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Abstract

We consider Empirical Risk Minimization (ERM) in the context of stochastic op-
timization with exp-concave and smooth losses—a general optimization frame-
work that captures several important learning problems including linear and lo-
gistic regression, learning SVMs with the squared hinge-loss, portfolio selection
and more. In this setting, we establish the first evidence that ERM is able to at-
tain fast generalization rates, and show that the expected loss of the ERM solution
in d dimensions converges to the optimal expected loss in a rate of d/n. This
rate matches existing lower bounds up to constants and improves by a log n factor
upon the state-of-the-art, which is only known to be attained by an online-to-batch
conversion of computationally expensive online algorithms.

1 Introduction

Statistical learning and stochastic optimization with exp-concave loss functions captures several
fundamental problems in statistical machine learning, which include linear regression, logistic re-
gression, learning support-vector machines (SVMs) with the squared hinge loss, and portfolio se-
lection, amongst others. Exp-concave functions constitute a rich class of convex functions, which is
substantially richer than its more familiar subclass of strongly convex functions.

Similarly to their strongly-convex counterparts, it is well-known that exp-concave loss functions
are amenable to fast generalization rates. Specifically, a standard online-to-batch conversion [6]
of either the Online Newton Step algorithm [8] or exponential weighting schemes [5, 8] in d di-
mensions gives rise to convergence rate of d/n, as opposed to the standard 1/

√
n rate of generic

(Lipschitz) stochastic convex optimization. Unfortunately, the latter online methods are highly in-
efficient computationally-wise; e.g., the runtime complexity of the Online Newton Step algorithm
scales as d4 with the dimension of the problem, even in very simple optimization scenarios [13].

An alternative and widely-used learning paradigm is that of Empirical Risk Minimization (ERM),
which is often regarded as the strategy of choice due to its generality and its statistical efficiency. In
this scheme, a sample of training instances is drawn from the underlying data distribution, and the
minimizer of the sample average (or the regularized sample average) is computed. As opposed to
methods based on online-to-batch conversions, the ERM approach enables the use of any optimiza-
tion procedure of choice and does not restrict one to use a specific online algorithm. Furthermore,
the ERM solution often enjoys several distribution-dependent generalization bounds in conjunction,
and thus is able to obliviously adapt to the properties of the underlying data distribution.

In the context of exp-concave functions, however, nothing is known about the generalization abilities
of ERM besides the standard 1/

√
n convergence rate that applies to any convex losses. Surprisingly,

it appears that even in the specific and extensively-studied case of linear regression with the squared
loss, the state of affairs remains unsettled: this important case was recently addressed by Shamir
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[19], who proved a Ω(d/n) lower bound on the convergence rate of any algorithm, and conjectured
that the rate of an ERM approach should match this lower bound.

In this paper, we explore the convergence rate of ERM for stochastic exp-concave optimization.
We show that when the exp-concave loss functions are also smooth, a slightly-regularized ERM
approach yields a convergence rate of O(d/n), which matches the lower bound of Shamir [19] up
to constants. In fact, our result shows for ERM a generalization rate tighter than the state-of-the-art
obtained by the Online Newton Step algorithm, improving upon the latter by a log n factor. Even in
the specific case of linear regression with the squared loss, our result improves by a log(n/d) factor
upon the best known fast rates provided by the Vovk-Azoury-Warmuth algorithm [3, 22].

Our results open an avenue for potential improvements to the runtime complexity of exp-concave
stochastic optimization, by permitting the use of accelerated methods for large-scale regularized
loss minimization. The latter has been the topic of an extensive research effort in recent years, and
numerous highly-efficient methods have been developed; see, e.g., Johnson and Zhang [10], Shalev-
Shwartz and Zhang [16, 17] and the references therein.

On the technical side, our convergence analysis relies on stability arguments introduced by Bousquet
and Elisseeff [4]. We prove that the expected loss of the regularized ERM solution does not change
significantly when a single instance, picked uniformly at random from the training sample, is dis-
carded. Then, the technique of Bousquet and Elisseeff [4] allows us to translate this average stability
property into a generalization guarantee. We remark that in all previous stability analyses that we
are aware of, stability was shown to hold uniformly over all discarded training intances, either with
probability one [4, 16] or in expectation [20]; in contrast, in the case of exp-concave functions it is
crucial to look at the average stability.

