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Abstract

We propose a robust and efficient approach to the problem of compressive phase
retrieval in which the goal is to reconstruct a sparse vector from the magnitude
of a number of its linear measurements. The proposed framework relies on con-
strained sensing vectors and a two-stage reconstruction method that consists of
two standard convex programs that are solved sequentially.
In recent years, various methods are proposed for compressive phase retrieval, but
they have suboptimal sample complexity or lack robustness guarantees. The main
obstacle has been that there is no straightforward convex relaxations for the type
of structure in the target. Given a set of underdetermined measurements, there is a
standard framework for recovering a sparse matrix, and a standard framework for
recovering a low-rank matrix. However, a general, efficient method for recovering
a jointly sparse and low-rank matrix has remained elusive.
Deviating from the models with generic measurements, in this paper we show that
if the sensing vectors are chosen at random from an incoherent subspace, then the
low-rank and sparse structures of the target signal can be effectively decoupled.
We show that a recovery algorithm that consists of a low-rank recovery stage fol-
lowed by a sparse recovery stage will produce an accurate estimate of the target
when the number of measurements is O(k log d

k ), where k and d denote the spar-
sity level and the dimension of the input signal. We also evaluate the algorithm
through numerical simulation.

1 Introduction

1.1 Problem setting

The problem of Compressive Phase Retrieval (CPR) is generally stated as the problem of estimating
a k-sparse vector x? ∈ Rd from noisy measurements of the form

yi = |〈ai,x
?〉|2 + zi (1)

for i = 1, 2, . . . , n, where ai is the sensing vector and zi denotes the additive noise. In this paper,
we study the CPR problem with specific sensing vectors ai of the form

ai = Ψ
Twi, (2)

where Ψ ∈ Rm×d and wi ∈ Rm are known. In words, the measurement vectors live in a fixed
low-dimensional subspace (i.e, the row space of Ψ ). These types of measurements can be applied in
imaging systems that have control over how the scene is illuminated; examples include systems that
use structured illumination with a spatial light modulator or a scattering medium [1, 2].

1



By a standard lifting of the signal x? to X? = x?x?T, the quadratic measurements (1) can be
expressed as

yi =
〈
aia

T
i ,X

?
〉
+ zi =

〈
ΨTwiw

T
i Ψ ,X

?
〉
+ zi. (3)

With the linear operatorW and A defined as

W :B 7→
[〈
wiw

T
i ,B

〉]n
i=1

and A :X 7→ W
(
ΨXΨT

)
,

we can write the measurements compactly as

y = A (X?) + z.

Our goal is to estimate the sparse, rank-one, and positive semidefinite matrixX? from the measure-
ments (3), which also solves the CPR problem and provides an estimate for the sparse signal x? up
to the inevitable global phase ambiguity.

Assumptions We make the following assumptions throughout the paper.

A1. The vectorswi are independent and have the standard Gaussian distribution on Rm: wi ∼
N (0, I) .

A2. The matrix Ψ is a restricted isometry matrix for 2k-sparse vectors and for a constant δ2k ∈
[0, 1]. Namely, it obeys

(1− δ2k) ‖x‖22≤ ‖Ψx‖
2
2 ≤ (1 + δ2k) ‖x‖22 , (4)

for all 2k-sparse vectors x ∈ Rd.

A3. The noise vector z is bounded as ‖z‖2 ≤ ε.

As will be seen in Theorem 1 and its proof below, the Gaussian distribution imposed by the assump-
tion A1 will be used merely to guarantee successful estimation of a rank-one matrix through trace
norm minimization. However, other distributions (e.g., uniform distribution on the unit sphere) can
also be used to obtain similar guarantees. Furthermore, the restricted isometry condition imposed
by the assumption A2 is not critical and can be replaced by weaker assumptions. However, the guar-
antees obtained under these weaker assumptions usually require more intricate derivations, provide
weaker noise robustness, and often do not hold uniformly for all potential target signals. Therefore,
to keep the exposition simple and straightforward we assume (4) which is known to hold (with high
probability) for various ensembles of random matrices (e.g., Gaussian, Rademacher, partial Fourier,
etc). Because in many scenarios we have the flexibility of selecting Ψ , the assumption (4) is realistic
as well.

