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Abstract

The Jaccard index is a standard statistics for comparingdheise similarity be-
tween data samples. This paper investigates the problemstiofating a Jaccard
index matrix when there are missing observations in datpkesn Starting from
a Jaccard index matrix approximated from the incomplete,dair method cali-
brates the matrix to meet the requirement of positive segfinileness and other
constraints, through a simple alternating projection atgm. Compared with
conventional approaches that estimate the similarityimmbfised on the imputed
data, our method has a strong advantage in that the catibnadérix is guaran-
teed to be closer to the unknown ground truth in the Frobenarsn than the
un-calibrated matrix (except in special cases they ardichdh We carried out a
series of empirical experiments and the results confirmedhaoretical justifica-
tion. The evaluation also reported significantly improvedults in real learning
tasks on benchmark datasets.

1 Introduction

A critical task in data analysis is to determine how simil&o tdata samples are. The applications
arise in many science and engineering disciplines. For plgrn statistical and computing sci-
ences, similarity analysis lays a foundation for clusterlgsis, pattern classification, image analysis
and recommender systems|[15] 8, 17].

A variety of similarity models have been established fofedént types of data. When data samples
can be represented as algebraic vectors, popular choiclkesléncosine similarity model, linear
kernel model, and so on_[24, 125]. When each vector elemens takealue of zero or one, the
Jaccard index model is routinely applied, which measuresitilarity by the ratio of the number
of unique elements common to two samples against the tomabaciof unique elements in either of
them [14/]23].

Despite the wide applications, the Jaccard index modelsfacaon-trivial challenge when data
samples are not fully observed. As a treatment, imputatfgpraaches may be applied, which
replace the missing observations with substituted valndstzen calculate the Jaccard index based
on the imputed data. Unfortunately, with a large portion da§simg observations, imputing data
samples often becomes un-reliable or even infeasible,idsreed in our evaluation.

Instead of trying to fill in the missing values, this paperastigates a completely different approach
based on matrix calibration. Starting from an approximatecdrd index matrix that is estimated
from incomplete samples, the proposed method calibratesniirix to meet the requirement of
positive semi-definiteness and other constraints. Théregion procedure is carried out with a
simple yet flexible alternating projection algorithm.



The proposed method has a strong theoretical advantagecaliheated matrix is guaranteed to be
better than, or at least identical to (in special cases)uthealibrated matrix in terms of a shorter
Frobenius distance to the true Jaccard index matrix, whiab verified empirically as well. Be-
sides, our evaluation of the method also reported improgedlts in learning applications, and the
improvement was especially significant with a high portibmissing values.

A note on notation. Throughout the discussion, a data samplg < ¢ < n), is treated as a set of
features. LetF = {f1,--- , fa} be the set of all possible features. Without causing ambyigdi;
also represents a binary-valued vector. If ji (1 < j < d) element of vectod; is one, it means
f; € A; (featuref; belongs to sampld;); if the element is zerof; ¢ A;; if the element is marked
asmissing it remains unknown whether featufe belongs to samplé; or not.

2 Background

2.1 TheJaccard index

The Jaccard index is a commonly used statistical indicaipnfeasuring the pairwise similarity
[14,123]. For two nonempty and finite sefls and A;, it is defined to be the ratio of the number of
elements in their intersection against the number of elésriartheir union:
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where|-| denotes the cardinality of a set.

The Jaccard index has a valuedofthen the two sets have no elements in commanhen they have
exactly the same elements, and strictly betweemd 1 otherwise. The two sets are more similar
(have more common elements) when the value gets cloder to

For nnsetsAl, -+, A, (n > 2), the Jaccard index matrix is defined asrax n matrix J* =
{Jj]}l i1 The matrix is symmetric and all diagonal elements of thermate 1.

2.2 Handling missing observations

When data samples are fully observed, the accurate Jacchaxi ¢éan be obtained trivially by enu-
merating the intersection and the union between each paaroples if both the number of samples
and the number of features are small. For samples with a fargder of features, the index can
often be approximated by MinHash and related methods [5,vil@fEh avoid the explicit counting
of the intersection and the union of the two sets.

