the ground truth? Torch training and evaluation code, along with model specification files
can be found at http://soumith.ch/eyescream/. For all models, the noise vector zk is
drawn from a uniform [-1,1] distribution.

4

http://soumith.ch/eyescream/

3.1 CIFAR10 and STL10
Initial scale: This operates at 8 × 8 resolution, using densely connected nets for both GK & DK

with 2 hidden layers and ReLU non-linearities. DK uses Dropout and has 600 units/layer vs 1200
for GK . zK is a 100-d vector.

Subsequent scales: For CIFAR10, we boost the training set size by taking four 28× 28 crops from
the original images. Thus the two subsequent levels of the pyramid are 8 → 14 and 14 → 28. For
STL, we have 4 levels going from 8 → 16 → 32 → 64 → 96. For both datasets, Gk & Dk are
convnets with 3 and 2 layers, respectively (see [5]). The noise input zk to Gk is presented as a 4th
“color plane” to low-pass lk, hence its dimensionality varies with the pyramid level. For CIFAR10,
we also explore a class conditional version of the model, where a vector c encodes the label. This is
integrated into Gk & Dk by passing it through a linear layer whose output is reshaped into a single
plane feature map which is then concatenated with the 1st layer maps. The loss in Eqn. 2 is trained
using SGD with an initial learning rate of 0.02, decreased by a factor of (1 + 4 × 10−4) at each
epoch. Momentum starts at 0.5, increasing by 0.0008 at epoch up to a maximum of 0.8. Training
time depends on the models size and pyramid level, with smaller models taking hours to train and
larger models taking up to a day.

3.2 LSUN
The larger size of this dataset allows us to train a separate LAPGAN model for each of the scene
classes. The four subsequent scales 4→ 8→ 16→ 32→ 64 use a common architecture for Gk &
Dk at each level. Gk is a 5-layer convnet with {64, 368, 128, 224} feature maps and a linear output
layer. 7× 7 filters, ReLUs, batch normalization [15] and Dropout are used at each hidden layer. Dk

has 3 hidden layers with {48, 448, 416} maps plus a sigmoid output. See [5] for full details. Note
that Gk and Dk are substantially larger than those used for CIFAR10 and STL, as afforded by the
larger training set.

4 Experiments
We evaluate our approach using 3 different methods: (i) computation of log-likelihood on a held
out image set; (ii) drawing sample images from the model and (iii) a human subject experiment that
compares (a) our samples, (b) those of baseline methods and (c) real images.

4.1 Evaluation of Log-Likelihood

Like Goodfellow et al. [11], we are compelled to use a Gaussian Parzen window estimator to com-
pute log-likelihood, since there no direct way of computing it using our model. Table 1 compares the
log-likelihood on a validation set for our LAPGAN model and a standard GAN using 50k samples
for each model (the Gaussian width σ was also tuned on the validation set). Our approach shows
a marginal gain over a GAN. However, we can improve the underlying estimation technique by
leveraging the multi-scale structure of the LAPGAN model. This new approach computes a proba-
bility at each scale of the Laplacian pyramid and combines them to give an overall image probability
(see Appendix A in supplementary material for details). Our multi-scale Parzen estimate, shown in
Table 1, produces a big gain over the traditional estimator.

The shortcomings of both estimators are readily apparent when compared to a simple Gaussian, fit
to the CIFAR-10 training set. Even with added noise, the resulting model can obtain a far higher log-
likelihood than either the GAN or LAPGAN models, or other published models. More generally,
log-likelihood is problematic as a performance measure due to its sensitivity to the exact represen-
tation used. Small variations in the scaling, noise and resolution of the image (much less changing
from RGB to YUV, or more substantive changes in input representation) results in wildly different
scores, making fair comparisons to other methods difficult.

Model CIFAR10 (@32×32) STL10 (@32×32)
GAN [11] (Parzen window estimate) -3617 ± 353 -3661 ± 347
LAPGAN (Parzen window estimate) -3572 ± 345 -3563 ± 311

LAPGAN (multi-scale Parzen window estimate) -1799 ± 826 -2906 ± 728
Table 1: Log-likelihood estimates for a standard GAN and our proposed LAPGAN model on CI-
FAR10 and STL10 datasets. The mean and std. dev. are given in units of nats/image. Rows 1 and 2
use a Parzen-window approach at full-resolution, while row 3 uses our multi-scale Parzen-window
estimator.

5

4.2 Model Samples

We show samples from models trained on CIFAR10, STL10 and LSUN datasets. Additional sam-
ples can be found in the supplementary material [5]. Fig. 3 shows samples from our models trained
on CIFAR10. Samples from the class conditional LAPGAN are organized by class. Our reimple-
mentation of the standard GAN model [11] produces slightly sharper images than those shown in the
original paper. We attribute this improvement to the introduction of data augmentation. The LAP-
GAN samples improve upon the standard GAN samples. They appear more object-like and have
more clearly defined edges. Conditioning on a class label improves the generations as evidenced
by the clear object structure in the conditional LAPGAN samples. The quality of these samples
compares favorably with those from the DRAW model of Gregor et al. [12] and also Sohl-Dickstein
et al. [28]. The rightmost column of each image shows the nearest training example to the neighbor-
ing sample (in L2 pixel-space). This demonstrates that our model is not simply copying the input
examples.

