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Abstract

We propose a new first-order optimization algorithm to solve high-dimensional
non-smooth composite minimization problems. Typical examples of such prob-
lems have an objective that decomposes into a non-smooth empirical risk part
and a non-smooth regularization penalty. The proposed algorithm, called Semi-
Proximal Mirror-Prox, leverages the saddle point representation of one part of the
objective while handling the other part of the objective via linear minimization
over the domain. The algorithm stands in contrast with more classical proximal
gradient algorithms with smoothing, which require the computation of proximal
operators at each iteration and can therefore be impractical for high-dimensional
problems. We establish the theoretical convergence rate of Semi-Proximal Mirror-
Prox, which exhibits the optimal complexity bounds, i.e. O(1/€?), for the number
of calls to linear minimization oracle. We present promising experimental results
showing the interest of the approach in comparison to competing methods.

1 Introduction

A wide range of machine learning and signal processing problems can be formulated as the mini-
mization of a composite objective:
min F(z) := f(z) + || Bz|| (1)
reX
where X is closed and convex, f is convex and can be either smooth, or nonsmooth yet enjoys
a particular structure. The term ||Bx|| defines a regularization penalty through a norm || - ||, and
2 — Bz alinear mapping on a closed convex set X.

In many situations, the objective function F' of interest enjoys a favorable structure, namely a so-
called saddle point representation [6} 11, [13]]:

Fl@) = max {(z, 4z) — ()} @

where Z is convex compact subset of a Euclidean space, and () is a convex function. Sec. Will
give several examples of such situations. Saddle point representations can then be leveraged to use
first-order optimization algorithms.

The simple first option to minimize F' is using the so-called Nesterov smoothing technique [19]
along with a proximal gradient algorithm [23]], assuming that the proximal operator associated with
X is computationally tractable and cheap to compute. However, this is certainly not the case when
considering problems with norms acting in the spectral domain of high-dimensional matrices, such
as the matrix nuclear-norm [12]] and structured extensions thereof [5, [2]. In the latter situation,
another option is to use a smoothing technique now with a conditional gradient or Frank-Wolfe
algorithm to minimize F', assuming that a a linear minimization oracle associated with X is cheaper
to compute than the proximal operator [6, [14,[24]]. Neither option takes advantage of the composite
structure of the objective (1)) or handles the case when the linear mapping B is nontrivial.



Contributions Our goal is to propose a new first-order optimization algorithm, called Semi-
Proximal Mirror-Prox, designed to solve the difficult non-smooth composite optimization prob-
lem (I)), which does not require the exact computation of proximal operators. Instead, the Semi-
Proximal Mirror-Prox relies upon i) Saddle point representability of f (a less restricted role than
Fenchel-type representation); ii) Linear minimization oracle associated with || - || in the domain
X. While the saddle point representability of f allows to cure the non-smoothness of f, the linear
minimization over the domain X allows to tackle the non-smooth regularization penalty || - ||. We
establish the theoretical convergence rate of Semi-Proximal Mirror-Prox, which exhibits the optimal
complexity bounds, i.e. O(1/€2), for the number of calls to linear minimization oracle. Furthermore,
Semi-Proximal Mirror-Prox generalizes previously proposed approaches and improves upon them
in special cases:

1. Case B = 0: Semi-Proximal Mirror-Prox does not require assumptions on favorable geom-
etry of dual domain Z or simplicity of ¢(-) in (2).

2. Case B = I. Semi-Proximal Mirror-Prox is competitive with previously proposed ap-
proaches [[15, [24] based on smoothing techniques.

3. Case of non-trivial 3: Semi-Proximal Mirror-Prox is the first proximal-free or conditional-
gradient-type optimization algorithm for (T).