In order to bound the average stability of ERM, we make use of a localized notion of strong con-
vexity, defined with respect to a local norm at a certain point in the optimization domain. Roughly
speaking, we show that when looking at the right norm, which is determined by the local properties
of the empirical risk at the right point, the minimizer of the empirical risk becomes stable. This
part of our analysis is inspired by recent analysis techniques of regularization-based online learning
algorithms [1], that use local norms to study the regret performance of online linear optimization
algorithms.

1.1 Related Work

The study of exp-concave loss functions was initiated in the online learning community by Kivinen
and Warmuth [12], who considered the problem of prediction with expert advice with exp-concave
losses. Later, Hazan et al. [8] considered a more general framework that allows for a continuous
decision set, and proposed the Online Newton Step (ONS) algorithm that attains a regret bound that
grows logarithmically with the number of optimization rounds. Mahdavi et al. [15] considered the
ONS algorithm in the statistical setting, and showed how it can be used to establish generalization
bounds that hold with high probability, while still keeping the fast 1/n rate.

Fast convergence rates in stochastic optimization are known to be achievable under various condi-
tions. Bousquet and Elisseeff [4] and Shalev-Shwartz et al. [18] have shown, via a uniform stability
argument, that ERM guarantees a convergence rate of 1/n for strongly convex functions. Sridharan
et al. [21] proved a similar result, albeit using the notion of localized Rademacher complexity. For
the case of smooth and non-negative losses, Srebro et al. [20] established a 1/n rate in low-noise
conditions, i.e., when the expected loss of the best hypothesis is of order 1/n. For further discussion
of fast rates in stochastic optimization and learning, see [20] and the references therein.

2 Setup and Main Results

We consider the problem of minimizing a stochastic objective
F (w) = E[f(w,Z)] (1)

over a closed and convex domain W ⊆ Rd in d-dimensional Euclidean space. Here, the expec-
tation is taken with respect to a random variable Z distributed according to an unknown distri-
bution over a parameter space Z . Given a budget of n samples z1, . . . , zn of the random vari-
able Z, we are required to produce an estimate ŵ ∈ W whose expected excess loss, defined by
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E[F (ŵ)]−minw∈W F (w), is small. (Here, the expectation is with respect the randomization of the
training set z1, . . . , zn used to produce ŵ.)

We make the following assumptions over the loss function f . First, we assume that for any fixed
parameter z ∈ Z , the function f(·, z) is α-exp-concave over the domainW for some α > 0, namely,
that the function exp (−αf(·, z)) is concave overW . We will also assume that f(·, z) is β-smooth
over W with respect to Euclidean norm ‖ · ‖2, which means that its gradient is β-Lipschitz with
respect to the same norm:

∀ w,w′ ∈ W , ‖∇f(w, z)−∇f(w′, z)‖2 ≤ β‖w − w′‖2 . (2)

In particular, this property implies that f(·, z) is differentiable. For simplicity, and without loss of
generality, we assume β ≥ 1. Finally, we assume that f(·, z) is bounded overW , in the sense that
|f(w, z)− f(w′, z)| ≤ C for all w,w′ ∈ W for some C > 0.

In this paper, we analyze a regularized Empirical Risk Minimization (ERM) procedure for optimiz-
ing the stochastic objective in Eq. (1), that based on the sample z1, . . . , zn computes

ŵ = arg min
w∈W

F̂ (w) , (3)

where

F̂ (w) =
1

n

n∑
i=1

f(w, zi) +
1

n
R(w) . (4)

The function R : W 7→ R serves as a regularizer, which is assumed to be 1-strongly-convex with
respect to the Euclidean norm; for instance, one can simply choose R(w) = 1

2‖w‖
2
2. The strong

convexity of R implies in particular that F̂ is also strongly convex, which ensures that the optimizer
ŵ is unique. For our bounds, we will assume that |R(w)−R(w′)| ≤ B for all w,w′ ∈ W for some
constant B > 0.

