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Abstract

Expectation Propagation is a very popular algorithm for variational inference, but
comes with few theoretical guarantees. In this article, we prove that the approx-
imation errors made by EP can be bounded. Our bounds have an asymptotic in-
terpretation in the number n of datapoints, which allows us to study EP’s conver-
gence with respect to the true posterior. In particular, we show that EP converges
at a rate of O(n~2) for the mean, up to an order of magnitude faster than the tra-
ditional Gaussian approximation at the mode. We also give similar asymptotic ex-
pansions for moments of order 2 to 4, as well as excess Kullback-Leibler cost (de-
fined as the additional KL cost incurred by using EP rather than the ideal Gaussian
approximation). All these expansions highlight the superior convergence proper-
ties of EP. Our approach for deriving those results is likely applicable to many
similar approximate inference methods. In addition, we introduce bounds on the
moments of log-concave distributions that may be of independent interest.

Introduction

Expectation Propagation (EP, (1) is an efficient approximate inference algorithm that is known to give
good approximations, to the point of being almost exact in certain applications [2} 3]]. It is surprising
that, while the method is empirically very successful, there are few theoretical guarantees on its
behavior. Indeed, most work on EP has focused on efficiently implementing the method in various
settings. Theoretical work on EP mostly represents new justifications of the method which, while
they offer intuitive insight, do not give mathematical proofs that the method behaves as expected.
One recent breakthrough is due to Dehaene and Barthelmé [4] who prove that, in the large data-
limit, the EP iteration behaves like a Newton search and its approximation is asymptotically exact.
However, it remains unclear how good we can expect the approximation to be when we have only
finite data. In this article, we offer a characterization of the quality of the EP approximation in terms
of the worst-case distance between the true and approximate mean and variance.

When approximating a probability distribution p(z) that is, for some reason, close to being Gaussian,
a natural approximation to use is the Gaussian with mean equal to the mode (or argmax) of p(z) and
with variance the inverse log-Hessian at the mode. We call it the Canonical Gaussian Approximation
(CGA), and its use is usually justified by appealing to the Bernstein-von Mises theorem, which
shows that, in the limit of a large amount of independent observations, posterior distributions tend
towards their CGA. This powerful justification, and the ease with which the CGA is computed
(finding the mode can be done using Newton methods) makes it a good reference point for any
method like EP which aims to offer a better Gaussian approximation at a higher computational cost.
In section [T} we introduce the CGA and the EP approximation. In section 2] we give our theoretical
results bounding the quality of EP approximations.



1 Background

In this section, we present the CGA and give a short introduction to the EP algorithm. In-depth
descriptions of EP can be found in Minka [5]], Seeger [6], Bishop [7]], Raymond et al. [8].

1.1 The Canonical Gaussian Approximation

What we call here the CGA is perhaps the most common approximate inference method in the
machine learning cookbook. It is often called the “Laplace approximation”, but this is a misnomer:
the Laplace approximation refers to approximating the integral f p from the integral of the CGA.
The reason the CGA is so often used is its compelling simplicity: given a target distribution p(z) =
exp (—¢ (x)), we find the mode z* and compute the second derivatives of ¢ at x*:

x* argming(x)

ﬁ* — gz5// (x*)

to form a Gaussian approximation ¢(z) = A (m|x*, ﬁ%) ~ p(x). The CGA is effectively just

a second-order Taylor expansion, and its use is justified by the Bernstein-von Mises theorem [9],
which essentially says that the CGA becomes exact in the large-data (large-n) asymptotic limit.
Roughly, if p,(z) o [[;—; p (yi|z) po (z), where y; ...y, represent independent datapoints, then

lim,, s o0 P () = N (2|27, ﬂi) in total variation.

1.2 CGA vs Gaussian EP

Gaussian EP, as its name indicates, provides an alternative way of computing a Gaussian approxima-
tion to a target distribution. There is broad overlap between the problems where EP can be applied
and the problems where the CGA can be used, with EP coming at a higher cost. Our contribution is
to show formally that the higher computational cost for EP may well be worth bearing, as EP approx-
imations can outperform CGAs by an order of magnitude. To be specific, we focus on the moment
estimates (mean and covariance) computed by EP and CGA, and derive bounds on their distance to
the true mean and variance of the target distribution. Our bounds have an asymptotic interpretation,
and under that interpretation we show for example that the mean returned by EP is within an order
of O (n_2) of the true mean, where n is the number of datapoints. For the CGA, which uses the
mode as an estimate of the mean, we exhibit a O (n_l) upper bound, and we compute the error term
responsible for this O (n‘l) behavior. This enables us to show that, in the situations in which this

error is indeed O (n™!), EP is better than the CGA.