Fig. 4(a) shows samples from our LAPGAN model trained on STL10. Here, we lose clear ob-
ject shape but the samples remain sharp. Fig. 4(b) shows the generation chain for random STL10
samples.

Fig. 5 shows samples from LAPGAN models trained on three LSUN categories (tower, bedroom,
church front). To the best of our knowledge, no other generative model is been able to produce
samples of this complexity. The substantial gain in quality over the CIFAR10 and STL10 samples is
likely due to the much larger training LSUN training set which allows us to train bigger and deeper
models. In supplemental material we show additional experiments probing the models, e.g. drawing
multiple samples using the same fixed 4 × 4 image, which illustrates the variation captured by the
LAPGAN models.

4.3 Human Evaluation of Samples

To obtain a quantitative measure of quality of our samples, we asked 15 volunteers to participate
in an experiment to see if they could distinguish our samples from real images. The subjects were
presented with the user interface shown in Fig. 6(right) and shown at random four different types
of image: samples drawn from three different GAN models trained on CIFAR10 ((i) LAPGAN, (ii)
class conditional LAPGAN and (iii) standard GAN [11]) and also real CIFAR10 images. After being
presented with the image, the subject clicked the appropriate button to indicate if they believed the
image was real or generated. Since accuracy is a function of viewing time, we also randomly pick
the presentation time from one of 11 durations ranging from 50ms to 2000ms, after which a gray
mask image is displayed. Before the experiment commenced, they were shown examples of real
images from CIFAR10. After collecting ∼10k samples from the volunteers, we plot in Fig. 6 the
fraction of images believed to be real for the four different data sources, as a function of presentation
time. The curves show our models produce samples that are more realistic than those from standard
GAN [11].

5 Discussion
By modifying the approach in [11] to better respect the structure of images, we have proposed a
conceptually simple generative model that is able to produce high-quality sample images that are
qualitatively better than other deep generative modeling approaches. While they exhibit reasonable
diversity, we cannot be sure that they cover the full data distribution. Hence our models could
potentially be assigning low probability to parts of the manifold on natural images. Quantifying this
is difficult, but could potentially be done via another human subject experiment. A key point in our
work is giving up any “global” notion of fidelity, and instead breaking the generation into plausible
successive refinements. We note that many other signal modalities have a multiscale structure that
may benefit from a similar approach.

Acknowledgements
We would like to thank the anonymous reviewers for their insightful and constructive comments.
We also thank Andrew Tulloch, Wojciech Zaremba and the FAIR Infrastructure team for useful
discussions and support. Emily Denton was supported by an NSERC Fellowship.

6

CC-LAPGAN: Airplane CC-LAPGAN: Automobile CC-LAPGAN: Bird CC-LAPGAN: Cat

CC-LAPGAN: Deer CC-LAPGAN: Dog CC-LAPGAN: Frog CC-LAPGAN: Horse

CC-LAPGAN: Ship CC-LAPGAN: Truck GAN [14] LAPGAN

Figure 3: CIFAR10 samples: our class conditional CC-LAPGAN model, our LAPGAN model and
the standard GAN model of Goodfellow [11]. The yellow column shows the training set nearest
neighbors of the samples in the adjacent column.

(a) (b)
Figure 4: STL10 samples: (a) Random 96x96 samples from our LAPGAN model. (b) Coarse-to-
fine generation chain.

7

Figure 5: 64 × 64 samples from three different LSUN LAPGAN models (top: tower, middle: bed-
room, bottom: church front)

 50 75 100 150 200 300 400 650 1000 2000
0

10

20

30

40

50

60

70

80

90

100

Presentation time (ms)

%
 c

la
s
s
if
ie

d
 r

e
a

l

Real

CC−LAPGAN

LAPGAN

GAN

Figure 6: Left: Human evaluation of real CIFAR10 images (red) and samples from Goodfellow
et al. [11] (magenta), our LAPGAN (blue) and a class conditional LAPGAN (green). The error
bars show ±1σ of the inter-subject variability. Around 40% of the samples generated by our class
conditional LAPGAN model are realistic enough to fool a human into thinking they are real images.
This compares with ≤ 10% of images from the standard GAN model [11], but is still a lot lower
than the > 90% rate for real images. Right: The user-interface presented to the subjects.