Our main result, which we now present, establishes a fast 1/n convergence rate for the expected
excess loss of the ERM estimate ŵ given in Eq. (3).

Theorem 1. Let f :W×Z 7→ R be a loss function defined over a closed and convex domainW ⊆
Rd, which is α-exp-concave, β-smooth and B-bounded with respect to its first argument. Let R :
W 7→ R be a 1-strongly-convex and B-bounded regularization function. Then, for the regularized
ERM estimate ŵ defined in Eqs. (3) and (4) based on an i.i.d. sample z1, . . . , zn, the expected excess
loss is bounded as

E[F (ŵ)]− min
w∈W

F (w) ≤ 24βd

αn
+

100Cd

n
+
B

n
= O

(
d

n

)
.

In other words, the theorem states that for ensuring an expected excess loss of at most ε, a sample
of size n = O(d/ε) suffices. This result improves upon the best known fast convergence rates for
exp-concave functions by a O(log n) factor, and matches the lower bound of Shamir [19] for the
special case where the loss function is the squared loss. For this particular case, our result affirms
the conjecture of Shamir [19] regarding the sample complexity of ERM for the squared loss; see
Section 2.1 below for details.

It is important to note that Theorem 1 establishes a fast convergence rate with respect to the actual
expected loss F itself, and not for a regularized version thereof (and in particular, not with respect
to the expectation of F̂ ). Notably, the magnitude of the regularization we use is only O(1/n), as
opposed to the O(1/

√
n) regularization used in standard regularized loss minimization methods

(that can only give rise to a traditional O(1/
√
n) rate).

2.1 Results for the Squared Loss

In this section we focus on the important special case where the loss function f is the squared loss,
namely, f(w;x, y) = 1

2 (w ·x− y)2 where x ∈ Rd is an instance vector and y ∈ R is a target value.
This case, that was extensively studied in the past, was recently addressed by Shamir [19] who gave
lower bounds on the sample complexity of any learning algorithm under mild assumptions.
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Shamir [19] analyzed learning with the squared loss in a setting where the domain is W = {w ∈
Rd : ‖w‖2 ≤ B} for some constant B > 0, and the parameters distribution is supported over
{x ∈ Rd : ‖x‖2 ≤ 1} × {y ∈ R : |y| ≤ B}. It is not hard to verify that in this setup, for the
squared loss we can take β = 1, α = 4B2 and C = 2B2. Furthermore, if we choose the standard
regularizerR(w) = 1

2‖w‖
2
2, we have |R(w)−R(w′)| ≤ 1

2B
2 for all w,w′ ∈ W . As a consequence,

Theorem 1 implies that the expected excess loss of the regularized ERM estimator ŵ we defined in
Eq. (3) is bounded by O(B2d/n).

On the other hand, standard uniform convergence results for generalized linear functions [e.g., 11]
show that, under the same conditions, ERM also enjoys an upper bound of O(B2/

√
n) over its

expected excess risk. Overall, we conclude:
Corollary 2. For the squared loss f(w;x, y) = 1

2 (w ·x − y)2 over the domainW = {w ∈ Rd :

‖w‖2 ≤ B} with Z = {x ∈ Rd : ‖x‖2 ≤ 1} × {y ∈ R : |y| ≤ B}, the regularized ERM
estimator ŵ defined in Eqs. (3) and (4) based on an i.i.d. sample of n instances has

E[F (ŵ)]− min
w∈W

F (w) = O

(
min

{
B2d

n
,
B2

√
n

})
.

This result slightly improves, by a log(n/d) factor, upon the bound conjectured by Shamir [19] for
the ERM estimator, and matches the lower bound proved therein up to constants.1 Previous fast-rate
results for ERM that we are aware of either included excess log factors [2] or were proven under
additional distributional assumptions [14, 9]; see also the discussion in [19]. We remark that Shamir
conjectures this bound for ERM without any regularization. For the specific case of the squared loss,
it is indeed possible to obtain the same rates without regularizing; we defer details to the full version
of the paper. However, in practice, regularization has several additional benefits: it renders the ERM
optimization problem well-posed (i.e., ensures that the underlying matrix that needs to be inverted
is well-conditioned), and guarantees it has a unique minimizer.