Related work The Semi-Proximal Mirror-Prox algorithm belongs to the family of conditional
gradient algorithms, whose most basic instance is the Frank-Wolfe algorithm for constrained smooth
optimization using a linear minimization oracle; see [12, |1, |4]. Recently, in [6, [13], the authors
consider constrained non-smooth optimization when the domain Z has a “favorable geometry”,
i.e. the domain is amenable to proximal setups (favorable geometry), and establish a complexity
bound with O(1/€2) calls to the linear minimization oracle. Recently, in [13], a method called
conditional gradient sliding is proposed to solve similar problems, using a smoothing technique,
with a complexity bound in O(1/€?) for the calls to the linear minimization oracle (LMO) and
additionally a O(1/€) bound for the linear operator evaluations. Actually, this O(1/e?) bound for
the LMO complexity can be shown to be indeed optimal for conditional-gradient-type or LMO-
based algorithms, when solving generaﬂ non-smooth convex problems [14].

However, these previous approaches are appropriate for objective with a non-composite structure.
When applied to our problem (), the smoothing would be applied to the objective taken as a whole,
ignoring its composite structure. Conditional-gradient-type algorithms were recently proposed for
composite objectives [[7, 9] 26} 24} [16]], but cannot be applied for our problem. In [9]], f is smooth
and B is identity matrix, whereas in [24], f is non-smooth and B is also the identity matrix. The
proposed Semi-Proximal Mirror-Prox can be seen as a blend of the successful components resp. of
the Composite Conditional Gradient algorithm [9] and the Composite Mirror-Prox [11]], that enjoys
the optimal complexity bound O(1/¢2) on the total number of LMO calls, yet solves a broader class
of convex problems than previously considered.

2 Framework and assumptions

We present here our theoretical framework, which hinges upon a smooth convex-concave sad-
dle point reformulation of the norm-regularized non-smooth minimization (3). We shall use the
following notations throughout the paper. For a given norm || - ||, we define the dual norm as

Isll« = maxje <1 (s, z). Forany x € R™ ", |lzlz = ||z]|p = (L) X7y [oi]?) /2.
Problem We consider the composite minimization problem
Opt = mi B 3
pt=min f(z) + Bz G)
where X is a closed convex set in the Euclidean space E,; x — Bz is a linear mapping from X

to Y (D BX), where Y is a closed convex set in the Euclidean space E,. We make two important
assumptions on the function f and the norm ||- || defining the regularization penalty, explained below.

'Related research extended such approaches to stochastic or online settings [10} [l [T3]; such settings are
beyond the scope of this work.



Saddle Point Representation The non-smoothness of f can be challenging to tackle. However,
in many cases of interest, the function f enjoys a favorable structure that allows to tackle it with
smoothing techniques. We assume that f(z) is a non-smooth convex function given by

f(z) = max D(x, 2) (4)

where ®(z, z) is a smooth convex-concave function and Z is a convex and compact set in the Eu-
clidean space E,. Such representation was introduced and developed in [6, [11} [13], for the purpose
of non-smooth optimization. Saddle point representability can be interpreted as a general form of
the smoothing-favorable structure of non-smooth functions used in the Nesterov smoothing tech-
nique [19]]. Representations of this type are readily available for a wide family of “well-structured”
nonsmooth functions f (see Sec.[d]for examples ), and actually for all empirical risk functions with
convex loss in machine learning, up to our knowledge.

Composite Linear Minimization Oracle Proximal-gradient-type algorithms require the compu-
tation of a proximal operator at each iteration, i.e. minyey {1(|y[|3 + (n,y) + a||y||}. For several
cases of interest, described below, the computation of the proximal operator can be expensive or
intractable. A classical example is the nuclear norm, whose proximal operator boils down to sin-
gular value thresholding, therefore requiring a full singular value decomposition. In contrast to the
proximal operator, the linear minimization oracle can be much cheaper. The linear minimization
oracle (LMO) is a routine which, given an input o > 0 and nj € E,, returns a point

LMO(7, @) := argmin {(n,y) + ay||} )
yey

In the case of nuclear-norm, the LMO only requires the computation of the leading pair of singular
vectors, which is an order of magnitude faster in time-complexity.