8

References
[1] P. J. Burt, Edward, and E. H. Adelson. The laplacian pyramid as a compact image code. IEEE Transactions on Communications,

31:532–540, 1983.
[2] A. Coates, H. Lee, and A. Y. Ng. An analysis of single layer networks in unsupervised feature learning. In AISTATS, 2011.
[3] J. S. De Bonet. Multiresolution sampling procedure for analysis and synthesis of texture images. In Proceedings of the 24th annual

conference on Computer graphics and interactive techniques, pages 361–368. ACM Press/Addison-Wesley Publishing Co., 1997.
[4] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical image database. In CVPR, pages

248–255. IEEE, 2009.
[5] E. Denton, S. Chintala, A. Szlam, and R. Fergus. Deep generative image models using a laplacian pyramid of adversarial networks:

Supplementary material. http://soumith.ch/eyescream.
[6] A. Dosovitskiy, J. T. Springenberg, and T. Brox. Learning to generate chairs with convolutional neural networks. arXiv preprint

arXiv:1411.5928, 2014.
[7] A. A. Efros and T. K. Leung. Texture synthesis by non-parametric sampling. In ICCV, volume 2, pages 1033–1038. IEEE, 1999.
[8] S. A. Eslami, N. Heess, C. K. Williams, and J. Winn. The shape boltzmann machine: a strong model of object shape. International

Journal of Computer Vision, 107(2):155–176, 2014.
[9] W. T. Freeman, T. R. Jones, and E. C. Pasztor. Example-based super-resolution. Computer Graphics and Applications, IEEE, 22(2):56–

65, 2002.
[10] J. Gauthier. Conditional generative adversarial nets for convolutional face generation. Class Project for Stanford CS231N: Convolutional

Neural Networks for Visual Recognition, Winter semester 2014 2014.
[11] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Generative adversarial nets.

In NIPS, pages 2672–2680. 2014.
[12] K. Gregor, I. Danihelka, A. Graves, and D. Wierstra. DRAW: A recurrent neural network for image generation. CoRR, abs/1502.04623,

2015.
[13] J. Hays and A. A. Efros. Scene completion using millions of photographs. ACM Transactions on Graphics (TOG), 26(3):4, 2007.
[14] G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 313(5786):504–507, 2006.
[15] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv preprint

arXiv:1502.03167v3, 2015.
[16] D. P. Kingma and M. Welling. Auto-encoding variational bayes. ICLR, 2014.
[17] A. Krizhevsky. Learning multiple layers of features from tiny images. Masters Thesis, Deptartment of Computer Science, University of

Toronto, 2009.
[18] A. Krizhevsky, G. E. Hinton, et al. Factored 3-way restricted boltzmann machines for modeling natural images. In AISTATS, pages

621–628, 2010.
[19] M. Mirza and S. Osindero. Conditional generative adversarial nets. CoRR, abs/1411.1784, 2014.
[20] B. A. Olshausen and D. J. Field. Sparse coding with an overcomplete basis set: A strategy employed by v1? Vision research,

37(23):3311–3325, 1997.
[21] S. Osindero and G. E. Hinton. Modeling image patches with a directed hierarchy of markov random fields. In J. Platt, D. Koller, Y. Singer,

and S. Roweis, editors, NIPS, pages 1121–1128. 2008.
[22] J. Portilla and E. P. Simoncelli. A parametric texture model based on joint statistics of complex wavelet coefficients. International

Journal of Computer Vision, 40(1):49–70, 2000.
[23] M. Ranzato, V. Mnih, J. M. Susskind, and G. E. Hinton. Modeling natural images using gated MRFs. IEEE Transactions on Pattern

Analysis & Machine Intelligence, (9):2206–2222, 2013.
[24] D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic backpropagation and variational inference in deep latent gaussian models. arXiv

preprint arXiv:1401.4082, 2014.
[25] S. Roth and M. J. Black. Fields of experts: A framework for learning image priors. In In CVPR, pages 860–867, 2005.
[26] R. Salakhutdinov and G. E. Hinton. Deep boltzmann machines. In AISTATS, pages 448–455, 2009.
[27] E. P. Simoncelli, W. T. Freeman, E. H. Adelson, and D. J. Heeger. Shiftable multiscale transforms. Information Theory, IEEE Transac-

tions on, 38(2):587–607, 1992.
[28] J. Sohl-Dickstein, E. A. Weiss, N. Maheswaranathan, and S. Ganguli. Deep unsupervised learning using nonequilibrium thermodynamics.

CoRR, abs/1503.03585, 2015.
[29] L. Theis and M. Bethge. Generative image modeling using spatial LSTMs. Dec 2015.
[30] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol. Extracting and composing robust features with denoising autoencoders. In

ICML, pages 1096–1103, 2008.
[31] J. Wright, Y. Ma, J. Mairal, G. Sapiro, T. S. Huang, and S. Yan. Sparse representation for computer vision and pattern recognition.

Proceedings of the IEEE, 98(6):1031–1044, 2010.
[32] Y. Zhang, F. Yu, S. Song, P. Xu, A. Seff, and J. Xiao. Large-scale scene understanding challenge. In CVPR Workshop, 2015.
[33] S. C. Zhu, Y. Wu, and D. Mumford. Filters, random fields and maximum entropy (frame): Towards a unified theory for texture modeling.

International Journal of Computer Vision, 27(2):107–126, 1998.
[34] D. Zoran and Y. Weiss. From learning models of natural image patches to whole image restoration. In ICCV, 2011.

9

http://soumith.ch/eyescream

