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Abstract

We study the problem of stochastic optimization for deep learning in the paral-
lel computing environment under communication constraints. A new algorithm
is proposed in this setting where the communication and coordination of work
among concurrent processes (local workers), is based on an elastic force which
links the parameters they compute with a center variable stored by the parameter
server (master). The algorithm enables the local workers to perform more explo-
ration, i.e. the algorithm allows the local variables to fluctuate further from the
center variable by reducing the amount of communication between local workers
and the master. We empirically demonstrate that in the deep learning setting, due
to the existence of many local optima, allowing more exploration can lead to the
improved performance. We propose synchronous and asynchronous variants of
the new algorithm. We provide the stability analysis of the asynchronous vari-
ant in the round-robin scheme and compare it with the more common parallelized
method ADMM. We show that the stability of EASGD is guaranteed when a simple
stability condition is satisfied, which is not the case for ADMM. We additionally
propose the momentum-based version of our algorithm that can be applied in both
synchronous and asynchronous settings. Asynchronous variant of the algorithm
is applied to train convolutional neural networks for image classification on the
CIFAR and ImageNet datasets. Experiments demonstrate that the new algorithm
accelerates the training of deep architectures compared to DOWNPOUR and other
common baseline approaches and furthermore is very communication efficient.

1 Introduction

One of the most challenging problems in large-scale machine learning is how to parallelize the
training of large models that use a form of stochastic gradient descent (SGD) [1]. There have been
attempts to parallelize SGD-based training for large-scale deep learning models on large number
of CPUs, including the Google’s Distbelief system [2]. But practical image recognition systems
consist of large-scale convolutional neural networks trained on few GPU cards sitting in a single
computer [3, 4]. The main challenge is to devise parallel SGD algorithms to train large-scale deep
learning models that yield a significant speedup when run on multiple GPU cards.

In this paper we introduce the Elastic Averaging SGD method (EASGD) and its variants. EASGD
is motivated by quadratic penalty method [5], but is re-interpreted as a parallelized extension of the
averaging SGD algorithm [6]. The basic idea is to let each worker maintain its own local parameter,
and the communication and coordination of work among the local workers is based on an elastic
force which links the parameters they compute with a center variable stored by the master. The center
variable is updated as a moving average where the average is taken in time and also in space over
the parameters computed by local workers. The main contribution of this paper is a new algorithm
that provides fast convergent minimization while outperforming DOWNPOUR method [2] and other
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baseline approaches in practice. Simultaneously it reduces the communication overhead between the
master and the local workers while at the same time it maintains high-quality performance measured
by the test error. The new algorithm applies to deep learning settings such as parallelized training of
convolutional neural networks.

The article is organized as follows. Section 2 explains the problem setting, Section 3 presents
the synchronous EASGD algorithm and its asynchronous and momentum-based variants, Section 4
provides stability analysis of EASGD and ADMM in the round-robin scheme, Section 5 shows ex-
perimental results and Section 6 concludes. The Supplement contains additional material including
additional theoretical analysis.

2 Problem setting

Consider minimizing a function F (x) in a parallel computing environment [7] with p ∈ N workers
and a master. In this paper we focus on the stochastic optimization problem of the following form

min
x
F (x) := E[f(x, ξ)], (1)

where x is the model parameter to be estimated and ξ is a random variable that follows the probabil-
ity distribution P over Ω such that F (x) =

∫
Ω
f(x, ξ)P(dξ). The optimization problem in Equation 1

can be reformulated as follows

min
x1,...,xp,x̃

p∑
i=1

E[f(xi, ξi)] +
ρ

2
‖xi − x̃‖2, (2)

where each ξi follows the same distribution P (thus we assume each worker can sample the entire
dataset). In the paper we refer to xi’s as local variables and we refer to x̃ as a center variable. The
problem of the equivalence of these two objectives is studied in the literature and is known as the
augmentability or the global variable consensus problem [8, 9]. The quadratic penalty term ρ in
Equation 2 is expected to ensure that local workers will not fall into different attractors that are far
away from the center variable. This paper focuses on the problem of reducing the parameter com-
munication overhead between the master and local workers [10, 2, 11, 12, 13]. The problem of data
communication when the data is distributed among the workers [7, 14] is a more general problem
and is not addressed in this work. We however emphasize that our problem setting is still highly
non-trivial under the communication constraints due to the existence of many local optima [15].