Saddle Point Reformulation. The crux of our approach is a smooth convex-concave saddle point
reformulation of (3). After massaging the saddle-point reformulation, we consider the associated
variational inequality, which provides the sufficient and necessary condition for an optimal solution
to the saddle point problem [3} |4]. For any optimization problem with convex structure (including
convex minimization, convex-concave saddle point problem, convex Nash equilibrium), the corre-
sponding variational inequality is directly related to the accuracy certificate used to guarantee the
accuracy of a solution to the optimization problem; see Sec. 2.1 in [11] and [18]]. We shall present
then an algorithm to solve the variational inequality established below, that exploits its particular
structure.

Assuming that f admits a saddle point representation (4), we write (3] in epigraph form

Opt = min max {®(x,z)+7:y=Bz}.
P zeX,yeY,7>||y|| 2€Z { ( ) y }

where Y (D BX) is a convex set. We can approximate Opt by

Opt= m {®(x,2) + 7+ ply — Bz, w)}. ©)

in max
reX,yeY, 72|y z€Z,||w|2<1

For properly selected p > 0, one has 6p\t = Opt (see details in [[L1]). By introducing the variables
u := [z,y;z,w] and v := 7, the variational inequality associated with the above saddle point
problem is fully described by the domain

Xy = {zp=wv):zeXyeY,ze Z,|wl2<1,7 > |lyl|}
and the monotone vector field
F(zy = [u;v]) = [Fu(u); Fy]

where
x V. ®(z,2) — pBTw
_ Y _ pw )
Fu u = P - —VZ(I)(377Z) ) FU(U_T)_l'
w p(Bx —y)

In the next section, we present an efficient algorithm to solve this type of variational inequality,
which enjoys a particular structure; we call such an inequality semi-structured.



3 Semi-Proximal Mirror-Prox for Semi-structured Variational Inequalities

Semi-structured variational inequalities (Semi-VI) enjoy a particular mixed structure, that allows to
get the best of two worlds, namely the proximal setup (where the proximal operator can be com-
puted) and the LMO setup (where the linear minimization oracle can be computed). Basically, the
domain X is decomposed as a Cartesian product over two sets X = X7 x Xs, such that X; admits
a proximal-mapping while X5 admits a linear minimization oracle. We now describe the main the-
oretical and algorithmic components of the Semi-Proximal Mirror-Prox algorithm, resp. in Sec.[3.1]
and in Sec. and finally describe the overall algorithm in Sec.

3.1 Composite Mirror-Prox with Inexact Prox-mappings

We first present a new algorithm, which can be seen as an extension of the Composite Mirror Prox al-
gorithm, denoted CMP for brevity, that allows inexact computation of prox-mappings and can solve
a broad class of variational inequalites. The original Mirror Prox algorithm was introduced in [[17]
and was extended to composite settings in [11]] assuming exact computations of prox-mappings.

Structured Variational Inequalities. We consider the variational inequality VI( X, F):
Findz, € X : (F(z),z —2.) > 0,Vz € X
with domain X and operator F’ that satisfy the assumptions (A.1)—(A.4) below.

(A.1) Set X C E, x E, is closed convex and its projection PX = {u : x = [u;v] € X} C U,
where U is convex and closed, F,,, F,, are Euclidean spaces;

(A.2) The function w(:) : U — R is continuously differentiable and also 1-strongly convex w.r.t.
some nor [l - ||. This defines the Bregman distance V,,(u') = w(v') — w(u) — (W' (u), v’ —
u) > gl —ul®.

=3

(A.3) The operator F'(x = [u,v]) : X — E, x E, is monotone and of form F'(u,v) = [F,(u); F,)

with F,, € F, being a constant and F,(u) € F,, satisfying the condition

Vu,u/ € U : ||Fu(u) — Fy(u) |« < Llju —o'|| + M
for some L < oo, M < oc;

(A.4) The linear form (F,,,v) of [u;v] € E,, x E, is bounded from below on X and is coercive on
X w.rt. v: whenever [u';v'] € X, ¢t = 1,2, ... is a sequence such that {u’}?°, is bounded
and |[vt||2 — oo as t — oo, we have (F,, vt) — oo, t — oc.

