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Abstract

We develop a sequential low-complexity inference procedure for Dirichlet pro-
cess mixtures of Gaussians for online clustering and parameter estimation when
the number of clusters are unknown a-priori. We present an easily computable,
closed form parametric expression for the conditional likelihood, in which hyper-
parameters are recursively updated as a function of the streaming data assuming
conjugate priors. Motivated by large-sample asymptotics, we propose a novel
adaptive low-complexity design for the Dirichlet process concentration parame-
ter and show that the number of classes grow at most at a logarithmic rate. We
further prove that in the large-sample limit, the conditional likelihood and data
predictive distribution become asymptotically Gaussian. We demonstrate through
experiments on synthetic and real data sets that our approach is superior to other
online state-of-the-art methods.

1 Introduction

Dirichlet process mixture models (DPMM) have been widely used for clustering data Neal (1992);
Rasmussen (2000). Traditional finite mixture models often suffer from overfitting or underfitting
of data due to possible mismatch between the model complexity and amount of data. Thus, model
selection or model averaging is required to find the correct number of clusters or the model with
the appropriate complexity. This requires significant computation for high-dimensional data sets or
large samples. Bayesian nonparametric modeling are alternative approaches to parametric modeling,
an example being DPMM’s which can automatically infer the number of clusters from the data via
Bayesian inference techniques.

The use of Markov chain Monte Carlo (MCMC) methods for Dirichlet process mixtures has made
inference tractable Neal (2000). However, these methods can exhibit slow convergence and their
convergence can be tough to detect. Alternatives include variational methods Blei & Jordan (2006),
which are deterministic algorithms that convert inference to optimization. These approaches can
take a significant computational effort even for moderate sized data sets. For large-scale data sets
and low-latency applications with streaming data, there is a need for inference algorithms that are
much faster and do not require multiple passes through the data. In this work, we focus on low-
complexity algorithms that adapt to each sample as they arrive, making them highly scalable. An
online algorithm for learning DPMM’s based on a sequential variational approximation (SVA) was
proposed in Lin (2013), and the authors in Wang & Dunson (2011) recently proposed a sequential
maximum a-posterior (MAP) estimator for the class labels given streaming data. The algorithm is
called sequential updating and greedy search (SUGS) and each iteration is composed of a greedy
selection step and a posterior update step.

The choice of concentration parameter α is critical for DPMM’s as it controls the number of clus-
ters Antoniak (1974). While most fast DPMM algorithms use a fixed α Fearnhead (2004); Daume
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(2007); Kurihara et al. (2006), imposing a prior distribution on α and sampling from it provides more
flexibility, but this approach still heavily relies on experimentation and prior knowledge. Thus, many
fast inference methods for Dirichlet process mixture models have been proposed that can adapt α
to the data, including the works Escobar & West (1995) where learning of α is incorporated in the
Gibbs sampling analysis, Blei & Jordan (2006) where a Gamma prior is used in a conjugate manner
directly in the variational inference algorithm. Wang & Dunson (2011) also account for model un-
certainty on the concentration parameter α in a Bayesian manner directly in the sequential inference
procedure. This approach can be computationally expensive, as discretization of the domain of α is
needed, and its stability highly depends on the initial distribution on α and on the range of values of
α. To the best of our knowledge, we are the first to analytically study the evolution and stability of
the adapted sequence of α’s in the online learning setting.

In this paper, we propose an adaptive non-Bayesian approach for adapting α motivated by large-
sample asymptotics, and call the resulting algorithm ASUGS (Adaptive SUGS). While the basic
idea behind ASUGS is directly related to the greedy approach of SUGS, the main contribution is
a novel low-complexity stable method for choosing the concentration parameter adaptively as new
data arrive, which greatly improves the clustering performance. We derive an upper bound on the
number of classes, logarithmic in the number of samples, and further prove that the sequence of
concentration parameters that results from this adaptive design is almost bounded. We finally prove,
that the conditional likelihood, which is the primary tool used for Bayesian-based online clustering,
is asymptotically Gaussian in the large-sample limit, implying that the clustering part of ASUGS
asymptotically behaves as a Gaussian classifier. Experiments show that our method outperforms
other state-of-the-art methods for online learning of DPMM’s.