3 Proof of Theorem 1

Our proof of Theorem 1 proceeds as follows. First, we relate the expected excess risk of the ERM
estimator ŵ to its average leave-one-out stability [4]. Then, we bound this stability in terms of
certain local properties of the empirical risk at the point ŵ. To introduce the average stability notion
we study, we first define for each i = 1, . . . , n the following empirical leave-one-out risk:

F̂ i(w) =
1

n

∑
j 6=i

f(w, zj) +
1

n
R(w) (i = 1, . . . , n) .

Namely, F̂ i is the regularized empirical risk corresponding to the sample obtained by discard-
ing the instance zi. Then, for each i we let ŵi = arg minw∈W F̂ i(w) be the ERM estimator
corresponding to F̂ i. The average leave-one-out stability of ŵ is then defined as the quantity
1
n

∑n
i=1(f(ŵi, zi)− f(ŵ, zi)).

Intuitively, the average leave-one-out stability serves as an unbiased estimator of the amount of
change in the expected loss of the ERM estimator when one of the instances z1, . . . , zn, chosen
uniformly at random, is removed from the training sample. We note that looking at the average
is crucial for us, and the stronger condition of (expected) uniform stability does not hold for exp-
concave functions. For further discussion of the various stability notions, refer to Bousquet and
Elisseeff [4].

Our main step in proving Theorem 1 involves bounding the average leave-one-out stability of ŵ
defined in Eq. (3), which is the purpose of the next theorem.
Theorem 3 (average leave-one-out stability). For any z1, . . . , zn ∈ Z and for ŵ1, . . . , ŵn and ŵ as
defined above, we have

1

n

n∑
i=1

(
f(ŵi, zi)− f(ŵ, zi)

)
≤ 24βd

αn
+

100Cd

n
.

1We remark that Shamir’s result assumes two different bounds over the magnitude of the predictors w and
the target values y, while here we assume both are bounded by the same constant B. We did not attempt to
capture this refined dependence on the two different parameters.
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Before proving this theorem, we first show how it can be used to obtain our main theorem. The proof
follows arguments similar to those of Bousquet and Elisseeff [4] and Shalev-Shwartz et al. [18].

Proof of Theorem 1. To obtain the stated result, it is enough to upper bound the expected excess loss
of ŵn, which is the minimizer of the regularized empirical risk over the i.i.d. sample {z1, . . . , zn−1}.
To this end, fix an arbitrary w? ∈ W . We first write

F (w?) +
1

n
R(w?) = E[F̂ (w?)] ≥ E[F̂ (ŵ)] ,

which holds true since ŵ is the minimizer of F̂ overW . Hence,

E[F (ŵn)]− F (w?) ≤ E[F (ŵn)− F̂ (ŵ)] +
1

n
R(w?) . (5)

Next, notice that the random variables ŵ1, . . . , ŵn have exactly the same distribution: each is the
output of regularized ERM on an i.i.d. sample of n− 1 examples. Also, notice that ŵi, which is the
minimizer of the sample obtained by discarding the i’th example, is independent of zi. Thus, we
have

E[F (ŵn)] =
1

n

n∑
i=1

E[F (ŵi)] =
1

n

n∑
i=1

E[f(ŵi, zi)] .

Furthermore, we can write

E[F̂ (ŵ)] =
1

n

n∑
i=1

E[f(ŵ, zi)] +
1

n
E[R(ŵ)] .

Plugging these expressions into Eq. (5) gives a bound over the expected excess loss of ŵn in terms
of the average stability:

E[F (ŵn)]− F (w?) ≤ 1

n

n∑
i=1

E[f(ŵi, zi)− f(ŵ, zi)] +
1

n
E[R(w?)−R(ŵ)] .

Using Theorem 3 for bounding average stability term on the right-hand side, and our assumption
that supw,w′∈W |R(w) − R(w′)| ≤ B to bound the second term, we obtain the stated bound over
the expected excess loss of ŵn.