1.3 The EP algorithm

We consider the task of approximating a probability distribution over a random-variable X : p(x),
which we call the target distribution. X can be high-dimensional, but for simplicity, we focus on
the one-dimensional case. One important hypothesis that makes EP feasible is that p(x) factorizes

into n simple factor terms:
p(x) =[] fi(x)
i

EP proposes to approximate each f;(x) (usually referred to as sites) by a Gaussian function ¢; ()
(referred to as the site-approximations). It is convenient to use the parametrization of Gaussians in
terms of natural parameters:

1,2
i (x|rs, Bi) o exp (Tim _ ﬂiQ)

which makes some of the further computations easier to understand. Note that EP could also be
used with other exponential approximating families. These Gaussian approximations are computed
iteratively. Starting from a current approximation (g} (z|r!, 8¢)), we select a site for update with
index i. We then:



e Compute the cavity distribution ¢* ,(z) o< [| i1 ¢5(x). This is very easy in natural param-

eters:
t i) 2
i) o () o (D) 2
J#i J#i
e Compute the hybrid distribution hf(z) o ¢* () f;(x) and its mean and variance

e Compute the Gaussian which minimizes the Kullback-Leibler divergence to the hybrid, ie
the Gaussian with same mean and variance:

P(ht) = arg(rlnin (KL (hilq))

e Finally, update the approximation of f;:

P(ht
qf-‘rl _ (t z)
q_;

where the division is simply computed as a subtraction between natural parameters

We iterate these operations until a fixed point is reached, at which point we return a Gaussian ap-
proximation of p(z) =~ [] ¢;(x).

1.4 The “EP-approximation”

In this work, we will characterize the quality of an EP approximation of p(z). We define this to be
any fixed point of the iteration presented in section[I.3] which could all be returned by the algorithm.
It is known that EP will have at least one fixed-point [[1], but it is unknown under which conditions
the fixed-point is unique. We conjecture that, when all sites are log-concave (one of our hypotheses
to control the behavior of EP), it is in fact unique but we can’t offer a proof yet. If p () isn’t log-
concave, it is straightforward to construct examples in which EP has multiple fixed-points. These
open questions won’t matter for our result because we will show that all fixed-points of EP (should
there be more than one) produce a good approximation of p (x).

Fixed points of EP have a very interesting characterization. If we note ¢ the site-approximations at
a given fixed-point, h} the corresponding hybrid distributions, and ¢* the global approximation of
p(x), then the mean and variance of all the hybrids and ¢* is the sameﬂ As we will show in section
[2.2] this leads to a very tight bound on the possible positions of these fixed-points.

1.5 Notation

We will use repeatedly the following notation. p(z) = [], fi(z) is the target distribution we want
to approximate. The sites f;(x) are each approximated by a Gaussian site-approximation g¢;(x)
yielding an approximation to p(z) =~ ¢(x) = [[, ¢;(x). The hybrids h,(x) interpolate between g(z)
and p(z) by replacing one site approximation ¢;(x) with the true site f;(x).

Our results make heavy use of the log-functions of the sites and the target distribution. We note
¢i(x) = —log (fi(x)) and ¢p(x) = —log(p(z)) = > ¢s(x). We will introduce in section [2]
hypotheses on these functions. Parameter /3,,, controls their minimum curvature and parameters K4
control the maximum d*" derivative.

We will always consider fixed-points of EP, where the mean and variance under all hybrids and ¢(z)
is identical. We will note these common values: pugp and vpp. We will also refer to the third and
fourth centered moment of the hybrids, denoted by m%, m{ and to the fourth moment of ¢(x) which
is simply 3v% . We will show how all these moments are related to the true moments of the target
distribution which we will note y, v for the mean and variance, and m%, m} for the third and fourth

moment. We also investigate the quality of the CGA: p ~ z* and v = [(b;(x*)} where x* is the
the mode of p(x).

!For non-Gaussian approximations, the expected values of all sufficient statistics of the exponential family
are equal.