The paper is organized as follows. In Section 2, we review the sequential inference framework for
DPMM’s that we will build upon, introduce notation and propose our adaptive modification. In
Section 3, the probabilistic data model is given and sequential inference steps are shown. Section
4 contains the growth rate analysis of the number of classes and the adaptively-designed concentra-
tion parameters, and Section 5 contains the Gaussian large-sample approximation to the conditional
likelihood. Experimental results are shown in Section 6 and we conclude in Section 7.

2 Sequential Inference Framework for DPMM

Here, we review the SUGS framework of Wang & Dunson (2011) for online clustering. Here, the
nonparametric nature of the Dirichlet process manifests itself as modeling mixture models with
countably infinite components. Let the observations be given by yi ∈ Rd, and γi to denote
the class label of the ith observation (a latent variable). We define the available information at
time i as y(i) = {y1, . . . ,yi} and γ(i−1) = {γ1, . . . , γi−1}. The online sequential updating and
greedy search (SUGS) algorithm is summarized next for completeness. Set γ1 = 1 and calculate
π(θ1|y1, γ1). For i ≥ 2,

1. Choose best class label for yi: γi ∈ arg max1≤h≤ki−1+1 P (γi = h|y(i), γ(i−1)).

2. Update the posterior distribution using yi, γi: π(θγi |y(i), γ(i)) ∝
f(yi|θγi)π(θγi |y(i−1), γ(i−1)).

where θh are the parameters of class h, f(yi|θh) is the observation density conditioned on class
h and ki−1 is the number of classes created at time i − 1. The algorithm sequentially allocates
observations yi to classes based on maximizing the conditional posterior probability.

To calculate the posterior probability P (γi = h|y(i), γ(i−1)), define the variables:

Li,h(yi)
def
= P (yi|γi = h,y(i−1), γ(i−1)), πi,h(α)

def
= P (γi = h|α,y(i−1), γ(i−1))

From Bayes’ rule, P (γi = h|y(i), γ(i−1)) ∝ Li,h(yi)πi,h(α) for h = 1, . . . , ki−1 + 1. Here, α is
considered fixed at this iteration, and is not updated in a fully Bayesian manner.

According to the Dirichlet process prediction, the predictive probability of assigning observation yi
to a class h is:

πi,h(α) =

{
mi−1(h)
i−1+α , h = 1, . . . , ki−1
α

i−1+α , h = ki−1 + 1
(1)
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Algorithm 1 Adaptive Sequential Updating and Greedy Search (ASUGS)
Input: streaming data {yi}∞i=1, rate parameter λ > 0.
Set γ1 = 1 and k1 = 1. Calculate π(θ1|y1, γ1).
for i ≥ 2: do

(a) Update concentration parameter: αi−1 = ki−1

λ+log(i−1) .

(b) Choose best label for yi: γi ∼ {q(i)
h } =

{
Li,h(yi)πi,h(αi−1)∑
h′ Li,h′ (yi)πi,h′ (αi−1)

}
.

(c) Update posterior distribution: π(θγi |y(i), γ(i)) ∝ f(yi|θγi)π(θγi |y(i−1), γ(i−1)).
end for

where mi−1(h) =
∑i−1
l=1 I(γl = h) counts the number of observations labeled as class h at time

i− 1, and α > 0 is the concentration parameter.

