
Learning to Transduce with Unbounded Memory

Edward Grefenstette
Google DeepMind
etg@google.com

Karl Moritz Hermann
Google DeepMind
kmh@google.com

Mustafa Suleyman
Google DeepMind

mustafasul@google.com

Phil Blunsom
Google DeepMind and Oxford University

pblunsom@google.com

Abstract

Recently, strong results have been demonstrated by Deep Recurrent Neural Net-
works on natural language transduction problems. In this paper we explore the
representational power of these models using synthetic grammars designed to ex-
hibit phenomena similar to those found in real transduction problems such as ma-
chine translation. These experiments lead us to propose new memory-based recur-
rent networks that implement continuously differentiable analogues of traditional
data structures such as Stacks, Queues, and DeQues. We show that these architec-
tures exhibit superior generalisation performance to Deep RNNs and are often able
to learn the underlying generating algorithms in our transduction experiments.

1 Introduction

Recurrent neural networks (RNNs) offer a compelling tool for processing natural language input in
a straightforward sequential manner. Many natural language processing (NLP) tasks can be viewed
as transduction problems, that is learning to convert one string into another. Machine translation is
a prototypical example of transduction and recent results indicate that Deep RNNs have the ability
to encode long source strings and produce coherent translations [1, 2]. While elegant, the appli-
cation of RNNs to transduction tasks requires hidden layers large enough to store representations
of the longest strings likely to be encountered, implying wastage on shorter strings and a strong
dependency between the number of parameters in the model and its memory.

In this paper we use a number of linguistically-inspired synthetic transduction tasks to explore the
ability of RNNs to learn long-range reorderings and substitutions. Further, inspired by prior work on
neural network implementations of stack data structures [3], we propose and evaluate transduction
models based on Neural Stacks, Queues, and DeQues (double ended queues). Stack algorithms are
well-suited to processing the hierarchical structures observed in natural language and we hypothesise
that their neural analogues will provide an effective and learnable transduction tool. Our models
provide a middle ground between simple RNNs and the recently proposed Neural Turing Machine
(NTM) [4] which implements a powerful random access memory with read and write operations.
Neural Stacks, Queues, and DeQues also provide a logically unbounded memory while permitting
efficient constant time push and pop operations.

Our results indicate that the models proposed in this work, and in particular the Neural DeQue, are
able to consistently learn a range of challenging transductions. While Deep RNNs based on long
short-term memory (LSTM) cells [1, 5] can learn some transductions when tested on inputs of the
same length as seen in training, they fail to consistently generalise to longer strings. In contrast,
our sequential memory-based algorithms are able to learn to reproduce the generating transduction
algorithms, often generalising perfectly to inputs well beyond those encountered in training.

1

2 Related Work

String transduction is central to many applications in NLP, from name transliteration and spelling
correction, to inflectional morphology and machine translation. The most common approach lever-
ages symbolic finite state transducers [6, 7], with approaches based on context free representations
also being popular [8]. RNNs offer an attractive alternative to symbolic transducers due to their sim-
ple algorithms and expressive representations [9]. However, as we show in this work, such models
are limited in their ability to generalise beyond their training data and have a memory capacity that
scales with the number of their trainable parameters.

Previous work has touched on the topic of rendering discrete data structures such as stacks continu-
ous, especially within the context of modelling pushdown automata with neural networks [10, 11, 3].
We were inspired by the continuous pop and push operations of these architectures and the idea of
an RNN controlling the data structure when developing our own models. The key difference is that
our work adapts these operations to work within a recurrent continuous Stack/Queue/DeQue-like
structure, the dynamics of which are fully decoupled from those of the RNN controlling it. In our
models, the backwards dynamics are easily analysable in order to obtain the exact partial derivatives
for use in error propagation, rather than having to approximate them as done in previous work.