When data samples are not fully observed, however, obtathengccurate Jaccard index generally
becomes infeasible. One’ima approximation is to ignore the features with missingugal Only
those features that have no missing values in all samplegsae to calculate the Jaccard index.
Obviously, for a large dataset with missing-at-randomufess, it is very likely that this method will
throw away all features and therefore does not work at all.

The mainstream work tries to replace the missing obsemstigith substituted values, and then
calculates the Jaccard index based on the imputed datarabswveple approaches, includiagro,
median and k-nearest neighborkN) methods, are popularly used. A missing element is set to
zero, often implying the corresponding feature does naitéwia sample. It can also be set to the
median value (or the mean value) of the feature over all sasnor sometimes over a number of
nearest neighboring instances.

A more systematical imputation framework is based on thesatal expectation maximizatioB¢)
algorithm [6], which generalizes maximum likelihood estiion to the case of incomplete data.
Assuming the existence of un-observed latent variablesathorithm alternates between the ex-
pectation step and the maximization step, and finds maxiniketinood or maximum a posterior
estimates of the un-observed variables. In practice, tipaiiation is often carried out through it-
erating between learning a mixture of clusters of the fillathdand re-filling missing values using
cluster means, weighted by the posterior probability theluater generates the samples [11].



3 Solution

Our work investigates the Jaccard index matrix estimatimblem for incomplete data. Instead
of throwing away the un-observed features or imputing thesing values, a completely different
solution based on matrix calibration is designed.

3.1 Initial approximation

For a sampled;, denote b)Oj the set of features that are known to bedip and denote by, the
set of features that are known to be notdp LetO; = O;r UO; . If O; =F, A;isfully observed
without missing values; otherwisg,; is not fully observedvith missing values. The complement
of O, with respect taF’, denoted byD);, givesA;’s unknown features and missing values.

For two samplesi; and A; with missing values, we approximate their Jaccard index by:
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Here we assume that each sample has at least one observed.fétgs obvious thaﬂ% is equal to
the ground truth/;; if the samples are fully observed.

There exists an intervad, ;, 11;,] that the true vaIueT;‘j lies in, where
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The lower bound;; is obtained from the extreme case of setting the missingegdtua way that the
two sets have the fewest features in their intersectioneaAiaving the most features in their union.
On the contrary, the upper boupg; is obtained from the other extreme. When the samples are fully
observed, the interval shrinks to a single pdigt= w;; = J;;.

3.2 Matrix calibration

Denote byJ* = {.]Z-*j}ij:1 the true Jaccard index matrix for a set of data samples - -- , A,,},
we havel([2]:
Theorem 1. For a given set of data samples, its Jaccard index maffixs positive semi-definite.

For data samples with missing values, the matfkx = {JPJ}Z:l often loses positive semi-
definiteness. Nevertheless, it can be calibrated to enkarprbperty by seeking am x n matrix
J = {Jij};;—, to minimize:
2

Lo (J) = |7 = 7°|I%

subject to the constraints:
J>=0,and,l;; < Ji; <y (1<4,5<n)
whereJ > 0 requiresJ to be positive semi-definite anfl|| . denotes the Frobenius norm of a
. 2

matrix and||J||z = >, J7-
Let M,, be the set ol» x n symmetric matrices. The feasible region defined by the cainss,
denoted byR, is a nonempty closed and convex subsefff. Following standard results in op-

timization theory [[20[ B[ _10], the problem of minimizing, (J) is convex. Denote byPx the
projection ontaR. Its unique solution is given by the projection.f onto R: J, = P (J°).

For .J%, we have:



Theorem 2. ||J* — J,%Hi < ||7* = J°||%- The equality holds iff® € R, i.e.,J* = J§.

[

Proof. Define an inner product oi/,, that induces the Frobenius norm:
(X,Y) = trace (XTY) ,for X, Y € M,,.