2.1 Adaptation of Concentration Parameter α

It is well known that the concentration parameter α has a strong influence on the growth of the num-
ber of classes Antoniak (1974). Our experiments show that in this sequential framework, the choice
of α is even more critical. Choosing a fixed α as in the online SVA algorithm of Lin (2013) requires
cross-validation, which is computationally prohibitive for large-scale data sets. Furthermore, in the
streaming data setting where no estimate on the data complexity exists, it is impractical to perform
cross-validation. Although the parameter α is handled from a fully Bayesian treatment in Wang &
Dunson (2011), a pre-specified grid of possible values α can take, say {αl}Ll=1, along with the prior
distribution over them, needs to be chosen in advance. Storage and updating of a matrix of size
(ki−1 + 1) × L and further marginalization is needed to compute P (γi = h|y(i), γ(i−1)) at each
iteration i. Thus, we propose an alternative data-driven method for choosing α that works well in
practice, is simple to compute and has theoretical guarantees.

The idea is to start with a prior distribution on α that favors small α and shape it into a posterior
distribution using the data. Define pi(α) = p(α|y(i), γ(i)) as the posterior distribution formed at
time i, which will be used in ASUGS at time i + 1. Let p1(α) ≡ p1(α|y(1), γ(1)) denote the prior
for α, e.g., an exponential distribution p1(α) = λe−λα. The dependence on y(i) and γ(i) is trivial
only at this first step. Then, by Bayes rule, pi(α) ∝ p(yi, γi|y(i−1), γ(i−1), α)p(α|y(i−1), γ(i−1)) ∝
pi−1(α)πi,γi(α) where πi,γi(α) is given in (1). Once this update is made after the selection of γi, the
α to be used in the next selection step is the mean of the distribution pi(α), i.e., αi = E[α|y(i), γ(i)].
As will be shown in Section 5, the distribution pi(α) can be approximated by a Gamma distribution
with shape parameter ki and rate parameter λ + log i. Under this approximation, we have αi =
ki

λ+log i , only requiring storage and update of one scalar parameter ki at each iteration i.

The ASUGS algorithm is summarized in Algorithm 1. The selection step may be implemented
by sampling the probability mass function {q(i)

h }. The posterior update step can be efficiently per-
formed by updating the hyperparameters as a function of the streaming data for the case of conjugate
distributions. Section 3 derives these updates for the case of multivariate Gaussian observations and
conjugate priors for the parameters.

3 Sequential Inference under Unknown Mean & Unknown Covariance

We consider the general case of an unknown mean and covariance for each class. The probabilistic
model for the parameters of each class is given as:

yi|µ,T ∼ N (·|µ,T), µ|T ∼ N (·|µ0, coT), T ∼ W(·|δ0,V0) (2)

where N (·|µ,T) denotes the multivariate normal distribution with mean µ and precision matrix
T, andW(·|δ,V) is the Wishart distribution with 2δ degrees of freedom and scale matrix V. The
parameters θ = (µ,T) ∈ Rd×Sd++ follow a normal-Wishart joint distribution. The model (2) leads
to closed-form expressions for Li,h(yi)’s due to conjugacy Tzikas et al. (2008).

To calculate the class posteriors, the conditional likelihoods of yi given assignment to class h and
the previous class assignments need to be calculated first. The conditional likelihood of yi given
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assignment to class h and the history (y(i−1), γ(i−1)) is given by:

Li,h(yi) =

∫
f(yi|θh)π(θh|y(i−1), γ(i−1))dθh (3)

Due to the conjugacy of the distributions, the posterior π(θh|y(i−1), γ(i−1)) always has the form:

π(θh|y(i−1), γ(i−1)) = N (µh|µ(i−1)
h , c

(i−1)
h Th)W(Th|δ(i−1)

h ,V
(i−1)
h )

where µ(i−1)
h , c

(i−1)
h , δ

(i−1)
h ,V

(i−1)
h are hyperparameters that can be recursively computed as new

samples come in. The form of this recursive computation of the hyperparameters is derived in

Appendix A. For ease of interpretation and numerical stability, we define Σ
(i)
h :=