The quality of an iterate, in the course of the algorithm, is measured through the so-called dual gap
function
evi(z| X, F) = sup (F(y),z —y) -
yeX

We give in Appendix A a refresher on dual gap functions, for the reader’s convenience. We shall
establish the complexity bounds in terms of this dual gap function for our algorithm, which directly
provides an accuracy certificate along the iterations. However, we first need to define what we mean
by an inexact prox-mapping.

e-Prox-mapping Inexact proximal mappings were recently considered in the context of acceler-
ated proximal gradient algorithms [25]]. The definition we give below is more general, allowing for
non-Euclidean proximal-mappings.

We introduce here the notion of e-prox-mapping for ¢ > 0. For £ = [;(] € E, X E, and z =
[u;v] € X, let us define the subset PS () of X as

Pr(&) ={7 = [u;0] € X : (n+w'(8) —w'(u), i — 5) + (¢, 0 —w) < e V[s;w] € X}.
When ¢ = 0, this reduces to the exact prox-mapping, in the usual setting, that is

Py (§) = Argmin {(n,s) + (¢, w) + Vu(s)} -
[s;w]eX

2There is a slight abuse of notation here. The norm here is not the same as the one in problem



When e > 0, this yields our definition of an inexact prox-mapping, with inexactness parameter e.
Note that for any € > 0, the set P5(§ = [n;vF,]) is well defined whenever v > 0. The Composite
Mirror Prox with inexact prox-mappings is outlined in Algorithm|I]

Algorithm 1 Composite Mirror Prox Algorithm (CMP) for VI( X, F")

Input: stepsizes v, > 0, inexactness ¢; > 0,t =1,2,...
Initialize 2! = [u!;v!] € X
fort=1,2,...,T do SN
y'i= (@501 € Po(ynE() = P (wlFu(u); Fy]) -
=Wt e PO (v F(y') = Po(w[Fu(uh); F,

end for )
_ o T -l
Output: Ty := [ar; 07] = (3,1 ) Dopeq WeY'

The proposed algorithm is a non-trivial extension of the Composite Mirror Prox with exact prox-
mappings, both from a theoretical and algorithmic point of views. We establish below the theoretical
convergence rate; see Appendix B for the proof.

Theorem 3.1. Assume that the sequence of step-sizes (y:) in the CMP algorithm satisfy
op =y (Fu (@) — Fy(u'),a" — ') — Var (u't) = Ve (@) <7 M?, t=1,2,...,T. (8)
Then, denoting ©[X] = SUP[yp)ex Var (u), for a sequence of inexact prox-mappings with inexact-
ness €; > 0, we have
O[X] + M2 42 + 251
GVI(ET’X; F) = sup <F<.’IJ),£’T _ .’17> S [ ]+ Zt:lfyt + Zt:lft.

9
zeX Z?:l e

Remarks. Note that the assumption on the sequence of step-sizes () is clearly satisfied when
v < (ﬂL) —1. When M = 0 (which is essentially the case for the problem described in Section ,
it suffices as long as 74 < L~!. When (¢;) is summable, we achieve the same O(1/T) convergence
rate as when there is no error. If (¢;) decays with a rate of O(1/t), then the overall convergence
is only affected by a log(T") factor. Convergence results on the sequence of projections of (Zr)
onto X; when F' stems from saddle point problem ming: ¢ x, sup,2¢x, ®(x!, x?) is established in
Appendix B.

The theoretical convergence rate established in Theorem [3.1]and Corollary B.1 generalizes the pre-
vious result established in Corollary 3.1 in [11] for CMP with exact prox-mappings. Indeed, when
exact prox-mappings are used, we recover the result of [L1]. When inexact prox-mappings are used,
the errors due to the inexactness of the prox-mappings accumulate and is reflected in (9) and (37).