Then

e = |1

1 =)~ (77 = T}

7% = TR+ 10 = TR — 207 = I8 0~ I

|77 = IG5 — 2 (T = %, 00 = J)

7 = 2
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The second " holds due to the Kolmogrov’s criterion, which states tha projection of/° onto
R, J%, is unique and characterized by:

Jg € R,and(J — Jp,J° — J}) < 0forall J € R.

The equality holds iff| J — J% || = 0 and(J* — J%, J* — J%) = 0,i.e.,J0 = J§, . O

2
[

This key observation shows that projectiiyonto the feasible regioR will produce an improved
estimate towardd™, although this ground truth matrix remains unknown to us.

3.3 Projection onto subsets

Based on the results in Sectibnl3.2, we are to seek a minirtizes (J) to improve the estimate
JO. Define two nonempty closed and convex subsets/pf

S ={X|X € M,, X =0}

and

ObviouslyR = S N T. Now our minimization problem becomes finding the projetid .J° onto

the intersection of two setS and 7" with respect to the Frobenius norm. This can be done by
studying the projection onto the two sets individually. DEnby Ps the projection ontd, and Pr

the projection ontdl". For projection ontdl’, a straightforward result based on the Kolmogrov's
criterion is:

Theorem 3. For a given matrixX € M,,, its projection ontdl’, X7 = Pr (X), is given by
Xig, iy < Xij < pij
(XT)ij = Eij7 if X7J < EU
wig, IF Xi5 > i

For projection ontad, a well known result is the followind [12, 16, 13]:

Theorem 4. For X € M, and its singular value decompositiof = UXV7T where¥X =
diag (M1, -+, \n), the projection ofX onto S is given by: X5 = Ps(X) = UX'VT where
¥ =diag (N}, -, A,) and

K2

i, ifA>0
0, otherwise

The matrixXs = Ps (X)) gives the positive semi-definite matrix that most closelgragimatesX
with respect to the Frobenius norm.



3.4 Dykstra'salgorithm

To study the orthogonal projection onto the intersectioaudfspaces, a classical result is von Neu-
mann’s alternating projection algorithm. L&t be a Hilbert space with two closed subspa€gs
andCs. The orthogonal projection onto the intersect@nn C, can be obtained by the product of
the two projections’c, P, when the two projections commut&d{, Pc, = Pc, Pc,). When they
do not commute, the work shows that for ea¢he H, the projection ofr® onto the intersection
can be obtained by the limit point of a sequence of projestiomto each subspace respectively:
limy, 00 (P, Py )* (2°) = Poyne, (2°). The algorithm generalizes to any finite number of sub-
spaces and projections onto them.

Unfortunately, different from the application in [19], imoproblem bothS and" are not subspaces
but subsets, and von Neumann'’s convergence result doepplgt &he limit point of the generated
seguence may converge to non-optimal points.

To handle the difficulty, Dykstra extended von Neumann'sknvand proposed an algorithm that
works with subsets[9]. Consider the casetdf= (;_, C; whereC' is nonempty and each; is

a closed and convex subsetff. Assume that for any € H, obtaining Pc (z) is hard, while
obtaining eactPq, () is easy. Starting from® € H, Dykstra’s algorithm produces two sequences,
the iterate§ =¥ } and the increment$I/ }. The two sequences are generated by:

koo k-1
Lo = Iy
koo k k-1
w = Po,(ei, - L)
koo ok k k—1
T = o — (%71 -1 )
wherei = 1,--- ,randk = 1,2, --. The initial values are given by? = 2%, I? = 0.

The sequence dfz} } converges to the optimal solution with a theoretical gueaif) 10].

Theorem 5. LetC1,---,C, be closed and convex subsets of a Hilbert spAceuch thatC' =
N Cr # ®. Foranyi = 1,---,r and anyz® € H, the sequenc¢z?} converges strongly to
k=1

zd = Po (;L'O) (i.e. ||:cf — x%“ — 0ask — o00).

The convergent rate of Dykstra’s algorithm for polyhedtissis linear([7], which coincides with
the convergence rate of von Neumann’s alternating prajectiethod.