Notation Let us first set the notation used throughout the paper. Matrices and vectors are denoted
by bold capital and small letters, respectively. The set of positive integers less than or equal to
n is denoted by [n]. The notation f = O (g) is used when f = cg for some absolute constant
c > 0. For any matrix M , the Frobenius norm, the nuclear norm, the entrywise `1-norm, and the
largest entrywise absolute value of the entries are denoted by ‖M‖F , ‖M‖∗, ‖M‖1, and ‖M‖∞,
respectively. To indicate that a matrixM is positive semidefinite we writeM < 0.

1.2 Contributions

The main challenge in the CPR problem in its general formulation is to design an accurate estimator
that has optimal sample complexity and computationally tractable. In this paper we address this
challenge in the special setting where the sensing vectors can be factored as (2). Namely, we propose
an algorithm that

• provably produces an accurate estimate of the lifted targetX? from only n = O
(
k log d

k

)
measurements, and

• can be computed in polynomial time through efficient convex optimization methods.
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1.3 Related work

Several papers including [3, 4, 5, 6, 7] have already studied the application of convex programming
for (non-sparse) phase retrieval (PR) in various settings and have established estimation accuracy
through different mathematical techniques. These phase retrieval methods attain nearly optimal
sample complexities that scales with the dimension of the target signal up to a constant factor [4, 5, 6]
or at most a logarithmic factor [3]. However, to the best of our knowledge, the exiting methods for
CPR either lack accuracy and robustness guarantees or have suboptimal sample complexities.

The problem of recovering a sparse signal from the magnitude of its subsampled Fourier transforms
is cast in [8] as an `1-minimization with non-convex constraints. While [8] shows that a sufficient
number of measurements would grow quadratically in k (i.e., the sparsity of the signal), the numer-
ical simulations suggest that the non-convex method successfully estimates the sparse signal with
only about k log d

k measurements. Another non-convex approach to CPR is considered in [9] which
poses the problem as finding a k-sparse vector that minimizes the residual error that takes a quartic
form. A local search algorithm called GESPAR [10] is then applied to (approximate) the solution
to the formulated sparsity-constrained optimization. This approach is shown to be effective through
simulations, but it also lacks global convergence or statistical accuracy guarantees. An alternating
minimization method for both PR and CPR is studied in [11]. This method is appealing in large
scale problems because of computationally inexpensive iterations. More importantly, [11] proposes
a specific initialization using which the alternating minimization method is shown to converge lin-
early in noise-free PR and CPR. However, the number of measurements required to establish this
convergence is effectively quadratic in k. In [12] and [13] the `1-regularized form of the trace
minimization

argmin
X<0

trace (X) + λ ‖X‖1

subject to A (X) = y
(5)

is proposed for the CPR problem. The guarantees of [13] are based on the restricted isometry prop-
erty of the sensing operator X 7→ [〈aia

∗
i ,X〉]

n
i=1 for sparse matrices. In [12], however, the anal-

ysis is based on construction of a dual certificate through an adaptation of the golfing scheme [14].
Assuming standard Gaussian sensing vectors ai and with appropriate choice of the regularization
parameter λ, it is shown in [12] that (5) solves the CPR when n = O

(
k2 log d

)
. Furthermore, this

method fails to recover the target sparse and rank-one matrix if n is dominated by k2. Estimation
of simultaneously structured matrices through convex relaxations similar to (5) is also studied in
[15] where it is shown that these methods do not attain optimal sample complexity. More recently,
assuming that the sparse target has a Bernoulli-Gaussian distribution, a generalized approximate
message passing framework is proposed in [16] to solve the CPR problem. Performance of this
method is evaluated through numerical simulations for standard Gaussian sensing matrices which
show the empirical phase transition for successful estimation occurs at n = O

(
k log d

k

)
and also

the algorithms can have a significantly lower runtime compared to some of the competing algo-
rithms including GESPAR [10] and CPRL [13]. The PhaseCode algorithm is proposed in [17] to
solve the CPR problem with sensing vectors designed using sparse graphs and techniques adapted
from coding theory. Although PhaseCode is shown to achieve the optimal sample complexity, it
lacks robustness guarantees.