3 EASGD update rule

The EASGD updates captured in resp. Equation 3 and 4 are obtained by taking the gradient descent
step on the objective in Equation 2 with respect to resp. variable xi and x̃,

xit+1 = xit − η(git(x
i
t) + ρ(xit − x̃t)) (3)

x̃t+1 = x̃t + η

p∑
i=1

ρ(xit − x̃t), (4)

where git(x
i
t) denotes the stochastic gradient of F with respect to xi evaluated at iteration t, xit and

x̃t denote respectively the value of variables xi and x̃ at iteration t, and η is the learning rate.

The update rule for the center variable x̃ takes the form of moving average where the average is
taken over both space and time. Denote α = ηρ and β = pα, then Equation 3 and 4 become

xit+1 = xit − ηgit(xit)− α(xit − x̃t) (5)

x̃t+1 = (1− β)x̃t + β

(
1

p

p∑
i=1

xit

)
. (6)

Note that choosing β = pα leads to an elastic symmetry in the update rule, i.e. there exists an
symmetric force equal to α(xit − x̃t) between the update of each xi and x̃. It has a crucial influ-
ence on the algorithm’s stability as will be explained in Section 4. Also in order to minimize the
staleness [16] of the difference xit − x̃t between the center and the local variable, the update for the
master in Equation 4 involves xit instead of xit+1.
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Note also that α = ηρ, where the magnitude of ρ represents the amount of exploration we allow in
the model. In particular, small ρ allows for more exploration as it allows xi’s to fluctuate further
from the center x̃. The distinctive idea of EASGD is to allow the local workers to perform more
exploration (small ρ) and the master to perform exploitation. This approach differs from other
settings explored in the literature [2, 17, 18, 19, 20, 21, 22, 23], and focus on how fast the center
variable converges. In this paper we show the merits of our approach in the deep learning setting.

3.1 Asynchronous EASGD

We discussed the synchronous update of EASGD algorithm in the previous section. In this section
we propose its asynchronous variant. The local workers are still responsible for updating the local
variables xi’s, whereas the master is updating the center variable x̃. Each worker maintains its own
clock ti, which starts from 0 and is incremented by 1 after each stochastic gradient update of xi
as shown in Algorithm 1. The master performs an update whenever the local workers finished τ
steps of their gradient updates, where we refer to τ as the communication period. As can be seen
in Algorithm 1, whenever τ divides the local clock of the ith worker, the ith worker communicates
with the master and requests the current value of the center variable x̃. The worker then waits until
the master sends back the requested parameter value, and computes the elastic difference α(x− x̃)
(this entire procedure is captured in step a) in Algorithm 1). The elastic difference is then sent back
to the master (step b) in Algorithm 1) who then updates x̃.

The communication period τ controls the frequency of the communication between every local
worker and the master, and thus the trade-off between exploration and exploitation.

Algorithm 1: Asynchronous EASGD:
Processing by worker i and the master

Input: learning rate η, moving rate α,
communication period τ ∈ N

Initialize: x̃ is initialized randomly, xi = x̃,
ti = 0

Repeat
x← xi

if (τ divides ti) then
a) xi ← xi − α(x− x̃)
b) x̃ ← x̃ + α(x− x̃)

end
xi ← xi − ηgiti(x)
ti ← ti + 1

Until forever

Algorithm 2: Asynchronous EAMSGD:
Processing by worker i and the master

Input: learning rate η, moving rate α,
communication period τ ∈ N,
momentum term δ

Initialize: x̃ is initialized randomly, xi = x̃,
vi = 0, ti = 0

Repeat
x← xi

if (τ divides ti) then
a) xi ← xi − α(x− x̃)
b) x̃ ← x̃ + α(x− x̃)

end
vi ← δvi − ηgiti(x+ δvi)
xi ← xi + vi

ti ← ti + 1
Until forever

3.2 Momentum EASGD

The momentum EASGD (EAMSGD) is a variant of our Algorithm 1 and is captured in Algorithm 2.
It is based on the Nesterov’s momentum scheme [24, 25, 26], where the update of the local worker
of the form captured in Equation 3 is replaced by the following update

vit+1 = δvit − ηgit(xit + δvit) (7)

xit+1 = xit + vit+1 − ηρ(xit − x̃t),
where δ is the momentum term. Note that when δ = 0 we recover the original EASGD algorithm.

As we are interested in reducing the communication overhead in the parallel computing environ-
ment where the parameter vector is very large, we will be exploring in the experimental section the
asynchronous EASGD algorithm and its momentum-based variant in the relatively large τ regime
(less frequent communication).