3.5 An iterative method

Based on the discussion in Section| 3.4, we have a simple agimrshown in Algorithrall, that finds
the projection of an initial matrix’® onto the nonempty sét = S N 7. Here the projections onto
S andT are given by the two theorems in Section] 3.3. The algoritropsstvhen/* falls into the
feasible region or when a maximal number of iterations ideaed. For practical implementation,
a more robust stopping criterion can be adoptéd [1].

3.6 Related work

It is a known study in mathematical optimization field to fingh@sitive semi-definite matrix that

is closest to a given matrix. A number of methods have beepgsexd recently. The idea of alter-
nating projection method was firstly applied in a financigblagation [13]. The problem can also

be phrased as a semi-definite programming (SDP) model [kBparsolved via the interior-point

method. In the work of [21] and [4], the quasi-Newton methad the projected gradient method
to the Lagrangian dual of the original problem were appligdich reported faster results than the
SDP formulation. An even faster Newton’s method was deetlap [22] by investigating the dual

problem, which is unconstrained with a twice continuousffiedentiable objective function and has
a quadratically convergent solution.



Algorithm 1 Projection ontaR = SNT
Require: Initial matrix .J°

k=0
J9 = J°
Igzo
=0

while NOT CONVERGENTdo
S = P (U 1)
I = 5P (- 1)
I = P (757 1)
I = I - (75 1)
k=k+1

end while

return J* = Jk

4 Evaluation

To evaluate the performance of the proposed method, fowwhmeark datasets were used in our
experiments.

e MNIST: a grayscale image database of handwritten digits (“0” t§.“Bfter binarization,
each image is represented a&d-dimensional 0-1 vector.

e USPS another grayscale image database of handwritten digifter Ainarization, each
image is represented a256-dimensional 0-1 vector.

¢ PROTEIN a bioinformatics database with three classes of instarie&sh instance is rep-
resented as a spar3&7-dimensional 0-1 vector.

o WEBSPAMa dataset with both spam and non-spam web pages. Each pagessented
as a 0-1 vector. The data are highly sparse. On average oo lras about, 000 non-zero
values out of more thait million features.

Our experiments have two objectives. One is to verify theaiffeness of the proposed method in
estimating the Jaccard index matrix by measuring the diivaf the calibrated matrix from the
ground truth in Frobenius norm. The other is to evaluate gréopmance of the calibrated matrix in
general learning applications. The comparison is madenagtiie popular imputation approaches
listed in Sectiof 2]2, including theero, kNN andEM [] approaches. (As thaedian approach gave
very similar performance as ttzer o approach, its results were not reported separately.)

4.1 Jaccard index matrix estimation

The experiment was carried out under various settings. &ohn eéataset, we experimented with
1,000 and 10,000 samples respectively. For each sample, different portfimsn 10% to 90%)

of feature values were marked as missing, which was assumnleel ‘tmissing at random” and all
features had the same probability of being marked.

As mentioned in Sectidnl 3, for the proposed calibration apgin, an initial Jaccard index matrix
was firstly built based on the incomplete data. Then the matsais calibrated to meet the positive
semi-definite requirement and the lower and upper boundsrezgent. While for the imputation
approaches, the Jaccard index matrix was calculated lgifemin the imputed data.

Note that for th&kNN approach, we iterated differehfrom 1 to 5 and the best result was collected,
which actually overestimated its performance. Under scettengs, the results of tHeM approach
were not available due to its prohibitive computationaliiegment to our platform.

The results are presented through the comparison of meanesdaviations from the ground truth
of the Jaccard index matrix*. For ann x n estimated matrix/’, its mean square deviation from

Ytp://ftp.cs.toronto.edu/pub/zoubin/old/EMcode.tar.Z



(a) MNIST (b) USPS (c) PROTEIN (d) WEBSPAM

(e) MNIST (f) USPS (g) PROTEIN (h) WEBSPAM

Figure 1. Mean square deviations from the ground truth octverark datasets by different methods.
Horizontal: percentages of observed values (from 10% to)9®&tical: mean square deviations
in log-scale. (a)-(d)1, 000 samples; (e)-(f)10, 000 samples. (For better visualization effect of the
results shown in color, the reader is referred to the sofy ofphis paper.)