While preparing the final version of the current paper, we became aware of [18] which has indepen-
dently proposed an approach similar to ours to address the CPR problem.

2 Main Results

2.1 Algorithm

We propose a two-stage algorithm outlined in Algorithm 1. Each stage of the algorithm is a convex
program for which various efficient numerical solvers exists. In the first stage we solve (6) to obtain
a low-rank matrix B̂ which is an estimator of the matrix

B? = ΨX?ΨT.

3



Then B̂ is used in the second stage of the algorithm as the measurements for a sparse estimation
expressed by (7). The constraint of (7) depends on an absolute constant C > 0 that should be
sufficiently large.

Algorithm 1:
input : the measurements y, the operatorW , and the matrix Ψ
output: the estimate X̂

1 Low-rank estimation stage:

B̂ ∈ argmin
B<0

trace (B)

subject to ‖W (B)− y‖2 ≤ ε
(6)

2 Sparse estimation stage:

X̂ ∈ argmin
X

‖X‖1

subject to
∥∥∥ΨXΨT − B̂

∥∥∥
F
≤ Cε√

n

(7)

Post-processing. The result of the low-rank estimation stage (6) is generally not rank-one. Simi-
larly, the sparse estimation stage does not necessarily produce a X̂ that is k × k-sparse (i.e., it has
at most k nonzero rows and columns) and rank-one. In fact, since we have not imposed the posi-
tive semidefiniteness constraint (i.e., X < 0) in (7), the estimate X̂ is not even guaranteed to be
positive semidefinite (PSD). However, we can enforce the rank-one or the sparsity structure in post-
processing steps simply by projecting the produced estimate on the set of rank-one or k × k-sparse
PSD matrices. The simple but important observation is that projecting X̂ onto the desired sets at
most doubles the estimation error. This fact is shown by Lemma 2 in Section 4 in a general setting.

Alternatives. There are alternative convex relaxations for the low-rank estimation and the sparse
estimation stages of Algorithm (1). For example, (6) can be replaced by its regularized least squares
analog

B̂ ∈ argmin
B<0

1

2
‖W (B)− y‖22 + λ ‖B‖∗ ,

for an appropriate choice of the regularization parameter λ. Similarly, instead of (7) we can use
an `1-regularized least squares. Furthermore, to perform the low-rank estimation and the sparse
estimation we can use non-convex greedy type algorithms that typically have lower computational
costs. For example, the low-rank estimation stage can be performed via the Wirtinger flow method
proposed in [19]. Furthermore, various greedy compressive sensing algorithms such as the Iterative
Hard Thresholding [20] and CoSaMP [21] can be used to solve the desired sparse estimation. To
guarantee the accuracy of these compressive sensing algorithms, however, we might need to adjust
the assumption A2 to have the restricted isometry property for ck-sparse vectors with c being some
small positive integer.

2.2 Accuracy guarantees

The following theorem shows that any solution of the proposed algorithm is an accurate estimator
ofX?.
Theorem 1. Suppose that the assumptions A1, A2, and A3 hold with a sufficiently small constant
δ2k. Then, there exist positive absolute constants C1, C2, and C3 such that if

n ≥ C1m, (8)

then any estimate X̂ of the Algorithm 1 obeys∥∥∥X̂ −X?
∥∥∥
F
≤ C2ε√

n
,
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for all rank-one and k × k-sparse matricesX? < 0 with probability exceeding 1− e−C3n.

The proof of Theorem 1 is straightforward and is provided in Section 4. The main idea is first to
show the low-rank estimation stage produces an accurate estimate of B?. Because this stage can
be viewed as a standard phase retrieval through lifting, we can simply use accuracy guarantees that
are already established in the literature (e.g., [3, 6, 5]). In particular, we use [5, Theorem 2] which
established an error bound that holds uniformly for all valid B?. Thus we can ensure that X? is
feasible in the sparse estimation stage. Then the accuracy of the sparse estimation stage can also be
established by a simple adaptation of the analyses based on the restricted isometry property such as
[22].