4 Stability analysis of EASGD and ADMM in the round-robin scheme

In this section we study the stability of the asynchronous EASGD and ADMM methods in the round-
robin scheme [20]. We first state the updates of both algorithms in this setting, and then we study
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their stability. We will show that in the one-dimensional quadratic case, ADMM algorithm can
exhibit chaotic behavior, leading to exponential divergence. The analytic condition for the ADMM
algorithm to be stable is still unknown, while for the EASGD algorithm it is very simple1.

The analysis of the synchronous EASGD algorithm, including its convergence rate, and its averaging
property, in the quadratic and strongly convex case, is deferred to the Supplement.

In our setting, the ADMM method [9, 27, 28] involves solving the following minimax problem2,

max
λ1,...,λp

min
x1,...,xp,x̃

p∑
i=1

F (xi)− λi(xi − x̃) +
ρ

2
‖xi − x̃‖2, (8)

where λi’s are the Lagrangian multipliers. The resulting updates of the ADMM algorithm in the
round-robin scheme are given next. Let t ≥ 0 be a global clock. At each t, we linearize the function
F (xi) with F (xit) +

〈
∇F (xit), x

i − xit
〉

+ 1
2η

∥∥xi − xit∥∥2
as in [28]. The updates become

λit+1 =

{
λit − (xit − x̃t) if mod (t, p) = i− 1;
λit if mod (t, p) 6= i− 1.

(9)

xit+1 =

{
xi
t−η∇F (xi

t)+ηρ(λ
i
t+1+x̃t)

1+ηρ if mod (t, p) = i− 1;

xit if mod (t, p) 6= i− 1.
(10)

x̃t+1 =
1

p

p∑
i=1

(xit+1 − λit+1). (11)

Each local variable xi is periodically updated (with period p). First, the Lagrangian multiplier λi is
updated with the dual ascent update as in Equation 9. It is followed by the gradient descent update
of the local variable as given in Equation 10. Then the center variable x̃ is updated with the most
recent values of all the local variables and Lagrangian multipliers as in Equation 11. Note that
since the step size for the dual ascent update is chosen to be ρ by convention [9, 27, 28], we have
re-parametrized the Lagrangian multiplier to be λit ← λit/ρ in the above updates.

The EASGD algorithm in the round-robin scheme is defined similarly and is given below

xit+1 =

{
xit − η∇F (xit)− α(xit − x̃t) if mod (t, p) = i− 1;
xit if mod (t, p) 6= i− 1.

(12)

x̃t+1 = x̃t +
∑

i: mod (t,p)=i−1

α(xit − x̃t). (13)

At time t, only the i-th local worker (whose index i−1 equals tmodulo p) is activated, and performs
the update in Equations 12 which is followed by the master update given in Equation 13.

We will now focus on the one-dimensional quadratic case without noise, i.e. F (x) = x2

2 , x ∈ R.

For the ADMM algorithm, let the state of the (dynamical) system at time t be st =
(λ1
t , x

1
t , . . . , λ

p
t , x

p
t , x̃t) ∈ R2p+1. The local worker i’s updates in Equations 9, 10, and 11 are

composed of three linear maps which can be written as st+1 = (F i3 ◦ F i2 ◦ F i1)(st). For simplicity,
we will only write them out below for the case when i = 1 and p = 2:

F 1
1=


1 −1 0 0 1
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

, F 1
2=


1 0 0 0 0
ηρ

1+ηρ
1−η
1+ηρ

0 0 ηρ
1+ηρ

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

, F 1
3=


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
− 1
p

1
p

− 1
p

1
p

0

.

For each of the p linear maps, it’s possible to find a simple condition such that each map, where the
ith map has the form F i3 ◦ F i2 ◦ F i1, is stable (the absolute value of the eigenvalues of the map are

1This condition resembles the stability condition for the synchronous EASGD algorithm (Condition 17 for
p = 1) in the analysis in the Supplement.

2The convergence analysis in [27] is based on the assumption that “At any master iteration, updates from the
workers have the same probability of arriving at the master.”, which is not satisfied in the round-robin scheme.
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smaller or equal to one). However, when these non-symmetric maps are composed one after another
as follows F = F p3 ◦F

p
2 ◦F

p
1 ◦ . . .◦F 1

3 ◦F 1
2 ◦F 1

1 , the resulting map F can become unstable! (more
precisely, some eigenvalues of the map can sit outside the unit circle in the complex plane).