(V
(i)
h )−1

2δ
(i)
h

as the

inverse of the mean of the Wishart distribution W(·|δ(i)
h ,V

(i)
h ). The matrix Σ

(i)
h has the natural

interpretation as the covariance matrix of class h at iteration i. Once the γith component is chosen,
the parameter updates for the γith class become:

µ(i)
γi =

1

1 + c
(i−1)
γi

yi +
c
(i−1)
γi

1 + c
(i−1)
γi

µ(i−1)
γi (4)

c(i)γi = c(i−1)
γi + 1 (5)

Σ(i)
γi =

2δ
(i−1)
γi

1 + 2δ
(i−1)
γi

Σ(i−1)
γi +

1

1 + 2δ
(i−1)
γi

c
(i−1)
γi

1 + c
(i−1)
γi

(yi − µ(i−1)
γi )(yi − µ(i−1)

γi )T (6)

δ(i)
γi = δ(i−1)

γi +
1

2
(7)

If the starting matrix Σ
(0)
h is positive definite, then all the matrices {Σ(i)

h } will remain positive
definite. Let us return to the calculation of the conditional likelihood (3). By iterated integration, it
follows that:

Li,h(yi) ∝

(
r

(i−1)
h

2δ
(i−1)
h

)d/2
ρd(δ

(i−1)
h ) det(Σ

(i−1)
h )−1/2(

1 +
r
(i−1)
h

2δ
(i−1)
h

(yi − µ(i−1)
h )T (Σ

(i−1)
h )−1(yi − µ(i−1)

h )

)δ(i−1)
h + 1

2

(8)

where ρd(a)
def
=

Γ(a+ 1
2 )

Γ(a+ 1−d
2 )

and r
(i−1)
h

def
=

c
(i−1)
h

1+c
(i−1)
h

. A detailed mathematical derivation of this

conditional likelihood is included in Appendix B. We remark that for the new class h = ki−1 + 1,
Li,ki−1+1 has the form (8) with the initial choice of hyperparameters r(0), δ(0), µ(0),Σ(0).

4 Growth Rate Analysis of Number of Classes & Stability

In this section, we derive a model for the posterior distribution pn(α) using large-sample approxi-
mations, which will allow us to derive growth rates on the number of classes and the sequence of
concentration parameters, showing that the number of classes grows as E[kn] = O(log1+ε n) for ε
arbitarily small under certain mild conditions.

The probability density of the α parameter is updated at the jth step in the following fashion:

pj+1(α) ∝ pj(α) ·
{ α

j+α innovation class chosen
1

j+α otherwise ,

where only the α-dependent factors in the update are shown. The α-independent factors are absorbed
by the normalization to a probability density. Choosing the innovation class pushes mass toward
infinity while choosing any other class pushes mass toward zero. Thus there is a possibility that
the innovation probability grows in a undesired manner. We assess the growth of the number of
innovations rn

def
= kn − 1 under simple assumptions on some likelihood functions that appear

naturally in the ASUGS algorithm.

Assuming that the initial distribution of α is p1(α) = λe−λα, the distribution used at step n + 1 is
proportional to αrn

∏n−1
j=1 (1 + α

j )−1e−λα. We make use of the limiting relation
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Theorem 1. The following asymptotic behavior holds: limn→∞
log

∏n−1
j=1 (1+α

j )

α logn = 1.

Proof. See Appendix C.

Using Theorem 1, a large-sample model for pn(α) is αrne−(λ+logn)α, suitably normalized. Recog-
nizing this as the Gamma distribution with shape parameter rn + 1 and rate parameter λ+ log n, its
mean is given by αn = rn+1

λ+logn . We use the mean in this form to choose class membership in Alg. 1.
This asymptotic approximation leads to a very simple scalar update of the concentration parameter;
there is no need for discretization for tracking the evolution of continuous probability distributions
on α. In our experiments, this approximation is very accurate.

Recall that the innovation class is labeled K+ = kn−1 + 1 at the nth step. The modeled updates
randomly select a previous class or innovation (new class) by sampling from the probability distri-
bution {q(n)

k = P (γn = k|y(n), γ(n−1))}K+

k=1. Note that n − 1 =
∑
k 6=K+

mn(k) , where mn(k)

represents the number of members in class k at time n.