3.2 Composite Conditional Gradient

We now turn to a variant of the composite conditional gradient algorithm, denoted CCG, tailored
for a particular class of problems, which we call smooth semi-linear problems. The composite
conditional gradient algorithm was first introduced in [9]] and also developed in [21]. We present an
extension here which turns to be well-suited for sub-problems that will be solved in Sec.[3.3]

Minimizing Smooth Semi-linear Functions. We consider the smooth semi-linear problem

min _ {¢" (u,v) = ¢(u) + (6,v) } (10)

r=[u;v]€X
represented by the pair (X; ¢ ™) such that the following assumptions are satisfied. We assume that

i) X C E, x E, is closed convex and its projection PX on F, belongs to U, where U is convex
and compact;

ii) ¢(u) : U — R is a convex continuously differentiable function, and there exist 1 < x < 2 and
Ly < oo such that

H(u) < 0(u) + (Vo(u),u’ ) + 2 — ul* Vu,uf € U a



iii) @ € F, is such that every linear function on E,, x FE, of the form
[u; 0] = (n,u) + (0, v) (12)

withn € E, attains its minimum on X at some point x[n] = [u[n]; v[n]]; we have at our disposal
a Composite Linear Minimization Oracle (LMO) which, given on input n € E,,, returns x[n).

Algorithm 2 Composite Conditional Gradient Algorithm CCG (X, ¢(-), 0;¢)

Input: accuracy ¢ > Oand v, =2/(t + 1),t =1,2,...

Initialize 2! = [u!;v!] € X

fort=1,2,...do
Compute 6; = (g;, ut — ul[gs]) + (0, 0" — v*[gs]), where g; = Vp(u');
if 6; < e then

Return z¥ = [u!; v!]
else
Find ztt1 = [u!T1;v!+1] € X such that ¢ F (2tH1) < ¢t (2! + v, (2t[ge] — 2Y))
end if
end for

The algorithm is outlined in Algorithm [2| Note that CCG works essentially as if there were no v-
component at all. The CCG algorithm enjoys a convergence rate in O(t*(“’l)) in the evaluations
of the function ¢, and the accuracy certificates (J;) enjoy the same rate O(t~(*~1)) as well.

Proposition 3.1. Denote D the ||-|
of iterates (z') of CCG satisfies

-diameter of U. When solving problems of type @) the sequence

2LoD* [ 2 "'
+(zt) —mingt(z) < 22 [ = t>2 13
o) et < g <t+1> e (1

In addition, the accuracy certificates (0;) satisfy
k—1
2

i < Fl — >

lréljrglt ds < O(1)LoD (t+ 1) ,t>2 (14)

3.3 Semi-Proximal Mirror-Prox for Semi-structured Variational Inequality

We now give the full description of a special class of variational inequalities, called semi-structured
variational inequalities. This family of problems encompasses both cases that we discussed so far
in Section[3.T]and[3.2] But most importantly, it also covers many other problems that do not fall into
these two regimes and in particular, our essential problem of interest (3).

Semi-structured Variational Inequalities. The class of semi-structured variational inequalities
allows to go beyond Assumptions (A.1) — (A.4), by assuming more structure. This structure is con-
sistent with what we call a semi-proximal setup, which encompasses both the regular proximal setup
and the regular linear minimization setup as special cases. Indeed, we consider variational inequality
VI(X, F) that satisfies, in addition to Assumptions (A.1) — (A.4), the following assumptions:

(S.1) Proximal setup for X: we assume that £, = E,, X E,,, B, = E,, X E,,, and U C
U x Uy, X = X7 x Xy with X; € Eui X Evi and P, X = {’U,z : [ui;vi] S Xl} cU;
for ¢ = 1,2, where U; is convex and closed, U, is convex and compact. We also assume that
w(u) = wi(ur) +wsz(uz) and [lu| = [Ju1]|g,, +[lu2l|g,,, Withws(-) : Uz — R continuously
differentiable such that

L
wa(uh) < walug) 4+ (Vws(ug), uy — ug) + ?0”7-‘/2 — Ug|

K i .
EHQ,VuQ,uQ € Us;

for a particular 1 < x < 2 and Ly < co. Furthermore, we assume that the || - |
of Us is bounded by some D > 0.