We now present the numerical conditions for which the ADMM algorithm becomes unstable in the
round-robin scheme for p = 3 and p = 8, by computing the largest absolute eigenvalue of the map
F . Figure 1 summarizes the obtained result.
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Figure 1: The largest absolute eigenvalue of the linear map F = F p3 ◦F
p
2 ◦F

p
1 ◦ . . . ◦F 1

3 ◦F 1
2 ◦F 1

1

as a function of η ∈ (0, 10−2) and ρ ∈ (0, 10) when p = 3 and p = 8. To simulate the chaotic
behavior of the ADMM algorithm, one may pick η = 0.001 and ρ = 2.5 and initialize the state s0

either randomly or with λi0 = 0, xi0 = x̃0 = 1000,∀i. Figure should be read in color.

On the other hand, the EASGD algorithm involves composing only symmetric linear maps due to
the elasticity. Let the state of the (dynamical) system at time t be st = (x1

t , . . . , x
p
t , x̃t) ∈ Rp+1.

The activated local worker i’s update in Equation 12 and the master update in Equation 13 can be
written as st+1 = F i(st). In case of p = 2, the map F 1 and F 2 are defined as follows

F 1=

(
1− η − α 0 α

0 1 0
α 0 1− α

)
, F 2=

(
1 0 0
0 1− η − α α
0 α 1− α

)
For the composite map F p ◦ . . . ◦ F 1 to be stable, the condition that needs to be satisfied is actually
the same for each i, and is furthermore independent of p (since each linear map F i is symmetric).

It essentially involves the stability of the 2 × 2 matrix
(

1− η − α α
α 1− α

)
, whose two (real)

eigenvalues λ satisfy (1− η − α− λ)(1− α− λ) = α2. The resulting stability condition (|λ| ≤ 1)
is simple and given as 0 ≤ η ≤ 2, 0 ≤ α ≤ 4−2η

4−η .

5 Experiments

In this section we compare the performance of EASGD and EAMSGD with the parallel method
DOWNPOUR and the sequential method SGD, as well as their averaging and momentum variants.

All the parallel comparator methods are listed below3:

• DOWNPOUR [2], the pseudo-code of the implementation of DOWNPOUR used in this
paper is enclosed in the Supplement.

• Momentum DOWNPOUR (MDOWNPOUR), where the Nesterov’s momentum scheme is
applied to the master’s update (note it is unclear how to apply it to the local workers or for
the case when τ > 1). The pseudo-code is in the Supplement.

• A method that we call ADOWNPOUR, where we compute the average over time of the
center variable x̃ as follows: zt+1 = (1− αt+1)zt + αt+1x̃t, and αt+1 = 1

t+1 is a moving
rate, and z0 = x̃0. t denotes the master clock, which is initialized to 0 and incremented
every time the center variable x̃ is updated.
• A method that we call MVADOWNPOUR, where we compute the moving average of the

center variable x̃ as follows: zt+1 = (1 − α)zt + αx̃t, and the moving rate α was chosen
to be constant, and z0 = x̃0. t denotes the master clock and is defined in the same way as
for the ADOWNPOUR method.

3We have compared asynchronous ADMM [27] with EASGD in our setting as well, the performance is
nearly the same. However, ADMM’s momentum variant is not as stable for large communication periods.
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All the sequential comparator methods (p = 1) are listed below:

• SGD [1] with constant learning rate η.
• Momentum SGD (MSGD) [26] with constant momentum δ.
• ASGD [6] with moving rate αt+1 = 1

t+1 .
• MVASGD [6] with moving rate α set to a constant.

We perform experiments in a deep learning setting on two benchmark datasets: CIFAR-10 (we refer
to it as CIFAR) 4 and ImageNet ILSVRC 2013 (we refer to it as ImageNet) 5. We focus on the image
classification task with deep convolutional neural networks. We next explain the experimental setup.
The details of the data preprocessing and prefetching are deferred to the Supplement.

5.1 Experimental setup

For all our experiments we use a GPU-cluster interconnected with InfiniBand. Each node has 4 Titan
GPU processors where each local worker corresponds to one GPU processor. The center variable of
the master is stored and updated on the centralized parameter server [2]6.