In a parallel effort to ours, researchers are exploring the addition of memory to recurrent networks.
The NTM and Memory Networks [4, 12, 13] provide powerful random access memory operations,
whereas we focus on a more efficient and restricted class of models which we believe are sufficient
for natural language transduction tasks. More closely related to our work, [14] have sought to
develop a continuous stack controlled by an RNN. Note that this model—unlike the work proposed
here—renders discrete push and pop operations continuous by “mixing” information across levels of
the stack at each time step according to scalar push/pop action values. This means the model ends up
compressing information in the stack, thereby limiting its use, as it effectively loses the unbounded
memory nature of traditional symbolic models.

3 Models

In this section, we present an extensible memory enhancement to recurrent layers which can be set
up to act as a continuous version of a classical Stack, Queue, or DeQue (double-ended queue). We
begin by describing the operations and dynamics of a neural Stack, before showing how to modify
it to act as a Queue, and extend it to act as a DeQue.

3.1 Neural Stack

Let a Neural Stack be a differentiable structure onto and from which continuous vectors are pushed
and popped. Inspired by the neural pushdown automaton of [3], we render these traditionally dis-
crete operations continuous by letting push and pop operations be real values in the interval (0, 1).
Intuitively, we can interpret these values as the degree of certainty with which some controller wishes
to push a vector v onto the stack, or pop the top of the stack.

V
t

[i] =

⇢
V
t�1[i] if 1  i < t

v

t

if i = t
(Note that V

t

[i] = v

i

for all i  t) (1)

s

t

[i] =

8
<

:
max(0, s

t�1[i]�max(0, u
t

�
t�1P

j=i+1
s

t�1[j])) if 1  i < t

d
t

if i = t

(2)

r

t

=
tX

i=1

(min(s
t

[i],max(0, 1�
tX

j=i+1

s

t

[j]))) · V
t

[i] (3)

Formally, a Neural Stack, fully parametrised by an embedding size m, is described at some timestep
t by a t⇥m value matrix V

t

and a strength vector s
t

2 Rt. These form the core of a recurrent layer
which is acted upon by a controller by receiving, from the controller, a value v

t

2 Rm, a pop signal
u
t

2 (0, 1), and a push signal d
t

2 (0, 1). It outputs a read vector r
t

2 Rm. The recurrence of this

2

layer comes from the fact that it will receive as previous state of the stack the pair (V
t�1, st�1), and

produce as next state the pair (V
t

, s
t

) following the dynamics described below. Here, V
t

[i] represents
the ith row (an m-dimensional vector) of V

t

and s

t

[i] represents the ith value of s
t

.

Equation 1 shows the update of the value component of the recurrent layer state represented as a
matrix, the number of rows of which grows with time, maintaining a record of the values pushed to
the stack at each timestep (whether or not they are still logically on the stack). Values are appended
to the bottom of the matrix (top of the stack) and never changed.

Equation 2 shows the effect of the push and pop signal in updating the strength vector s

t�1 to
produce s

t

. First, the pop operation removes objects from the stack. We can think of the pop value
u
t

as the initial deletion quantity for the operation. We traverse the strength vector s
t�1 from the

highest index to the lowest. If the next strength scalar is less than the remaining deletion quantity, it
is subtracted from the remaining quantity and its value is set to 0. If the remaining deletion quantity
is less than the next strength scalar, the remaining deletion quantity is subtracted from that scalar and
deletion stops. Next, the push value is set as the strength for the value added in the current timestep.

Equation 3 shows the dynamics of the read operation, which are similar to the pop operation. A
fixed initial read quantity of 1 is set at the top of a temporary copy of the strength vector s

t

which
is traversed from the highest index to the lowest. If the next strength scalar is smaller than the
remaining read quantity, its value is preserved for this operation and subtracted from the remaining
read quantity. If not, it is temporarily set to the remaining read quantity, and the strength scalars of
all lower indices are temporarily set to 0. The output r

t

of the read operation is the weighted sum
of the rows of V

t

, scaled by the temporary scalar values created during the traversal. An example
of the stack read calculations across three timesteps, after pushes and pops as described above, is
illustrated in Figure 1a. The third step shows how setting the strength s3[2] to 0 for V3[2] logically
removes v2 from the stack, and how it is ignored during the read.