The dependence of n (i.e., the number of measurements) and k (i.e., the sparsity of the signal) is
not explicit in Theorem 1. This dependence is absorbed in m which must be sufficiently large for
Assumption A2 to hold. Considering a Gaussian matrix Ψ , the following corollary gives a concrete
example where the dependence of non k through m is exposed.
Corollary 1. Suppose that the assumptions of Theorem 1 including (8) hold. Furthermore, suppose
that Ψ is a Gaussian matrix with iid N

(
0, 1

m

)
entries and

m ≥ c1k log
d

k
, (9)

for some absolute constant c1 > 0. Then any estimate X̂ produced by Algorithm 1 obeys∥∥∥X̂ −X?
∥∥∥
F
≤ C2ε√

n
,

for all rank-one and k×k-sparse matricesX? < 0 with probability exceeding 1−3e−c2m for some
constant c2 > 0.

Proof. It is well-known that if Ψ has iid N
(
0, 1

m

)
and we have (9) then (4) holds with high prob-

ability. For example, using a standard covering argument and a union bound [23] shows that if
(9) holds for a sufficiently large constant c1 > 0 then we have (4) for a sufficiently small con-
stant δ2k with probability exceeding 1 − 2e−cm for some constant c > 0 that depends only
on δ2k. Therefore, Theorem 1 yields the desired result which holds with probability exceeding
1− 2e−cm − e−C3n ≥ 1− 3e−c2m for some constant c2 > 0 depending only on δ2k.

3 Numerical Experiments

We evaluated the performance of Algorithm 1 through some numerical simulations. The low-rank
estimation stage and the sparse estimation stage are implemented using the TFOCS package [24].
We considered the target k-sparse signal x? to be in R256 (i.e., d = 256). The support set of
of the target signal is selected uniformly at random and the entry values on this support are drawn
independently from N (0, 1). The noise vector z is also Gaussian with independent N

(
0, 10−4

)
. The

operatorW and the matrix Ψ are drawn from some Gaussian ensembles as described in Corollary

1. We measured the relative error
‖X̂−X?‖

F

‖X?‖F
of achieved by the compared methods over 100 trials

with sparsity level (i.e., k) varying in the set {2, 4, 6, . . . , 20}.
In the first experiment, for each value of k, the pair (m,n) that determines the size W and Ψ are
selected from {(8k, 24k) , (8k, 32k) , (12k, 36k) , (12k, 48k) , (16k, 48k)}. Figure 1 illustrates the
0.9 quantiles of the relative error versus k for the mentioned choices of m.

In the second experiment we compared the performance of Algorithm 1 to the convex optimization
methods that do not exploit the structure of the sensing vectors. The setup for this experiment is the
same as in the first experiment except for the size ofW and Ψ ; we chosem =

⌈
2k
(
1 + log d

k

)⌉
and

n = 3m, where dre denotes the smallest integer greater than r. Figure 2 illustrates the 0.9 quantiles
of the measured relative errors for Algorithm 1, the semidefinite program (5) for λ = 0 and λ = 0.2,
and the `1-minimization

argmin
X

‖X‖1

subject to A (X) = y,
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Figure 1: The empirical 0.9 quantile of the relative estimation error vs. sparsity for various choices
of m and n with d = 256.

Figure 2: The empirical 0.9 quantile of the relative estimation error vs. sparsity for Algorithm 1
and different trace- and/or `1- minimization methods with d = 256, m =

⌈
2k
(
1 + log d

k

)⌉
, and

n = 3m.

which are denoted by 2-stage, SDP, SDP+`1, and `1, respectively. The SDP-based method did not
perform significantly different for other values of λ in our complementary simulations. The relative
error for each trial is also overlaid in Figure 2 visualize its empirical distribution. The empirical
performance of the algorithms are in agreement with the theoretical results. Namely in a regime
where n = O (m) = O

(
k log d

k

)
, Algorithm 1 can produce accurate estimates whereas while the

other approaches fail in this regime. The SDP and SDP+`1 show nearly identical performance. The
`1-minimization, however, competes with Algorithm 1 for small values of k. This observation can be
explained intuitively by the fact that the `1-minimization succeeds with n = O

(
k2
)

measurements
which for small values of k can be sufficiently close to the considered n = 3

⌈
2k
(
1 + log d

k

)⌉
measurements.
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4 Proofs

Proof of Theorem 1. Clearly, B? = ΨX?ΨT is feasible in 6 because of A3. Therefore, we can
show that any solution B̂ of (6) accurately estimates B? using existing results on nuclear-norm
minimization. In particular, we can invoke [5, Theorem 2 and Section 4.3] which guarantees that for
some positive absolute constants C1, C ′2, and C3 if (8) holds then∥∥∥B̂ −B?