To describe the architecture of the convolutional neural network, we will first introduce a nota-
tion. Let (c, y) denotes the size of the input image to each layer, where c is the number of color
channels and y is both the horizontal and the vertical dimension of the input. Let C denotes
the fully-connected convolutional operator and let P denotes the max pooling operator, D de-
notes the linear operator with dropout rate equal to 0.5 and S denotes the linear operator with
softmax output non-linearity. We use the cross-entropy loss and all inner layers use rectified
linear units. For the ImageNet experiment we use the similar approach to [4] with the follow-
ing 11-layer convolutional neural network (3,221)C(96,108)P(96,36)C(256,32)P(256,16)C(384,14)
C(384,13)C(256,12)P(256,6)D(4096,1)D(4096,1)S(1000,1). For the CIFAR experiment we
use the similar approach to [29] with the following 7-layer convolutional neural network
(3,28)C(64,24)P(64,12)C(128,8)P(128,4)C(64,2)D(256,1)S(10,1).

In our experiments all the methods we run use the same initial parameter chosen randomly, except
that we set all the biases to zero for CIFAR case and to 0.1 for ImageNet case. This parameter is
used to initialize the master and all the local workers7. We add l2-regularization λ

2 ‖x‖
2 to the loss

function F (x). For ImageNet we use λ = 10−5 and for CIFAR we use λ = 10−4. We also compute
the stochastic gradient using mini-batches of sample size 128.

5.2 Experimental results

For all experiments in this section we use EASGD with β = 0.98 , for all momentum-based methods
we set the momentum term δ = 0.99 and finally for MVADOWNPOUR we set the moving rate to
α = 0.001. We start with the experiment on CIFAR dataset with p = 4 local workers running on
a single computing node. For all the methods, we examined the communication periods from the
following set τ = {1, 4, 16, 64}. For comparison we also report the performance of MSGD which
outperformed SGD, ASGD and MVASGD as shown in Figure 6 in the Supplement. For each method
we examined a wide range of learning rates (the learning rates explored in all experiments are sum-
marized in Table 1, 2, 3 in the Supplement). The CIFAR experiment was run 3 times independently
from the same initialization and for each method we report its best performance measured by the
smallest achievable test error. From the results in Figure 2, we conclude that all DOWNPOUR-
based methods achieve their best performance (test error) for small τ (τ ∈ {1, 4}), and become
highly unstable for τ ∈ {16, 64}. While EAMSGD significantly outperforms comparator methods
for all values of τ by having faster convergence. It also finds better-quality solution measured by the
test error and this advantage becomes more significant for τ ∈ {16, 64}. Note that the tendency to
achieve better test performance with larger τ is also characteristic for the EASGD algorithm.

4Downloaded from http://www.cs.toronto.edu/˜kriz/cifar.html.
5Downloaded from http://image-net.org/challenges/LSVRC/2013.
6Our implementation is available at https://github.com/sixin-zh/mpiT.
7On the contrary, initializing the local workers and the master with different random seeds ’traps’ the algo-

rithm in the symmetry breaking phase.
8Intuitively the ’effective β’ is β/τ = pα = pηρ (thus ρ = β

τpη
) in the asynchronous setting.
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Figure 2: Training and test loss and the test error for the center variable versus a wallclock time for
different communication periods τ on CIFAR dataset with the 7-layer convolutional neural network.

We next explore different number of local workers p from the set p = {4, 8, 16} for the CIFAR
experiment, and p = {4, 8} for the ImageNet experiment9. For the ImageNet experiment we report
the results of one run with the best setting we have found. EASGD and EAMSGD were run with
τ = 10 whereas DOWNPOUR and MDOWNPOUR were run with τ = 1. The results are in Figure 3
and 4. For the CIFAR experiment, it’s noticeable that the lowest achievable test error by either
EASGD or EAMSGD decreases with larger p. This can potentially be explained by the fact that
larger p allows for more exploration of the parameter space. In the Supplement, we discuss further
the trade-off between exploration and exploitation as a function of the learning rate (section 9.5) and
the communication period (section 9.6). Finally, the results obtained for the ImageNet experiment
also shows the advantage of EAMSGD over the competitor methods.

6 Conclusion

In this paper we describe a new algorithm called EASGD and its variants for training deep neu-
ral networks in the stochastic setting when the computations are parallelized over multiple GPUs.
Experiments demonstrate that this new algorithm quickly achieves improvement in test error com-
pared to more common baseline approaches such as DOWNPOUR and its variants. We show that
our approach is very stable and plausible under communication constraints. We provide the stability
analysis of the asynchronous EASGD in the round-robin scheme, and show the theoretical advantage
of the method over ADMM. The different behavior of the EASGD algorithm from its momentum-
based variant EAMSGD is intriguing and will be studied in future works.