The remainder of the section is devoted to the proof of Theorem 3. Before we begin with the proof
of the theorem itself, we first present a useful tool for analyzing the stability of minimizers of convex
functions, which we later apply to the empirical leave-one-out risks.

3.1 Local Strong Convexity and Stability

Our stability analysis for exp-concave functions is inspired by recent analysis techniques of
regularization-based online learning algorithms, that make use of strong convexity with respect to
local norms [1]. The crucial strong-convexity property is summarized in the following definition.

Definition 4 (Local strong convexity). We say that a function g : K 7→ R is locally σ-strongly-
convex over a domain K ⊆ Rd at x with respect to a norm ‖·‖, if

∀ y ∈ K , g(y) ≥ g(x) +∇g(x) ·(y − x) +
σ

2
‖y − x‖2 .

In words, a function is locally strongly-convex at x if it can be lower bounded (globally over its entire
domain) by a quadratic tangent to the function at x; the nature of the quadratic term in this lower
bound is determined by a choice of a local norm, which is typically adapted to the local properties
of the function at the point x.

With the above definition, we can now prove the following stability result for optima of convex
functions, that underlies our stability analysis for exp-concave functions.
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Lemma 5. Let g1, g2 : K 7→ R be two convex functions defined over a closed and convex domain
K ⊆ Rd, and let x1 ∈ arg minx∈K g1(x) and x2 ∈ arg minx∈K g2(x). Assume that g2 is locally
σ-strongly-convex at x1 with respect to a norm ‖·‖. Then, for h = g2 − g1 we have

‖x2 − x1‖ ≤
2

σ
‖∇h(x1)‖∗ .

Furthermore, if h is convex then

0 ≤ h(x1)− h(x2) ≤ 2

σ

(
‖∇h(x1)‖∗

)2
.

Proof. The local strong convexity of g2 at x1 implies

∇g2(x1) ·(x1 − x2) ≥ g2(x1)− g2(x2) +
σ

2
‖x2 − x1‖2 .

Notice that g2(x1)− g2(x2) ≥ 0, since x2 is a minimizer of g2. Also, since x1 is a minimizer of g1,
first-order optimality conditions imply that∇g1(x1)·(x1 − x2) ≤ 0, whence

∇g2(x1)·(x1 − x2) = ∇g1(x1) ·(x1 − x2) +∇h(x1)·(x1 − x2) ≤ ∇h(x1)·(x1 − x2) .

Combining the observations yields
σ

2
‖x2 − x1‖2 ≤ ∇h(x1)·(x1 − x2) ≤ ‖∇h(x1)‖∗ ·‖x1 − x2‖ ,

where we have used Hölder’s inequality in the last inequality. This gives the first claim of the lemma.
To obtain the second claim, we first observe that

g1(x2) + h(x2) ≤ g1(x1) + h(x1) ≤ g1(x2) + h(x1)

where we used the fact that x2 is the minimizer of g2 = g1 + h for the first inequality, and the fact
that x1 is the minimizer of g1 for the second. This establishes the lower bound 0 ≤ h(x1)− h(x2).
For the upper bound, we use the assumed convexity of h to write

h(x1)− h(x2) ≤ ∇h(x1) ·(x1 − x2) ≤ ‖∇h(x1)‖∗ ·‖x1 − x2‖ ≤
2

σ

(
‖∇h(x1)‖∗

)2
,

where the second inequality follows from Hölder’s inequality, and the final one from the first claim
of the lemma.

3.2 Average Stability Analysis

With Lemma 5 at hand, we now turn to prove Theorem 3. First, a few definitions are needed. For
brevity, we henceforth denote fi(·) = f(·, zi) for all i. We let hi = ∇fi(ŵ) be the gradient of fi
at the point ŵ defined in Eq. (3), and let H = 1

σ Id +
∑n
i=1 hih

T
i and Hi = 1

σ Id +
∑
j 6=i hjh

T
j for

all i, where σ = 1
2 min{ 1

4C , α}. Finally, we will use ‖·‖M to denote the norm induced by a positive
definite matrix M , i.e., ‖x‖M =

√
xTMx. In this case, the dual norm ‖x‖∗M induced by M simply

equals ‖x‖M−1 =
√
xTM−1x.