We assume the data follows the Gaussian mixture distribution:

pT (y)
def
=

K∑
h=1

πhN (y|µh,Σh) (9)

where πh are the prior probabilities, and µh,Σh are the parameters of the Gaussian clusters.

Define the mixture-model probability density function, which plays the role of the predictive distri-
bution:

L̃n,K+
(y)

def
=

∑
k 6=K+

mn−1(k)

n− 1
Ln,k(y), (10)

so that the probabilities of choosing a previous class or an innovation (using Equ. (1)) are propor-
tional to

∑
k 6=K+

mn−1(k)
n−1+αn−1

Ln,k(yn) = (n−1)
n−1+αn−1

L̃n,K+
(yn) and αn−1

n−1+αn−1
Ln,K+

(yn), respec-
tively. If τn−1 denotes the innovation probability at step n, then we have(

ρn−1
αn−1Ln,K+

(yn)

n− 1 + αn−1
, ρn−1

(n− 1)L̃n,K+
(yn)

n− 1 + αn−1

)
= (τn−1, 1− τn−1) (11)

for some positive proportionality factor ρn−1.

Define the likelihood ratio (LR) at the beginning of stage n as 1:

ln(y)
def
=

Ln,K+
(y)

L̃n,K+
(y)

(12)

Conceptually, the mixture (10) represents a modeled distribution fitting the currently observed data.
If all “modes” of the data have been observed, it is reasonable to expect that L̃n,K+

is a good model
for future observations. The LR ln(yn) is not large when the future observations are well-modeled
by (10). In fact, we expect L̃n,K+ → pT as n→∞, as discussed in Section 5.

Lemma 1. The following bound holds: τn−1 = ln(yn)αn−1

n−1+ln(yn)αn−1
≤ min

(
ln(yn)αn−1

n−1 , 1
)

.

Proof. The result follows directly from (11) after a simple calculation.

The innovation random variable rn is described by the random process associated with the proba-
bilities of transition

P (rn+1 = k|rn) =

{
τn, k = rn + 1
1− τn, k = rn

. (13)

1Here, L0(·)
def
= Ln,K+(·) is independent of n and only depends on the initial choice of hyperparameters

as discussed in Sec. 3.
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The expectation of rn is majorized by the expectation of a similar random process, r̄n, based on the
transition probability σn

def
= min( rn+1

an
, 1) instead of τn as Appendix D shows, where the random

sequence {an} is given by ln+1(yn+1)−1n(λ+log n). The latter can be described as a modification
of a Polya urn process with selection probability σn. The asymptotic behavior of rn and related
variables is described in the following theorem.
Theorem 2. Let τn be a sequence of real-valued random variables 0 ≤ τn ≤ 1 satisfying τn ≤ rn+1

an

for n ≥ N , where an = ln+1(yn+1)−1n(λ + log n), and where the nonnegative, integer-valued
random variables rn evolve according to (13). Assume the following for n ≥ N :

1. ln(yn) ≤ ζ (a.s.)

2. D(pT ‖ L̃n,K+) ≤ δ (a.s.)

where D(p ‖ q) is the Kullback-Leibler divergence between distributions p(·) and q(·). Then, as
n→∞,

rn = OP (log1+ζ
√
δ/2 n), αn = OP (logζ

√
δ/2 n) (14)

Proof. See Appendix E.

Theorem 2 bounds the growth rate of the mean of the number of class innovations and the concen-
tration parameter αn in terms of the sample size n and parameter ζ. The bounded LR and bounded
KL divergence conditions of Thm. 2 manifest themselves in the rate exponents of (14). The ex-
periments section shows that both of the conditions of Thm. 2 hold for all iterations n ≥ N for
some N ∈ N. In fact, assuming the correct clustering, the mixture distribution L̃n,kn−1+1 converges
to the true mixture distribution pT , implying that the number of class innovations grows at most
as O(log1+ε n) and the sequence of concentration parameters is O(logε n), where ε > 0 can be
arbitrarily small.