2  Results

In this section, we will give tight bounds on the quality of the EP approximation (ie: of fixed-points
of the EP iteration). Our results lean on the properties of log-concave distributions [[10]. In section
[2.1] we introduce new bounds on the moments of log-concave distributions. The bounds show that
those distributions are in a certain sense close to being Gaussian. We then apply these results to
study fixed points of EP, where they enable us to compute bounds on the distance between the mean
and variance of the true distribution p(z) and of the approximation given by EP, which we do in

section[2.21

Our bounds require us to assume that all sites f;(x) are [(3,,-strongly log-concave with slowly-
changing log-function. That is, if we note ¢;(z) = —log (fi(z)):

ViV ¢; () > Bm >0 (1)

Vivd € [3,4,5,6] |6 (m)’ < Ky 2)

The target distribution p(x) then inherits those properties from the sites. Noting ¢,(x) =
—log (p(z)) = >, ¢i(x), then ¢, is nf,,-strongly log-concave and its higher derivatives are
bounded:

1"

Ve, 6y(x) = nf ©)
vd € [3,4,5,6] [0 (@)| < 0K, )

A

A natural concern here is whether or not our conditions on the sites are of practical interest. Indeed,
strongly-log-concave likelihoods are rare. We picked these strong regularity conditions because they
make the proofs relatively tractable (although still technical and long). The proof technique carries
over to more complicated, but more realistic, cases. One such interesting generalization consists
of the case in which p(x) and all hybrids at the fixed-point are log-concave with slowly changing
log-functions (with possibly differing constants). In such a case, while the math becomes more
unwieldy, similar bounds as ours can be found, greatly extending the scope of our results. The
results we present here should thus be understood as a stepping stone and not as the final word on
the quality of the EP approximation: we have focused on providing a rigorous but extensible proof.

2.1 Log-concave distributions are strongly constrained

Log-concave distributions have many interesting properties. They are of course unimodal, and the
family is closed under both marginalization and multiplication. For our purposes however, the most
important property is a result due to Brascamp and Lieb [11]], which bounds their even moments. We
give here an extension in the case of log-concave distributions with slowly changing log-functions
(as quantified by eq. (2)). Our results show that these are close to being Gaussian.

The Brascamp-Lieb inequality states that, if LC'(z) o exp (—¢(x)) is 3,,-strongly log-concave (ie:
¢ (z) > Bm), then centered even moments of LC' are bounded by the corresponding moments of a
Gaussian with variance B;ll. If we note these moments moy, and prc = Erc(z) the mean of LC:

Erc ((CE - MLC’)%)
mor < (2k —1)NBK (5)

map

where (2k — 1)!! is the double factorial: the product of all odd terms from 1 to 2k — 1. 3!l = 3,
5!l = 15, 7!l = 105, etc. This result can be understood as stating that a log-concave distribution
must have a small variance, but doesn’t generally need to be close to a Gaussian.

With our hypothesis of slowly changing log-functions, we were able to improve on this result. Our
improved results include a bound on odd moments, as well as first order expansions of even moments

(egs. ©@)-©)).

Our extension to the Brascamp-Lieb inequality is as follows. If ¢ is slowly changing in the sense
that some of its higher derivatives are bounded, as per eq. [2} then we can give a bound on ¢ (Lre)



(showing that prc is close to the mode z* of LC, see egs. (I0) to (I3)) and m3 (showing that LC
is mostly symmetric):

, K
[ mee)| < 55t ©)
2K
Ims| < 6—33 (7)

and we can compute the first order expansions of ms and my, and bound the errors in terms of 5,
and the K’s :

LE.
52 " 2B ®)

" 19K2 5K,
¢ (urc)ma — sz‘ < 7[371,1 5@

IA

’mz_l - ¢>”(MLC)‘

)

1" 17 72
With eq. and (9), we see that mg ~ (gb (uLc)) and my ~ 3 (gi) (uLc)) and, in that
sense, that LC(x) is close to the Gaussian with mean pi,¢ and inverse-variance qb” (1rc).

These expansions could be extended to further orders and similar formulas can be found for the other

moments of LC(x): for example, any odd moments can be bounded by |maj+1| < Cr K3 ﬁfn(kﬂ)
(with C some constant) and any even moment can be found to have first-order expansion:

mo ~ (2k — 1N (qﬁ” (uLc)) . The proof, as well as more detailed results, can be found in
the Supplement.