This completes the description of the forward dynamics of a neural Stack, cast as a recurrent layer,
as illustrated in Figure 1b. All operations described in this section are differentiable1. The equations
describing the backwards dynamics are provided in Appendix A of the supplementary materials.

v1 0.8 v1 0.7

v2 0.5

v1 0.3

v2 0

v3 0.9

r1 = 0.8 ∙ v1 r2 = 0.5 ∙ v2 + 0.5 ∙ v1 r3 = 0.9 ∙ v3 + 0 ∙ v2 + 0.1 ∙ v1

t = 1 u1 = 0 d1 = 0.8 t = 2 u2 = 0.1 d2 = 0.5 t = 3 u3 = 0.9 d3 = 0.9

row 1

row 2

row 3

st
ac

k
gr

ow
s

up
w

ar
ds

v2 removed
from stack

(a) Example Operation of a Continuous Neural Stack

pop (ut)

prev. strengths (st-1)

value (vt)

previous state

push (dt)

prev. values (Vt-1) next values (Vt)

next strengths (st)

next state

output (rt)

Neural
Stack

input

Split

Join

(b) Neural Stack as a Recurrent Layer

(it, rt-1)

previous
state

input

next
state

output

VtVt-1

(Vt, st)

st

(Vt-1, st-1)

rt-1

ht-1
ht

(ot, …)

ot

…
dt

ut

vt

it

st-1

rt

R
N
N

Ht-1

Ht

ot

Neural
Stack

(c) RNN Controlling a Stack

Figure 1: Illustrating a Neural Stack’s Operations, Recurrent Structure, and Control

3.2 Neural Queue

A neural Queue operates the same way as a neural Stack, with the exception that the pop operation
reads the lowest index of the strength vector s

t

, rather than the highest. This represents popping and
1The max(x, y) and min(x, y) functions are technically not differentiable for x = y. Following the work

on rectified linear units [15], we arbitrarily take the partial differentiation of the left argument in these cases.

3

reading from the front of the Queue rather than the top of the stack. These operations are described
in Equations 4–5.

s

t

[i] =

8
<

:
max(0, s

t�1[i]�max(0, u
t

�
i�1P
j=1

s

t�1[j])) if 1  i < t

d
t

if i = t

(4)

r

t

=
tX

i=1

(min(s
t

[i],max(0, 1�
i�1X

j=1

s

t

[j]))) · V
t

[i] (5)

3.3 Neural DeQue

A neural DeQue operates likes a neural Stack, except it takes a push, pop, and value as input for
both “ends” of the structure (which we call top and bot), and outputs a read for both ends. We write
utop

t

and ubot

t

instead of u
t

, vtop

t

and v

bot

t

instead of v
t

, and so on. The state, V
t

and s

t

are now
a 2t ⇥ m-dimensional matrix and a 2t-dimensional vector, respectively. At each timestep, a pop
from the top is followed by a pop from the bottom of the DeQue, followed by the pushes and reads.
The dynamics of a DeQue, which unlike a neural Stack or Queue “grows” in two directions, are
described in Equations 6–11, below. Equations 7–9 decompose the strength vector update into three
steps purely for notational clarity.

V
t

[i] =

8
<

:

v

bot

t

if i = 1
v

top

t

if i = 2t
V
t�1[i� 1] if 1 < i < 2t

(6)

s

top

t

[i] = max(0, s
t�1[i]�max(0, utop

t

�
2(t�1)�1X

j=i+1

s

t�1[j])) if 1  i < 2(t� 1) (7)

s

both

t

[i] = max(0, stop
t

[i]�max(0, ubot

t

�
i�1X

j=1

s

top

t

[j])) if 1  i < 2(t� 1) (8)

s

t

[i] =

8
<

:

s

both

t

[i� 1] if 1 < i < 2t
dbot
t

if i = 1
dtop
t

if i = 2t
(9)

r

top

t

=
2tX

i=1

(min(s
t

[i],max(0, 1�
2tX

j=i+1

s

t

[j]))) · V
t

[i] (10)

r

bot

t

=
2tX

i=1

(min(s
t

[i],max(0, 1�
i�1X

j=1

s

t

[j]))) · V
t

[i] (11)

To summarise, a neural DeQue acts like two neural Stacks operated on in tandem, except that the
pushes and pops from one end may eventually affect pops and reads on the other, and vice versa.