E,,-diameter

(S.2) Partition of F': the operator F' induced by the above partition of X; and X5 can be written as
F(z) = [Fy(u); F,] with Fy, (u) = [Fy, (u1,u2); Fu, (w1, u2)], Fy = [Foy; Fo,]-



(S.3) Proximal mapping on X;: we assume that for any 7 € E,, and o > 0, we have at our

disposal easy-to-compute prox-mappings of the form,
Prox,, (m, ) := argmin  {wi(u1) + (N, u1) + a{Fy,,v1)}.
z1=[u1;v1]€X1

(S.4) Linear minimization oracle for Xo: we assume that we we have at our disposal Composite
Linear Minimization Oracle (LMO), which given any input 72 € E,, and a > 0, returns an
optimal solution to the minimization problem with linear form, that is,

LMO(n2, ) :=  argmin  {{(n2, u2) + a(Fy,,v2)}.

za=[u2;v2]€ X2

Semi-proximal setup We denote such problems as Semi-VI(X, F'). On the one hand, when Us is
a singleton, we get the full-proximal setup. On the other hand, when Uj is a singleton, we get the full
linear-minimization-oracle setup (full LMO setup). The semi-proximal setup allows to cover both
setups and all the ones in between as well.

The Semi-Proximal Mirror-Prox algorithm. We finally present here our main contribution, the
Semi-Proximal Mirror-Prox algorithm, which solves the semi-structured variational inequality under
(A.1) — (A.4) and (S.1) — (S.4). The Semi-Proximal Mirror-Prox algorithm blends both CMP and
CCQG. Basically, for sub-domain X5 given by LMO, instead of computing exactly the prox-mapping,
we mimick inexactly the prox-mapping via a conditional gradient algorithm in the Composite Mirror
Prox algorithm. For the sub-domain X7, we compute the prox-mapping as it is.

Algorithm 3 Semi-Proximal Mirror-Prox Algorithm for Semi-VI(X, F')

Input: stepsizes v; > 0, accuracies e; > 0,t =1,2,...
[1] Initialize 2 = [z}; 23] € X, where x} = [ul;vi]; 23 = [ul, ; vd].
fort=1,2,...,Tdo
[2] Compute y* = [y1; y5] that
y{ = [aLaﬂ = PI'Ole (’YtF‘TM (uiaug) 7w,1(ut1)7/7t)
yp = [y 03] = CCG(Xz,wa(") + (e, (uh, up) — wi(uy), ), Ve Fo,s€r)

[3] Compute z*+1 = [21T1; 25T that

o= Y = Proxy, (P, (1, @) = wf (u). %)
w5 = [ug o] = COG(Xa,walt) + (i Fu, (W4, Uh) — wh(uh), ), 7 Fuys €)
end for

_ o T —l1
Output: Tr := [ur; 07] = (3,1 ) Dopeq WeY"

~t

At step t, we first update 3¢ = [u};?%] by computing the exact prox-mapping and build i} = [u%; 5]
by running the composite conditional gradient algorithm to problem (I0) specifically with

X = X2, 0() = wa() + (yFu, (uy, up) — wh(u), ), and 0 = 3 Fy,
until 5(y%) = max,,ex, (Vot(yh), vh — ya) < €. We then build 2} = [ult!; 01| and 25t =
[ub™; vET!] similarly except this time taking the value of the operator at point y*. Combining the
results in Theorem [3.1]and Proposition we arrive at the following complexity bound.