9For the ImageNet experiment, the training loss is measured on a subset of the training data of size 50,000.
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Figure 3: Training and test loss and the test error for the center variable versus a wallclock time
for different number of local workers p for parallel methods (MSGD uses p = 1) on CIFAR with
the 7-layer convolutional neural network. EAMSGD achieves significant accelerations compared to
other methods, e.g. the relative speed-up for p = 16 (the best comparator method is then MSGD) to
achieve the test error 21% equals 11.1.
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Figure 4: Training and test loss and the test error for the center variable versus a wallclock time for
different number of local workers p (MSGD uses p = 1) on ImageNet with the 11-layer convolu-
tional neural network. Initial learning rate is decreased twice, by a factor of 5 and then 2, when we
observe that the online predictive loss [30] stagnates. EAMSGD achieves significant accelerations
compared to other methods, e.g. the relative speed-up for p = 8 (the best comparator method is then
DOWNPOUR) to achieve the test error 49% equals 1.8, and simultaneously it reduces the commu-
nication overhead (DOWNPOUR uses communication period τ = 1 and EAMSGD uses τ = 10).

Acknowledgments

The authors thank R. Power, J. Li for implementation guidance, J. Bruna, O. Henaff, C. Farabet, A.
Szlam, Y. Bakhtin for helpful discussion, P. L. Combettes, S. Bengio and the referees for valuable
feedback.

8



References
[1] Bottou, L. Online algorithms and stochastic approximations. In Online Learning and Neural Networks.

Cambridge University Press, 1998.
[2] Dean, J, Corrado, G, Monga, R, Chen, K, Devin, M, Le, Q, Mao, M, Ranzato, M, Senior, A, Tucker, P,

Yang, K, and Ng, A. Large scale distributed deep networks. In NIPS. 2012.
[3] Krizhevsky, A, Sutskever, I, and Hinton, G. E. Imagenet classification with deep convolutional neural

networks. In Advances in Neural Information Processing Systems 25, pages 1106–1114, 2012.
[4] Sermanet, P, Eigen, D, Zhang, X, Mathieu, M, Fergus, R, and LeCun, Y. OverFeat: Integrated Recogni-

tion, Localization and Detection using Convolutional Networks. ArXiv, 2013.
[5] Nocedal, J and Wright, S. Numerical Optimization, Second Edition. Springer New York, 2006.
[6] Polyak, B. T and Juditsky, A. B. Acceleration of stochastic approximation by averaging. SIAM Journal

on Control and Optimization, 30(4):838–855, 1992.
[7] Bertsekas, D. P and Tsitsiklis, J. N. Parallel and Distributed Computation. Prentice Hall, 1989.
[8] Hestenes, M. R. Optimization theory: the finite dimensional case. Wiley, 1975.
[9] Boyd, S, Parikh, N, Chu, E, Peleato, B, and Eckstein, J. Distributed optimization and statistical learning

via the alternating direction method of multipliers. Found. Trends Mach. Learn., 3(1):1–122, 2011.
[10] Shamir, O. Fundamental limits of online and distributed algorithms for statistical learning and estimation.

In NIPS. 2014.
[11] Yadan, O, Adams, K, Taigman, Y, and Ranzato, M. Multi-gpu training of convnets. In Arxiv. 2013.
[12] Paine, T, Jin, H, Yang, J, Lin, Z, and Huang, T. Gpu asynchronous stochastic gradient descent to speed

up neural network training. In Arxiv. 2013.
[13] Seide, F, Fu, H, Droppo, J, Li, G, and Yu, D. 1-bit stochastic gradient descent and application to data-

parallel distributed training of speech dnns. In Interspeech 2014, September 2014.
[14] Bekkerman, R, Bilenko, M, and Langford, J. Scaling up machine learning: Parallel and distributed

approaches. Camridge Universityy Press, 2011.
[15] Choromanska, A, Henaff, M. B, Mathieu, M, Arous, G. B, and LeCun, Y. The loss surfaces of multilayer

networks. In AISTATS, 2015.
[16] Ho, Q, Cipar, J, Cui, H, Lee, S, Kim, J. K, Gibbons, P. B, Gibson, G. A, Ganger, G, and Xing, E. P. More

effective distributed ml via a stale synchronous parallel parameter server. In NIPS. 2013.
[17] Azadi, S and Sra, S. Towards an optimal stochastic alternating direction method of multipliers. In ICML,

2014.
[18] Borkar, V. Asynchronous stochastic approximations. SIAM Journal on Control and Optimization,

36(3):840–851, 1998.
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