3.4 Interaction with a Controller

While the three memory modules described can be seen as recurrent layers, with the operations being
used to produce the next state and output from the input and previous state being fully differentiable,
they contain no tunable parameters to optimise during training. As such, they need to be attached
to a controller in order to be used for any practical purposes. In exchange, they offer an extensible
memory, the logical size of which is unbounded and decoupled from both the nature and parameters
of the controller, and from the size of the problem they are applied to. Here, we describe how any
RNN controller may be enhanced by a neural Stack, Queue or DeQue.

We begin by giving the case where the memory is a neural Stack, as illustrated in Figure 1c. Here
we wish to replicate the overall ‘interface’ of a recurrent layer—as seen from outside the dotted

4

lines—which takes the previous recurrent state H
t�1 and an input vector i

t

, and transforms them
to return the next recurrent state H

t

and an output vector o
t

. In our setup, the previous state H
t�1

of the recurrent layer will be the tuple (h
t�1, rt�1, (Vt�1, st�1)), where h

t�1 is the previous state
of the RNN, r

t�1 is the previous stack read, and (V
t�1, st�1) is the previous state of the stack

as described above. With the exception of h0, which is initialised randomly and optimised during
training, all other initial states, r0 and (V0, s0), are set to 0-valued vectors/matrices and not updated
during training.

The overall input i
t

is concatenated with previous read r

t�1 and passed to the RNN controller as
input along with the previous controller state h

t�1. The controller outputs its next state h

t

and a
controller output o0

t

, from which we obtain the push and pop scalars d
t

and u
t

and the value vector
vt, which are passed to the stack, as well as the network output o

t

:

d
t

= sigmoid(W
d

o

0
t

+ b
d

) u
t

= sigmoid(W
u

o

0
t

+ b
u

)

v

t

= tanh(W
v

o

0
t

+ b

v

) o

t

= tanh(W
o

o

0
t

+ b

o

)

where W
d

and W
u

are vector-to-scalar projection matrices, and b
d

and b
u

are their scalar biases;
W

v

and W
o

are vector-to-vector projections, and b

d

and b

u

are their vector biases, all randomly
intialised and then tuned during training. Along with the previous stack state (V

t�1, st�1), the stack
operations d

t

and u
t

and the value vt are passed to the neural stack to obtain the next read r

t

and
next stack state (V

t

, s
t

), which are packed into a tuple with the controller state ht to form the next
state H

t

of the overall recurrent layer. The output vector o

t

serves as the overall output of the
recurrent layer. The structure described here can be adapted to control a neural Queue instead of a
stack by substituting one memory module for the other.

The only additional trainable parameters in either configuration, relative to a non-enhanced RNN,
are the projections for the input concatenated with the previous read into the RNN controller, and the
projections from the controller output into the various Stack/Queue inputs, described above. In the
case of a DeQue, both the top read r

top and bottom read r

bot must be preserved in the overall state.
They are both concatenated with the input to form the input to the RNN controller. The output of the
controller must have additional projections to output push/pop operations and values for the bottom
of the DeQue. This roughly doubles the number of additional tunable parameters “wrapping” the
RNN controller, compared to the Stack/Queue case.

4 Experiments

In every experiment, integer-encoded source and target sequence pairs are presented to the candidate
model as a batch of single joint sequences. The joint sequence starts with a start-of-sequence (SOS)
symbol, and ends with an end-of-sequence (EOS) symbol, with a separator symbol separating the
source and target sequences. Integer-encoded symbols are converted to 64-dimensional embeddings
via an embedding matrix, which is randomly initialised and tuned during training. Separate word-
to-index mappings are used for source and target vocabularies. Separate embedding matrices are
used to encode input and output (predicted) embeddings.