Proposition 3.2. Under the assumption (A.1) — (A.4) and (S.1) — (S.4) with M = 0, and choice of

stepsize vy = L™, t = 1,...,T, for the outlined algorithm to return an e-solution to the variational
inequality VI(X, F), the total number of Mirror Prox steps required does not exceed
LO[X
Total number of steps = O(1) X]
€

and the total number of calls to the Linear Minimization Oracle does not exceed

N:O(l)( -

LOLK/DK/ K—1
€r >
In particular, if we use Euclidean proximal setup on Ua with ws(-) = 5 || z2||%, which leads to r = 2
and Lo = 1, then the number of LMO calls does not exceed N' = O(1) (L?D?*(©[X1] + D?)) /€.

o[x].
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Figure 1: Robust collaborative filtering and link prediction: objective function vs elapsed time.
From left to right: (a) MovieLens100K; (b) MovieLens1M; (c) Wikivote (1024); (d) Wikivote (full)

Discussion The proposed Semi-Proximal Mirror-Prox algorithm enjoys the optimal complexity
bounds, i.e. O(1/€?), in the number of calls to LMO; see [[14] for the optimal complexity bounds
for general non-smooth optimization with LMO. Consequently, when applying the algorithm to the
variational reformulation of the problem of interest (3), we are able to get an e-optimal solution
within at most O(1/€?) LMO calls. Thus, Semi-Proximal Mirror-Prox generalizes previously
proposed approaches and improves upon them in special cases of problem (3); see Appendix D.2.

4 Experiments

We report the experimental results obtained with the proposed Semi-Proximal Mirror-Prox, denoted
Semi-MP here, and competing algorithms. We consider two different applications: i) robust col-
laborative filtering for movie recommendation; ii) link prediction for social network analysis. For
i), we compare to two competing approaches: a) smoothing conditional gradient proposed in [24]]
(denoted Smooth-CG); b) smoothing proximal gradient [20} 5] equipped with semi-proximal setup
(Semi-SPG). For ii), we compare to Semi-LPADMM, using [22] equipped with semi-proximal
setup. Additional experiments and implementation details are given in Appendix E.

Robust collaborative filtering We consider the collaborative filtering problem, with a nuclear-
norm regularization penalty and an ¢;-loss function. We run the above three algorithms on the
the small and medium MovieLens datasets. The small-size dataset consists of 943 users and 1682
movies with about 100K ratings, while the medium-size dataset consists of 3952 users and 6040
movies with about 1M ratings. We follow [24] to set the regularization parameters. In Fig. [} we
can see that Semi-MP clearly outperforms Smooth-CG, while it is competitive with Semi-SPG.

Link prediction We consider now the link prediction problem, where the objective consists a
hinge-loss for the empirical risk part and multiple regularization penalties, namely the ¢;-norm and
the nuclear-norm. For this example, applying the Smooth-CG or Semi-SPG would require two
smooth approximations, one for hinge loss term and one for #; norm term. Therefore, we consider
an alternative approach, Semi-LPADMM, where we apply the linearized preconditioned ADMM al-
gorithm [22] by solving proximal mapping through conditional gradient routines. Up to our knowl-
edge, ADMM with early stopping is not fully theoretically analyzed in literature. However, intu-
itively, as long as the error is controlled sufficiently, such variant of ADMM should converge.

We conduct experiments on a binary social graph data set called Wikivote, which consists of 7118
nodes and 103747 edges. Since the computation cost of these two algorithms mainly come from the
LMO calls, we present in below the performance in terms of number of LMO calls. For the first set
of experiments, we select top 1024 highest degree users from Wikivote and run the two algorithms
on this small dataset with different strategies for the inner LMO calls.

In Fig. |1} we observe that the Semi-MP is less sensitive to the inner accuracies of prox-mappings
compared to the ADMM variant, which sometimes stops progressing if the prox-mappings of early
iterations are not solved with sufficient accuracy. The results on the full dataset corroborate the fact
that Semi-MP outperforms the semi-proximal variant of the ADMM algorithm.
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