Note how our result relates to the Bernstein-von Mises theorem, which says that, in the limit of a
large amount of observations, a posterior p(z) tends towards its CGA. If we consider the posterior
obtained from n likelihood functions that are all log-concave and slowly changing, our results show
the slightly different result that the moments of that posterior are close to those of a Gaussian with
mean frc (instead of x7 ) and inverse-variance ¢ (urc) (instead of ¢ (2%¢)) - This point is
critical. While the CGA still ends up capturing the limit behavior of p, as urc — z* in the large-
data limit (see eq. (T3) below), an approximation that would return the Gaussian approximation at
rc would be better. This is essentially what EP does, and this is how it improves on the CGA.

2.2 Computing bounds on EP approximations

In this section, we consider a given EP fixed-point g} (z|r;, 8;) and the corresponding approximation
of p(x): ¢* (x|r =>_ 1, 8 =D Bi). We will show that the expected value and variance of ¢*(resp.
wep and vgp) are close to the true mean and variance of p (resp. p and v), and also investigate the

" -1
quality of the CGA (1 = z*, v = {d)l, (x*)} ).

Under our assumptions on the sites (eq. (I) and (2)), we are able to derive bounds on the quality
of the EP approximation. The proof is quite involved and long, and we will only present it in the
Supplement. In the main text, we give a partial version: we detail the first step of the demonstra-
tion, which consists of computing a rough bound on the distance between the true mean p, the EP
approximation g p and the mode x*, and give an outline of the rest of the proof.

Let’s show that u, pgp and z* are all close to one another. We start from eq. (6) applied to p(z):

¢p(1)| <

<25, (10)




which tells us that ¢;(u) ~ 0. u must thus be close to z*. Indeed:

’ ’

G| = [0y = éy(a) an
= oy © -2 €€ [wa
> oy ()] Iu— "]
> nPm|p— " (12)
Combining eq. (T0) and (T2), we finally have:
= 2| gwl% (13)

Let’s now show that p g p is also close to z*. We proceed similarly, starting from eq. (6) but applied
to all hybrids h;(z):
—1 K. 3

218?’7L

which is not really equivalent to eq. (I0) yet. Recall that ¢(x|r, ) has mean pgp: we thus have:
r = Bugp. Which gives:

(14)

Vi |¢i(npp) + Boipgp —1_i| <

(Z 5—z‘> pep = ((n—1)B)upp
i
= (n—1r
> (15)
If we sum all terms in eq. , the S_;ugp and r_; thus cancel, leaving us with:
K3

2/87”
which is equivalent to eq. but for g p instead of . This shows that ugp is, like i, close to z*:

bplupp)| < (16)

|NEP*1'*| S’ﬂil (17)

3
262,
At this point, we can show that, since they are both close to 2* (eq. (I3) and (I7)), p = prp +
@) (n‘l), which constitutes the first step of our computation of bounds on the quality of EP.

After computing this, the next step is evaluating the quality of the approximation of the variance,

via computing |v*1 — vE}D for EP and ‘v’l — gb; (x*)| for the CGA, from eq. (§). In both cases,
we find:

vl = wpp+0(1) (18)

= $, (@) +0(1) (19)

Since v~ is of order n, because of eq. (3) (Brascamp-Lieb upper bound on variance), this is a

decent approximation: the relative error is of order n=!.

We can find similarly that both EP and CGA do a good job of finding a good approximation of the
fourth moment of p: my4. For EP this means that the fourth moment of each hybrid and of ¢ are a
close match:

Vimy, ~ mi~3vip (20)

~ 3(opm) @n

In contrast, the third moment of the hybrids doesn’t match at all the third moment of p, but their sum
!

does ! o Z mé )

6



Finally, we come back to the approximation of 1 by ugp. These obey two very similar relationships:

o +oP g = o) 23)
¢;)(MEP)+¢;3)(MEP)UETP = O(nil) (24)

Since v = vgp + O (n™?) (a slight rephrasing of eq. (I8)), we finally have:
1= pep+0(n?) (25)
We summarize the results in the following theorem:

Theorem 1. Characterizing fixed-points of EP

Under the assumptions given by eq. (1) and @) (log-concave sites with slowly changing log), we
can bound the quality of the EP approximation and the CGA:

K.