4.1 Synthetic Transduction Tasks

The aim of each of the following tasks is to read an input sequence, and generate as target sequence a
transformed version of the source sequence, followed by an EOS symbol. Source sequences are ran-
domly generated from a vocabulary of 128 meaningless symbols. The length of each training source
sequence is uniformly sampled from unif {8, 64}, and each symbol in the sequence is drawn with
replacement from a uniform distribution over the source vocabulary (ignoring SOS, and separator).

A deterministic task-specific transformation, described for each task below, is applied to the source
sequence to yield the target sequence. As the training sequences are entirely determined by the
source sequence, there are close to 10135 training sequences for each task, and training examples
are sampled from this space due to the random generation of source sequences. The following steps
are followed before each training and test sequence are presented to the models, the SOS symbol
(hsi) is prepended to the source sequence, which is concatenated with a separator symbol (|||) and
the target sequences, to which the EOS symbol (h/si) is appended.

5

Sequence Copying The source sequence is copied to form the target sequence. Sequences have
the form:

hsia1 . . . ak|||a1 . . . akh/si

Sequence Reversal The source sequence is deterministically reversed to produce the target se-
quence. Sequences have the form:

hsia1a2 . . . ak|||ak . . . a2a1h/si

Bigram flipping The source side is restricted to even-length sequences. The target is produced
by swapping, for all odd source sequence indices i 2 [1, |seq|] ^ odd(i), the ith symbol with the
(i+ 1)th symbol. Sequences have the form:

hsia1a2a3a4 . . . ak�1ak|||a2a1a4a3 . . . akak�1h/si

4.2 ITG Transduction Tasks

The following tasks examine how well models can approach sequence transduction problems where
the source and target sequence are jointly generated by Inversion Transduction Grammars (ITG) [8],
a subclass of Synchronous Context-Free Grammars [16] often used in machine translation [17]. We
present two simple ITG-based datasets with interesting linguistic properties and their underlying
grammars. We show these grammars in Table 1, in Appendix C of the supplementary materials. For
each synchronised non-terminal, an expansion is chosen according to the probability distribution
specified by the rule probability p at the beginning of each rule. For each grammar, ‘A’ is always the
root of the ITG tree.

We tuned the generative probabilities for recursive rules by hand so that the grammars generate left
and right sequences of lengths 8 to 128 with relatively uniform distribution. We generate training
data by rejecting samples that are outside of the range [8, 64], and testing data by rejecting samples
outside of the range [65, 128]. For terminal symbol-generating rules, we balance the classes so
that for k terminal-generating symbols in the grammar, each terminal-generating non-terminal ‘X’
generates a vocabulary of approximately 128/k, and each each vocabulary word under that class is
equiprobable. These design choices were made to maximise the similarity between the experimental
settings of the ITG tasks described here and the synthetic tasks described above.

Subj–Verb–Obj to Subj–Obj–Verb A persistent challenge in machine translation is to learn to
faithfully reproduce high-level syntactic divergences between languages. For instance, when trans-
lating an English sentence with a non-finite verb into German, a transducer must locate and move
the verb over the object to the final position. We simulate this phenomena with a synchronous
grammar which generates strings exhibiting verb movements. To add an extra challenge, we also
simulate simple relative clause embeddings to test the models’ ability to transduce in the presence
of unbounded recursive structures.

A sample output of the grammar is presented here, with spaces between words being included for
stylistic purposes, and where s, o, and v indicate subject, object, and verb terminals respectively, i
and o mark input and output, and rp indicates a relative pronoun:

si1 vi28 oi5 oi7 si15 rpi si19 vi16 oi10 oi24 ||| so1 oo5 oo7 so15 rpo so19 vo16 oo10 oo24 vo28

Genderless to gendered grammar We design a small grammar to simulate translations from a
language with gender-free articles to one with gender-specific definite and indefinite articles. A
real world example of such a translation would be from English (the, a) to German (der/die/das,
ein/eine/ein).