In order to obtain an upper bound over the average stability, we first bound each of the individual
stability expressions fi(ŵi)−fi(ŵ) in terms of a certain norm of the gradient hi of the corresponding
function fi. As the proof below reveals, this norm is the local norm at ŵ with respect to which the
leave-one-out risk F̂ i is locally strongly convex.

Lemma 6. For all i = 1, . . . , n it holds that

fi(ŵi)− fi(ŵ) ≤ 6β

σ

(
‖hi‖∗Hi

)2
.

Notice that the expression on the right-hand side might be quite large for a particular function fi;
indeed, uniform stability does not hold in our case. However, as we show below, the average of these
expressions is small. The proof of Lemma 6 relies on Lemma 5 above and the following property of
exp-concave functions, established by Hazan et al. [8].
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Lemma 7 (Hazan et al. [8], Lemma 3). Let f : K 7→ R be an α-exp-concave function over a convex
domain K ⊆ Rd such that |f(x)− f(y)| ≤ C for any x, y ∈ K. Then for any σ ≤ 1

2 min{ 1
4C , α} it

holds that

∀ x, y ∈ K , f(y) ≥ f(x) +∇f(x) ·(y − x) +
σ

2

(
∇f(x) ·(y − x)

)2
. (6)

Proof of Lemma 6. We apply Lemma 5 with g1 = F̂ and g2 = F̂ i (so that h = − 1
nfi). We should

first verify that F̂ i is indeed (σ/n)-strongly-convex at ŵ with respect to the norm ‖·‖Hi
. Since each

fi is α-exp-concave, Lemma 7 shows that for all w ∈ W ,

fi(w) ≥ fi(ŵ) +∇fi(ŵ)·(w − ŵ) +
σ

2

(
hi ·(w − ŵ)

)2
, (7)

with our choice of σ = 1
2 min{ 1

4C , α}. Also, the strong convexity of the regularizer R implies that

R(w) ≥ R(ŵ) +∇R(ŵ) ·(w − ŵ) +
1

2
‖w − ŵ‖22 . (8)

Summing Eq. (7) over all j 6= i with Eq. (8) and dividing through by n gives

F̂ i(w) ≥ F̂ i(ŵ) +∇F̂ i(ŵ) ·(w − ŵ) +
σ

2n

∑
j 6=i

(
hi ·(w − ŵ)

)2
+

1

2n
‖w − ŵ‖22

= F̂ i(ŵ) +∇F̂ i(ŵ) ·(w − ŵ) +
σ

2n
‖w − ŵ‖2Hi

,

which establishes the strong convexity.

Now, applying Lemma 5 gives

‖ŵi − ŵ‖Hi
≤ 2n

σ
‖∇h(ŵ)‖∗Hi

=
2

σ
‖hi‖∗Hi

. (9)

On the other hand, since fi is convex, we have

fi(ŵi)− fi(ŵ) ≤ ∇fi(ŵi) ·(ŵi − ŵ)

= ∇fi(ŵ) ·(ŵi − ŵ) +
(
∇fi(ŵi)−∇fi(ŵ)

)
·(ŵi − ŵ) . (10)

The first term can be bounded using Hölder’s inequality and Eq. (9) as

∇fi(ŵi)·(ŵi − ŵ) = hi ·(ŵi − ŵ) ≤ ‖hi‖∗Hi
·‖ŵi − ŵ‖Hi

≤ 2

σ

(
‖hi‖∗Hi

)2
.

Also, since fi is β-smooth (with respect to the Euclidean norm), we can bound the second term in
Eq. (10) as follows:(

∇fi(ŵi)−∇fi(ŵ)
)
·(ŵi − ŵ) ≤ ‖∇fi(ŵi)−∇fi(ŵ)‖2 ·‖ŵi − ŵ‖2 ≤ β‖ŵi − ŵ‖22 ,

and since Hi � (1/σ)Id, we can further bound using Eq. (9),

‖ŵi − ŵ‖22 ≤ σ‖ŵi − ŵ‖2Hi
≤ 4

σ

(
‖hi‖∗Hi

)2
.