* —1 3

=z < n m

lw—pepl < Bi(n)=0(n7?)
" 2K; K

-1 * 3 4

P he] < G,
|v*1 —vpp| < Ba(n)=0(1)

We give the full expression for the bounds By and Bs in the Supplement

Note that the order of magnitude of the bound on | — x*| is the best possible, because it is at-
tained for certain distrlbutlons For example, consider a Gamma dlstr1but10n with natural parameters
(na, nB) whose mean B is approximated at order n~! by its mode & — —. More generally, from

eq. (23), we can compute the first order of the error:

(3) (3)
p (o 1 o (w) 26)

G 2" 2 (g

p

p—m A —

which is the term causing the order n~!

conclude that EP improves on the CGA.

error. Whenever this term is significant, it is thus safe to

Also note that, since v—! is of order n, the relative error for the v—! approximation is of order n~*

for both methods. Despite having a convergence rate of the same order, the EP approximation is
demonstrably better than the CGA, as we show next. Let us first see why the approximation for v !
is only of order 1 for both methods. The following relationship holds:

v =6 (1) + 61D (u ) + o (u ) +<9( 1 27)

In this relationship, qb; () is an order n term while the rest are order 1. If we now compare this to
the CGA approximation of v~1, we find that it fails at multiple levels. First, it completely ignores
the two order 1 terms, and then, because it takes the value of ¢p at * which is at a distance of

(@] (nil) from i, it adds another order 1 error term (since d),(,g) = O (n)). The CGA is thus adding
quite a bit of error, even if each component is of order 1.

Meanwhile, vg p obeys a relationship similar to eq. 27):

3 2
UEP = NEP + Z [ EP:| 4 ¢(4)( )3;;% + O (n—l) (28)

We can see where the EP approximation produces errors. The (;5; term is well approximated: since
| — ppp| = O (n~?), we have qﬁ;; (1) = gb; (nep)+O (n~'). The term involving my is also well



approximated, and we can see that the only term that fails is the mg term. The order 1 error is thus
entirely coming from this term, which shows that EP performance suffers more from the skewness
of the target distribution than from its kurtosis.

Finally, note that, with our result, we can get some intuitions about the quality of the EP approxima-
tion using other metrics. For example, if the most interesting metric is the KL divergence K'L (p, q),
the excess KL divergence from using the EP approximation ¢ instead of the true minimizer gxr,
(which has the same mean p and variance v as p) is given by:

AKL*/ log KL _ / ( (x—p)?  (z—ppp)’ 1 ( v ))
= [ plog = [p@)| - + — s log ( — (29)
q 2v 20gp 2 VEP

1[ v v (n—pep)’

- {—l—log( )}+ (30)
2 |vEp VEP 2vupp
1 _ _

~ U —VEP (:u MEP) (31)
4 VEP 2vgp

which we recognize as K L (¢x 1., q). A similar formula gives the excess KL divergence from using
the CGA instead of qx 1. For both methods, the variance term is of order n 2 (though it should be
smaller for EP), but the mean term is of order n =3 for EP while it is of order n~! for the CGA. Once
again, EP is found to be the better approximation.

Finally, note that our bounds are quite pessimistic: the true value might be a much better fit than we
have predicted here.

A first cause is the bounding of the derivatives of log(p) (eqs. (3),@)): while those bounds are
correct, they might prove to be very pessimistic. For example, if the contributions from the sites to
the higher-derivatives cancel each other out, a much lower bound than n Ky might apply. Similarly,
there might be another lower bound on the curvature much higher than nj,,.

Another cause is the bounding of the variance from the curvature. While applying Brascamp-Lieb
requires the distribution to have high log-curvature everywhere, a distribution with high-curvature
close to the mode and low-curvature in the tails still has very low variance: in such a case, the
Brascamp-Lieb bound is very pessimistic.

In order to improve on our bounds, we will thus need to use tighter bounds on the log-derivatives of
the hybrids and of the target distribution, but we will also need an extension of the Brascamp-Lieb
result that can deal with those cases where a distribution is strongly log-concave around its mode
but, in the tails, the log-curvature is much lower.

3 Conclusion

EP has been used for now quite some time without any theoretical concrete guarantees on its per-
formance. In this work, we provide explicit performance bounds and show that EP is superior to the
CGA, in the sense of giving provably better approximations of the mean and variance. There are
now theoretical arguments for substituting EP to the CGA in a number of practical problems where
the gain in precision is worth the increased computational cost. This work tackled the first steps in
proving that EP offers an appropriate approximation. Continuing in its tracks will most likely lead
to more general and less pessimistic bounds, but it remains an open question how to quantify the
quality of the approximation using other distance measures. For example, it would be highly use-
ful for machine learning if one could show bounds on prediction error when using EP. We believe
that our approach should extend to more general performance measures and plan to investigate this
further in the future.
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