The grammar simulates sentences in (NP/(V/NP)) or (NP/V) form, where every noun phrase
can become an infinite sequence of nouns joined by a conjunction. Each noun in the source language
has a neutral definite or indefinite article. The matching word in the target language then needs to be
preceeded by its appropriate article. A sample output of the grammar is presented here, with spaces
between words being included for stylistic purposes:

we11 the en19 and the em17 ||| wg11 das gn19 und der gm17

6

4.3 Evaluation

For each task, test data is generated through the same procedure as training data, with the key dif-
ference that the length of the source sequence is sampled from unif {65, 128}. As a result of this
change, we not only are assured that the models cannot observe any test sequences during training,
but are also measuring how well the sequence transduction capabilities of the evaluated models gen-
eralise beyond the sequence lengths observed during training. To control for generalisation ability,
we also report accuracy scores on sequences separately sampled from the training set, which given
the size of the sample space are unlikely to have ever been observed during actual model training.

For each round of testing, we sample 1000 sequences from the appropriate test set. For each se-
quence, the model reads in the source sequence and separator symbol, and begins generating the
next symbol by taking the maximally likely symbol from the softmax distribution over target sym-
bols produced by the model at each step. Based on this process, we give each model a coarse
accuracy score, corresponding to the proportion of test sequences correctly predicted from begin-
ning until end (EOS symbol) without error, as well as a fine accuracy score, corresponding to the
average proportion of each sequence correctly generated before the first error. Formally, we have:

coarse =
#correct

#seqs
fine =

1

#seqs

#seqsX

i=1

#correct
i

|target
i

|

where #correct and #seqs are the number of correctly predicted sequences (end-to-end) and the
total number of sequences in the test batch (1000 in this experiment), respectively; #correct

i

is the
number of correctly predicted symbols before the first error in the ith sequence of the test batch, and
|target

i

| is the length of the target segment that sequence (including EOS symbol).

4.4 Models Compared and Experimental Setup

For each task, we use as benchmarks the Deep LSTMs described in [1], with 1, 2, 4, and 8 layers.
Against these benchmarks, we evaluate neural Stack-, Queue-, and DeQue-enhanced LSTMs. When
running experiments, we trained and tested a version of each model where all LSTMs in each model
have a hidden layer size of 256, and one for a hidden layer size of 512. The Stack/Queue/DeQue
embedding size was arbitrarily set to 256, half the maximum hidden size. The number of parameters
for each model are reported for each architecture in Table 2 of the appendix. Concretely, the neural
Stack-, Queue-, and DeQue-enhanced LSTMs have the same number of trainable parameters as a
two-layer Deep LSTM. These all come from the extra connections to and from the memory module,
which itself has no trainable parameters, regardless of its logical size.

Models are trained with minibatch RMSProp [18], with a batch size of 10. We grid-searched learning
rates across the set {5⇥10�3, 1⇥10�3, 5⇥10�4, 1⇥10�4, 5⇥10�5}. We used gradient clipping
[19], clipping all gradients above 1. Average training perplexity was calculated every 100 batches.
Training and test set accuracies were recorded every 1000 batches.

5 Results and Discussion

Because of the impossibility of overfitting the datasets, we let the models train an unbounded number
of steps, and report results at convergence. We present in Figure 2a the coarse- and fine-grained
accuracies, for each task, of the best model of each architecture described in this paper alongside
the best performing Deep LSTM benchmark. The best models were automatically selected based on
average training perplexity. The LSTM benchmarks performed similarly across the range of random
initialisations, so the effect of this procedure is primarily to try and select the better performing
Stack/Queue/DeQue-enhanced LSTM. In most cases, this procedure does not yield the actual best-
performing model, and in practice a more sophisticated procedure such as ensembling [20] should
produce better results.