∥∥∥
F
≤ C ′2ε√

n
,

holds for all valid B? , thereby for all valid X?, with probability exceeding 1− e−C3n. Therefore,
with C = C ′2, the target matrix X? would be feasible in (7). Now, it suffices to show that the
sparse estimation stage can produce an accurate estimate of X?. Recall that by A2, the matrix Ψ
is restricted isometry for 2k-sparse vectors. Let X be a matrix that is 2k × 2k-sparse, i.e., a matrix
whose entries except for some 2k × 2k submatrix are all zeros. Applying (4) to the columns of X
and adding the inequalities yield

(1− δ2k) ‖X‖2F ≤ ‖ΨX‖
2
F ≤ (1 + δ2k) ‖X‖2F . (10)

Because the columns ofXTΨT are also 2k-sparse we can repeat the same argument and obtain

(1− δ2k)
∥∥∥XTΨT

∥∥∥2
F
≤
∥∥∥ΨXTΨT

∥∥∥2
F
≤ (1 + δ2k)

∥∥∥XTΨT
∥∥∥2
F
. (11)

Using the facts that
∥∥∥XTΨT

∥∥∥
F
= ‖ΨX‖F and

∥∥∥ΨXTΨT
∥∥∥
F
=
∥∥∥ΨXΨT

∥∥∥
F

, the inequalities (10)
and (11) imply that

(1− δ2k)2 ‖X‖2F ≤
∥∥∥ΨXΨT

∥∥∥2
F
≤ (1 + δ2k)

2 ‖X‖2F . (12)

The proof proceeds with an adaptation of the arguments used to prove accuracy of `1-minimization
in compressive sensing based on the restricted isometry property (see, e.g., [22]). LetE = X̂−X?.
Furthermore, let S0 ⊆ [d]× [d] denote the support set of the k × k-sparse target X?. Define E0 to
be a d × d matrix that is identical to E over the index set S0 and zero elsewhere. By optimality of
X̂ and feasibility ofX? in (7) we have

‖X?‖1 ≥
∥∥∥X̂∥∥∥

1
= ‖X? +E −E0 +E0‖1 ≥ ‖X

? +E −E0‖1 − ‖E0‖1
= ‖X?‖1 + ‖E −E0‖1 − ‖E0‖1 ,

where the last line follows from the fact thatX? andE−E0 have disjoint supports. Thus, we have
‖E −E0‖1 ≤ ‖E0‖1 ≤ k ‖E0‖F . (13)

Now consider a decomposition of E −E0 as the sum

E −E0 =

J∑
j=1

Ej , (14)

such that for j ≥ 0 the d× d matricesEj have disjoint support sets of size k× k except perhaps for
the last few matrices that might have smaller supports. More importantly, the partitioning matrices
Ej are chosen to have a decreasing Frobenius norm (i.e., ‖Ej‖F ≥ ‖Ej+1‖F ) for j ≥ 1. We have∥∥∥∥∥∥

J∑
j=2

Ej

∥∥∥∥∥∥
F

≤
J∑

j=2

‖Ej‖F ≤
1

k

J∑
j=2

‖Ej−1‖1 ≤
1

k
‖E −E0‖1 ≤ ‖E0‖F ≤ ‖E0 +E1‖F , (15)

where the chain of inequalities follow from the triangle inequality, the fact that ‖Ej‖∞ ≤
1
k2 ‖Ej−1‖1 by construction, the fact that the matrices Ej have disjoint support and satisfy (14),
the bound (13), and the fact that E0 and E1 are orthogonal. Furthermore, we have∥∥∥Ψ (E0 +E1)Ψ