Combining the bounds (and simplifying using our assumption β ≥ 1) gives the lemma.

Next, we bound a sum involving the local-norm terms introduced in Lemma 6.
Lemma 8. Let I = {i ∈ [n] : ‖hi‖∗H > 1

2}. Then |I| ≤ 2d, and we have∑
i/∈I

(
‖hi‖∗Hi

)2 ≤ 2d .

Proof. Denote ai = hTiH
−1hi for all i = 1, . . . , n. First, we claim that ai > 0 for all i, and∑

i ai ≤ d. The fact that ai > 0 is evident from H−1 being positive-definite. For the sum of the
ai’s, we write:

n∑
i=1

ai =

n∑
i=1

hTiH
−1hi =

n∑
i=1

tr(H−1hih
T
i ) ≤ tr(H−1H) = tr(Id) = d , (11)
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where we have used the linearity of the trace, and the fact that H �
∑n
i=1 hih

T
i .

Now, our claim that |I| ≤ 2d is evident: if ‖hi‖∗H > 1
2 for more than 2d terms, then the sum∑

i∈I ai =
∑
i∈I h

T
iH
−1hi must be larger than d, which is a contradiction to Eq. (11). To prove

our second claim, we first write Hi = H − hihTi and use the Sherman-Morrison identity [e.g., 7] to
obtain

H−1i = (H − hihTi )−1 = H−1 +
H−1hih

T
iH
−1

1− hTiH−1hi

for all i /∈ I. Note that for i /∈ I we have hTiH
−1hi < 1, so that the identity applies and the inverse

on the right-hand side is well defined. We therefore have:(
‖hi‖∗Hi

)2
= hTiH

−1
i hi = hTiH

−1hi +

(
hTiH

−1hi
)
2

1− hTiH−1hi
= ai +

a2i
1− ai

≤ 2ai ,

where the inequality follows from the fact that 1− ai ≥ ai for i /∈ I. Summing this inequality over
i /∈ I and recalling that the ai’s are nonnegative, we obtain∑

i/∈I

(
‖hi‖∗Hi

)2 ≤ 2
∑
i/∈I

ai ≤ 2

n∑
i=1

ai = 2d ,

which concludes the proof.

Theorem 3 is now obtained as an immediate consequence of our lemmas above.

Proof of Theorem 3. As a consequence of Lemmas 6 and 8, we have

1

n

∑
i∈I

(
fi(ŵi)− fi(ŵ)

)
≤ C|I|

n
≤ 2Cd

n
,

and

1

n

∑
i/∈I

(
fi(ŵi)− fi(ŵ)

)
≤ 6β

σn

∑
i/∈I

(
‖hi‖∗Hi

)2 ≤ 12βd

σn
.

Summing the inequalities and using 1
σ = 2 max{4C, 1

α} ≤ 2(4C + 1
α ) gives the result.

4 Conclusions and Open Problems

We have proved the first fast convergence rate for a regularized ERM procedure for exp-concave
loss functions. Our bounds match the existing lower bounds in the specific case of the squared loss
up to constants, and improve by a logarithmic factor upon the best known upper bounds achieved by
online methods.

Our stability analysis required us to assume smoothness of the loss functions, in addition to their
exp-concavity. We note, however, that the Online Newton Step algorithm of Hazan et al. [8] for
online exp-concave optimization does not require such an assumption. Even though most of the
popular exp-concave loss functions are also smooth, it would be interesting to understand whether
smoothness is indeed required for the convergence of the ERM estimator we study in the present
paper, or whether it is simply a limitation of our analysis.

Another interesting issue left open in our work is how to obtain bounds on the excess risk of ERM
that hold with high probability, and not only in expectation. Since the excess risk is non-negative,
one can always apply Markov’s inequality to obtain a bound that holds with probability 1 − δ but
scales linearly with 1/δ. Also, using standard concentration inequalities (or success amplification
techniques), we may also obtain high probability bounds that scale with

√
log(1/δ)/n, losing the

fast 1/n rate. We leave the problem of obtaining bounds that depends both linearly on 1/n and
logarithmically on 1/δ for future work.
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