For all experiments, the Neural Stack or Queue outperforms the Deep LSTM benchmarks, often by
a significant margin. For most experiments, if a Neural Stack- or Queue-enhanced LSTM learns
to partially or consistently solve the problem, then so does the Neural DeQue. For experiments
where the enhanced LSTMs solve the problem completely (consistent accuracy of 1) in training,
the accuracy persists in longer sequences in the test set, whereas benchmark accuracies drop for

7

Training Testing

Experiment Model Coarse Fine Coarse Fine

Sequence
Copying

4-layer LSTM 0.98 0.98 0.01 0.50
Stack-LSTM 0.89 0.94 0.00 0.22
Queue-LSTM 1.00 1.00 1.00 1.00
DeQue-LSTM 1.00 1.00 1.00 1.00

Sequence
Reversal

8-layer LSTM 0.95 0.98 0.04 0.13
Stack-LSTM 1.00 1.00 1.00 1.00
Queue-LSTM 0.44 0.61 0.00 0.01
DeQue-LSTM 1.00 1.00 1.00 1.00

Bigram
Flipping

2-layer LSTM 0.54 0.93 0.02 0.52
Stack-LSTM 0.44 0.90 0.00 0.48
Queue-LSTM 0.55 0.94 0.55 0.98
DeQue-LSTM 0.55 0.94 0.53 0.98

SVO to SOV

8-layer LSTM 0.98 0.99 0.98 0.99
Stack-LSTM 1.00 1.00 1.00 1.00
Queue-LSTM 1.00 1.00 1.00 1.00
DeQue-LSTM 1.00 1.00 1.00 1.00

Gender
Conjugation

8-layer LSTM 0.98 0.99 0.99 0.99
Stack-LSTM 0.93 0.97 0.93 0.97
Queue-LSTM 1.00 1.00 1.00 1.00
DeQue-LSTM 1.00 1.00 1.00 1.00

(a) Comparing Enhanced LSTMs to Best Benchmarks
(b) Comparison of Model Conver-
gence during Training

Figure 2: Results on the transduction tasks and convergence properties

all experiments except the SVO to SOV and Gender Conjugation ITG transduction tasks. Across
all tasks which the enhanced LSTMs solve, the convergence on the top accuracy happens orders of
magnitude earlier for enhanced LSTMs than for benchmark LSTMs, as exemplified in Figure 2b.

The results for the sequence inversion and copying tasks serve as unit tests for our models, as the
controller mainly needs to learn to push the appropriate number of times and then pop continuously.
Nonetheless, the failure of Deep LSTMs to learn such a regular pattern and generalise is itself
indicative of the limitations of the benchmarks presented here, and of the relative expressive power
of our models. Their ability to generalise perfectly to sequences up to twice as long as those attested
during training is also notable, and also attested in the other experiments. Finally, this pair of
experiments illustrates how while the neural Queue solves copying and the Stack solves reversal, a
simple LSTM controller can learn to operate a DeQue as either structure, and solve both tasks.

The results of the Bigram Flipping task for all models are consistent with the failure to consistently
correctly generate the last two symbols of the sequence. We hypothesise that both Deep LSTMs and
our models economically learn to pairwise flip the sequence tokens, and attempt to do so half the
time when reaching the EOS token. For the two ITG tasks, the success of Deep LSTM benchmarks
relative to their performance in other tasks can be explained by their ability to exploit short local
dependencies dominating the longer dependencies in these particular grammars.

Overall, the rapid convergence, where possible, on a general solution to a transduction problem
in a manner which propagates to longer sequences without loss of accuracy is indicative that an
unbounded memory-enhanced controller can learn to solve these problems procedurally, rather than
memorising the underlying distribution of the data.

6 Conclusions

The experiments performed in this paper demonstrate that single-layer LSTMs enhanced by an un-
bounded differentiable memory capable of acting, in the limit, like a classical Stack, Queue, or
DeQue, are capable of solving sequence-to-sequence transduction tasks for which Deep LSTMs
falter. Even in tasks for which benchmarks obtain high accuracies, the memory-enhanced LSTMs
converge earlier, and to higher accuracies, while requiring considerably fewer parameters than all
but the simplest of Deep LSTMs. We therefore believe these constitute a crucial addition to our neu-
ral network toolbox, and that more complex linguistic transduction tasks such as machine translation
or parsing will be rendered more tractable by their inclusion.