J* is defined as the square Frobenius distance between the tisicesadivided by the number of

elements, i.e; M In addition to the comparison with the popular approactiesmean
square deviation between the un-calibrated matfixand.J*, shown asNO_CALIBRATION, is
also reported as a baseline.

Figureld shows the results. It can be seen that the calibmaérices reported the smallest derivation
from the ground truth in nearly all experiments. The improeat is especially significant when the
ratio of observed features is low (the missing ratio is hidgh)s guaranteed to be no worse than the
un-calibrated matrix. As evidenced in the results, fortadl imputation approaches, there is no such
a guarantee.

4.2 Supervised learning

Knowing the improved results in reducing the deviation fribi@ ground truth matrix, we would like
to further investigate whether this improvement indeedefienpractical applications, specifically
in supervised learning.

We applied the calibrated results in nearest neighbor ifilzestion tasks. Given a training set of
labeled samples, we tried to predict the labels of the sasripl¢he testing set. For each testing
sample, its label was determined by the label of the samplleariraining set that had the largest
Jaccard index value with it.

Similarly the experiment was carried out with000,/10, 000 samples and different portions of miss-

ing values froml0% to 90% respectively. In each ru8p% of the samples were randomly chosen as
the training set and the remainih@% were used as the testing set. The mean and standard deviation
of the classification errors ih, 000 runs were reported. As a reference, the results from thengrou
truth matrix.J*, shown as~ULLY _OBSERVED, were also included.

Figure[2 shows the results. Again the matrix calibrationhodtreported evidently improved results
over the imputation approaches in most experiments. Theowement verified the benefits brought
by the reduced deviation from the true Jaccard index madrid, therefore justified the usefulness
of the proposed method in learning applications.



(c) PROTEIN (d) WEBSPAM

(e) MNIST (f) USPS (g) PROTEIN (h) WEBSPAM

Figure 2: Classification errors on benchmark datasets Iigrdift methods. Horizontal: percentage
of observed values (from 10% to 90%); Vertical: classifmaterrors. (a)-(d)1, 000 samples; (e)-
(f): 10,000 samples. (For better visualization effect of the resul@ashin color, the reader is
referred to the soft copy of this paper.)

5 Discussion and conclusion

The Jaccard index measures the pairwise similarity betwagnsamples, which is routinely used
in real applications. Unfortunately in practice, it is niivial to estimate the Jaccard index matrix
for incomplete data samples. This paper investigates thiglgm, and proposes a matrix calibration
approach in a way that is completely different from the éxgstmethods. Instead of throwing
away the unknown features or imputing the missing values ptloposed approach calibrates any
approximate Jaccard index matrix by ensuring the positveiglefinite requirement on the matrix.
Itis theoretically shown and empirically verified that thgpeoach indeed brings about improvement
in practical problems.

One point that is not particularly addressed in this pap#réscomputational complexity issue. We
adopted a simple alternating projection procedure bas&d/&stra’s algorithm. The computational
complexity of the algorithm heavily depends on the suceessiatrix decompositions. It is ex-
pensive when the size of the matrix becomes large. CalityyatiJaccard index matrix fdr, 000
samples can be finished in seconds of time on our platformevealibrating a matrix for.0, 000
samples quickly increases to more than an hour. Furthestigagions for faster solutions are thus
necessary for scalability.

Actually, there is a simple divide-and-conquer heuristicélibrate a large matrix. Firstly divide

the matrix into small sub-matrices. Then calibrate eachreabyix to meet the constraints. Finally

merge the results. Although the heuristic may not give thmag result, it also guarantees to
produce a matrix better than or identical to the un-caldmtanatrix. The heuristic runs with high

parallel efficiency and easily scales to very large matridése detailed discussion is omitted here
due to the space limit.
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