5 Asymptotic Normality of Conditional Likelihood

In this section, we derive an asymptotic expression for the conditional likelihood (8) in order to gain
insight into the steady-state of the algorithm.

We let πh denote the true prior probability of class h. Using the bounds of the Gamma function
in Theorem 1.6 from Batir (2008), it follows that lima→∞

ρd(a)
e−d/2(a−1/2)d/2

= 1. Under normal
convergence conditions of the algorithm (with the pruning and merging steps included), all classes
h = 1, . . . ,K will be correctly identified and populated with approximately ni−1(h) ≈ πh(i − 1)
observations at time i − 1. Thus, the conditional class prior for each class h converges to πh as
i → ∞, in virtue of (14), πi,h(αi−1) = ni−1(h)

i−1+αi−1
= πh

1+
OP (logζ

√
δ/2(i−1))

i−1

i→∞−→ πh. According

to (5), we expect r(i−1)
h → 1 as i → ∞ since c(i−1)

h ∼ πh(i − 1). Also, we expect 2δ
(i−1)
h ∼

πh(i − 1) as i → ∞ according to (7). Also, from before, ρd(δ
(i−1)
h ) ∼ e−d/2(δ

(i−1)
h − 1/2)d/2 ∼

e−d/2(πh
i−1

2 −
1
2 )d/2. The parameter updates (4)-(7) imply µ(i)

h → µh and Σ
(i)
h → Σh as i→∞.

This follows from the strong law of large numbers, as the updates are recursive implementations
of the sample mean and sample covariance matrix. Thus, the large-sample approximation to the
conditional likelihood becomes:

Li,h(yi)
i→∞∝

limi→∞

(
1 +

π−1
h

i−1 (yi − µ(i−1)
h )T (Σ

(i−1)
h )−1(yi − µ(i−1)

h )
)− i−1

2π
−1
h

limi→∞ det(Σ
(i−1)
h )1/2

i→∞∝ e−
1
2 (yi−µh)TΣ−1

h (yi−µh)

√
det Σh

(15)

where we used limu→∞(1+ c
u )u = ec. The conditional likelihood (15) corresponds to the multivari-

ate Gaussian distribution with mean µh and covariance matrix Σh. A similar asymptotic normality
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result was recently obtained in Tsiligkaridis & Forsythe (2015) for Gaussian observations with a von
Mises prior. The asymptotics mn−1(h)

n−1 → πh, µ(n)
h → µh,Σ

(n)
h → Σh, Ln,h(y) → N (y|µh,Σh)

as n→∞ imply that the mixture distribution L̃n,K+ in (10) converges to the true Gaussian mixture
distribution pT of (9). Thus, for any small δ, we expect D(pT ‖ L̃n,K+) ≤ δ for all n ≥ N ,
validating the assumption of Theorem 2.

6 Experiments

We apply the ASUGS learning algorithm to a synthetic 16-class example and to a real data set, to
verify the stability and accuracy of our method. The experiments show the value of adaptation of
the Dirichlet concentration parameter for online clustering and parameter estimation.

Since it is possible that multiple clusters are similar and classes might be created due to outliers, or
due to the particular ordering of the streaming data sequence, we add the pruning and merging step
in the ASUGS algorithm as done in Lin (2013). We compare ASUGS and ASUGS-PM with SUGS,
SUGS-PM, SVA and SVA-PM proposed in Lin (2013), since it was shown in Lin (2013) that SVA
and SVA-PM outperform the block-based methods that perform iterative updates over the entire data
set including Collapsed Gibbs Sampling, MCMC with Split-Merge and Truncation-Free Variational
Inference.