8

References
[1] Ilya Sutskever, Oriol Vinyals, and Quoc V. V Le. Sequence to sequence learning with neural

networks. In Z. Ghahramani, M. Welling, C. Cortes, N.D. Lawrence, and K.Q. Weinberger,
editors, Advances in Neural Information Processing Systems 27, pages 3104–3112. Curran
Associates, Inc., 2014.

[2] Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Fethi Bougares, Holger Schwenk,
and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder for statistical
machine translation. arXiv preprint arXiv:1406.1078, 2014.

[3] GZ Sun, C Lee Giles, HH Chen, and YC Lee. The neural network pushdown automaton:
Model, stack and learning simulations. 1998.

[4] Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. CoRR, abs/1410.5401,
2014.

[5] Alex Graves. Supervised Sequence Labelling with Recurrent Neural Networks, volume 385 of
Studies in Computational Intelligence. Springer, 2012.

[6] Markus Dreyer, Jason R. Smith, and Jason Eisner. Latent-variable modeling of string trans-
ductions with finite-state methods. In Proceedings of the Conference on Empirical Methods in
Natural Language Processing, EMNLP ’08, pages 1080–1089, Stroudsburg, PA, USA, 2008.
Association for Computational Linguistics.

[7] Cyril Allauzen, Michael Riley, Johan Schalkwyk, Wojciech Skut, and Mehryar Mohri. Open-
FST: A general and efficient weighted finite-state transducer library. In Implementation and
Application of Automata, volume 4783 of Lecture Notes in Computer Science, pages 11–23.
Springer Berlin Heidelberg, 2007.

[8] Dekai Wu. Stochastic inversion transduction grammars and bilingual parsing of parallel cor-
pora. Computational linguistics, 23(3):377–403, 1997.

[9] Alex Graves. Sequence transduction with recurrent neural networks. In Representation Learn-
ing Worksop, ICML. 2012.

[10] Sreerupa Das, C Lee Giles, and Guo-Zheng Sun. Learning context-free grammars: Capabilities
and limitations of a recurrent neural network with an external stack memory. In Proceedings
of The Fourteenth Annual Conference of Cognitive Science Society. Indiana University, 1992.

[11] Sreerupa Das, C Lee Giles, and Guo-Zheng Sun. Using prior knowledge in a {NNPDA} to
learn context-free languages. Advances in neural information processing systems, 1993.

[12] Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston, and Rob Fergus. Weakly supervised mem-
ory networks. CoRR, abs/1503.08895, 2015.

[13] Wojciech Zaremba and Ilya Sutskever. Reinforcement learning neural turing machines. arXiv
preprint arXiv:1505.00521, 2015.

[14] Armand Joulin and Tomas Mikolov. Inferring algorithmic patterns with stack-augmented re-
current nets. arXiv preprint arXiv:1503.01007, 2015.

[15] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann ma-
chines. In Proceedings of the 27th International Conference on Machine Learning (ICML-10),
pages 807–814, 2010.

[16] Alfred V Aho and Jeffrey D Ullman. The theory of parsing, translation, and compiling.
Prentice-Hall, Inc., 1972.

[17] Dekai Wu and Hongsing Wong. Machine translation with a stochastic grammatical channel.
In Proceedings of the 17th international conference on Computational linguistics-Volume 2,
pages 1408–1415. Association for Computational Linguistics, 1998.

[18] Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running
average of its recent magnitude. COURSERA: Neural Networks for Machine Learning, 4,
2012.

[19] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. Understanding the exploding gradient
problem. Computing Research Repository (CoRR) abs/1211.5063, 2012.

[20] Zhi-Hua Zhou, Jianxin Wu, and Wei Tang. Ensembling neural networks: many could be better
than all. Artificial intelligence, 137(1):239–263, 2002.

9