T
∥∥∥2
F
=

〈
Ψ (E0 +E1)Ψ

T,Ψ

E − J∑
j=2

Ej

ΨT

〉

≤
∥∥∥Ψ (E0 +E1)Ψ

T
∥∥∥
F

∥∥∥ΨEΨT
∥∥∥
F
+

1∑
i=0

J∑
j=2

∣∣∣〈ΨEiΨ
T,ΨEjΨ

T
〉∣∣∣ ,
(16)
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where the first term is obtained by the Cauchy-Schwarz inequality and the summation is obtained by
the triangle inequality. BecauseE = X̂ −X? by definition, the triangle inequality and the fact that
X? and X̂ are feasible in (7) imply that

∥∥∥ΨEΨT
∥∥∥
F
≤
∥∥∥ΨX̂ΨT − B̂

∥∥∥
F
+
∥∥∥ΨX?ΨT − B̂

∥∥∥
F
≤

2Cε√
n

. Furthermore, Lemma 1 below which is adapted from [22, Lemma 2.1] guarantees that for

i ∈ {0, 1} and j ≥ 2 we have
∣∣∣〈ΨEiΨ

T,ΨEjΨ
T
〉∣∣∣ ≤ 2δ2k ‖Ei‖F ‖Ej‖F . Therefore, we obtain

(1− δ2k)2 ‖E0 +E1‖2F ≤
∥∥∥Ψ (E0 +E1)Ψ

T
∥∥∥2
F

≤ 2Cε√
n

∥∥∥Ψ (E0 +E1)Ψ
T
∥∥∥
F
+ 2δ2k

1∑
i=0

J∑
j=2

‖Ei‖F ‖Ej‖F

≤ 2Cε√
n

(1 + δ2k) ‖E0 +E1‖F + 2δ2k

1∑
i=0

J∑
j=2

‖Ei‖F ‖Ej‖F

≤ 2Cε√
n

(1 + δ2k) ‖E0 +E1‖F + 2δ2k (‖E0‖F + ‖E1‖F ) ‖E0 +E1‖F

≤ ‖E0 +E1‖F

(
2Cε√
n

(1 + δ2k) + 2
√
2δ2k ‖E0 +E1‖F

)
where the chain of inequalities follow from the lower bound in (12), the bound (16), the upper
bound in (12), the bound (15), and the fact that ‖E0‖F + ‖E1‖F ≤

√
2 ‖E0 +E1‖F . If δ2k <

1 +
√
2
(
1−

√
1 +
√
2
)
≈ 0.216, then we have γ := (1− δ2k)2 − 2

√
2δ2k > 0 and thus

‖E0 +E1‖F ≤
2C (1 + δ2k) ε

γ
√
n

.

Adding the above inequality to (13) and applying the triangle then yields the desired result.

Lemma 1. Let Ψ be a matrix obeying (4). Then for any pair of k × k-sparse matrices X and X ′

with disjoint supports we have∣∣∣〈ΨXΨT,ΨX ′ΨT
〉∣∣∣ ≤ 2δ2k ‖X‖F

∥∥X ′∥∥
F
.

Proof. Suppose that X and X ′ have unit Frobenius norm. Using the identity〈
ΨXΨT,ΨX ′ΨT

〉
= 1

4

(∥∥∥Ψ (X +X ′
)
ΨT
∥∥∥2
F
−
∥∥∥Ψ (X −X ′)ΨT

∥∥∥2
F

)
and the fact that

X andX ′ have disjoint supports, it follows from (12) that

−2δ2k =
(1− δ2k)2 − (1 + δ2k)

2

2
≤
〈
ΨXΨT,ΨX ′ΨT

〉
≤ (1 + δ2k)

2 − (1− δ2k)2

2
= 2δ2k.

The general result follows immediately as the desired inequality is homogeneous in the Frobenius
norms ofX andX ′.

Lemma 2 (Projected estimator). Let S be a closed nonempty subset of a normed vector space
(V, ‖·‖). Suppose that for v? ∈ S we have an estimator v̂ ∈ V, not necessarily in S, that obeys
‖v̂ − v?‖ ≤ ε. If ṽ denotes a projection of v̂ onto S, then we have ‖ṽ − v?‖ ≤ 2ε.

Proof. By definition ṽ ∈ argminv∈S ‖v − v̂‖ . Therefore, because v? ∈ S we have

‖ṽ − v?‖ ≤ ‖v̂ − v?‖+ ‖ṽ − v̂‖ ≤ 2 ‖v̂ − v?‖ ≤ 2ε.
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