6.1 Synthetic Data set

We consider learning the parameters of a 16-class Gaussian mixture each with equal variance of
σ2 = 0.025. The training set was made up of 500 iid samples, and the test set was made up of
1000 iid samples. The clustering results are shown in Fig. 1(a), showing that the ASUGS-based ap-
proaches are more stable than SVA-based algorithms. ASUGS-PM performs best and identifies the
correct number of clusters, and their parameters. Fig. 1(b) shows the data log-likelihood on the test
set (averaged over 100 Monte Carlo trials), the mean and variance of the number of classes at each it-
eration. The ASUGS-based approaches achieve a higher log-likelihood than SVA-based approaches
asymptotically. Fig. 6.1 provides some numerical verification for the assumptions of Theorem 2.
As expected, the predictive likelihood L̃i,K+ (10) converges to the true mixture distribution pT (9),
and the likelihood ratio li(yi) is bounded after enough samples are processed.
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Figure 1: (a) Clustering performance of SVA, SVA-PM, ASUGS and ASUGS-PM on synthetic data
set. ASUGS-PM identifies the 16 clusters correctly. (b) Joint log-likelihood on synthetic data, mean
and variance of number of classes as a function of iteration. The likelihood values were evaluated on
a held-out set of 1000 samples. ASUGS-PM achieves the highest log-likelihood and has the lowest
asymptotic variance on the number of classes.

6.2 Real Data Set

We applied the online nonparametric Bayesian methods for clustering image data. We used the
MNIST data set, which consists of 60, 000 training samples, and 10, 000 test samples. Each sample
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Figure 2: Likelihood ratio li(yi) =
Li,K+(yi)

L̃i,K+(yi)
(left) and L2-distance between L̃i,K+(·) and true

mixture distribution pT (right) for synthetic example (see 1).

is a 28 × 28 image of a handwritten digit (total of 784 dimensions), and we perform PCA pre-
processing to reduce dimensionality to d = 50 dimensions as in Kurihara et al. (2006).

We use only a random 1.667% subset, consisting of 1000 random samples for training. This training
set contains data from all 10 digits with an approximately uniform proportion. Fig. 3 shows the
predictive log-likelihood over the test set, and the mean images for clusters obtained using ASUGS-
PM and SVA-PM, respectively. We note that ASUGS-PM achieves higher log-likelihood values and
finds all digits correctly using only 23 clusters, while SVA-PM finds some digits using 56 clusters.
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Figure 3: Predictive log-likelihood (a) on test set, mean images for clusters found using ASUGS-PM
(b) and SVA-PM (c) on MNIST data set.

6.3 Discussion

Although both SVA and ASUGS methods have similar computational complexity and use decisions
and information obtained from processing previous samples in order to decide on class innova-
tions, the mechanics of these methods are quite different. ASUGS uses an adaptive α motivated
by asymptotic theory, while SVA uses a fixed α. Furthermore, SVA updates the parameters of all
the components at each iteration (in a weighted fashion) while ASUGS only updates the parameters
of the most-likely cluster, thus minimizing leakage to unrelated components. The λ parameter of
ASUGS does not affect performance as much as the threshold parameter ε of SVA does, which often
leads to instability requiring lots of pruning and merging steps and increasing latency. This is crit-
ical for large data sets or streaming applications, because cross-validation would be required to set
ε appropriately. We observe higher log-likelihoods and better numerical stability for ASUGS-based
methods in comparison to SVA. The mathematical formulation of ASUGS allows for theoretical
guarantees (Theorem 2), and asymptotically normal predictive distribution.

7 Conclusion

We developed a fast online clustering and parameter estimation algorithm for Dirichlet process mix-
tures of Gaussians, capable of learning in a single data pass. Motivated by large-sample asymptotics,
we proposed a novel low-complexity data-driven adaptive design for the concentration parameter
and showed it leads to logarithmic growth rates on the number of classes. Through experiments on
synthetic and real data sets, we show our method achieves better performance and is as fast as other
state-of-the-art online learning DPMM methods.
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