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Abstract
Recently, there has been growing interest in systematic search-based and impor-
tance sampling-based lifted inference algorithms for statistical relational models
(SRMs). These lifted algorithms achieve significant complexity reductions over
their propositional counterparts by using lifting rules that leverage symmetries in
the relational representation. One drawback of these algorithms is that they use
an inference-blind representation of the search space, which makes it difficult to
efficiently pre-compute tight upper bounds on the exact cost of inference with-
out running the algorithm to completion. In this paper, we present a principled
approach to address this problem. We introduce a lifted analogue of the proposi-
tional And/Or search space framework, which we call a lifted And/Or schematic.
Given a schematic-based representation of an SRM, we show how to efficiently
compute a tight upper bound on the time and space cost of exact inference from
a current assignment and the remaining schematic. We show how our bounding
method can be used within a lifted importance sampling algorithm, in order to
perform effective Rao-Blackwellisation, and demonstrate experimentally that the
Rao-Blackwellised version of the algorithm yields more accurate estimates on
several real-world datasets.

1 Introduction

A myriad of probabilistic logic languages have been proposed in recent years [5, 12, 17]. These
languages can express elaborate models with a compact specification. Unfortunately, performing
efficient inference in these models remains a challenge. Researchers have attacked this problem
by “lifting” propositional inference techniques; lifted algorithms identify indistinguishable random
variables and treat them as a single block at inference time, which can yield significant reductions
in complexity. Since the original proposal by Poole [15], a variety of lifted inference algorithms
have emerged. One promising approach is the class of search-based algorithms [8, 9, 16, 19, 20, 21],
which lift propositional weighted model counting [4, 18] to the first-order level by transforming the
propositional search space into a smaller lifted search space.

In general, exact lifted inference remains intractable. As a result, there has been a growing interest
in developing approximate algorithms that take advantage of symmetries. In this paper, we focus
on a class of such algorithms, called lifted sampling methods [9, 10, 13, 14, 22] and in particular on
the lifted importance sampling (LIS) algorithm [10]. LIS can be understood as a sampling analogue
of an exact lifted search algorithm called probabilistic theorem proving (PTP). PTP accepts a SRM
as input (as a Markov Logic Network (MLN) [17]), decides upon a lifted inference rule to apply
(conditioning, decomposition, partial grounding, etc.), constructs a set of reduced MLNs, recursively
calls itself on each reduced MLN in this set, and combines the returned values in an appropriate
manner. A drawback of PTP is that the MLN representation of the search space is inference unaware;
at any step in PTP, the cost of inference over the remaining model is unknown. This is problematic
because unlike (propositional) importance sampling algorithms for graphical models, which can
be Rao-Blackwellised [3] in a principled manner by sampling variables until the treewidth of the
remaining model is bounded by a small constant (called w-cutset sampling [1]), it is currently not
possible to Rao-Blackwellise LIS in a principled manner. To address these limitations, we make the
following contributions:
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1. We propose an alternate, inference-aware representation of the lifted search space that allows
efficient computation of the cost of inference at any step of the PTP algorithm. Our approach
is based on the And/Or search space perspective [6]. Propositional And/Or search associates a
compact representation of a search space with a graphical model (called a pseudotree), and then
uses this representation to guide a weighted model counting algorithm over the full search space.
We extend this notion to Lifted And/Or search spaces. We associate with each SRM a schematic,
which describes the associated lifted search space in terms of lifted Or nodes, which represent
branching on counting assignments [8] to groups of indistinguishable variables, and lifted And
nodes, which represent decompositions over independent and (possibly) identical subproblems.
Our formal specification of lifted And/Or search spaces offers an intermediate representation of
SRMs that bridges the gap between high-level probabilistic logics such as Markov Logic [17] and
the search space representation that must be explored at inference time.

2. We use the intermediate specification to characterize the size of the search space associated with
an SRM without actually exploring it, providing tight upper bounds on the complexity of PTP.
This allows us, in principle, to develop advanced approximate lifted inference algorithms that
take advantage of exact lifted inference whenever they encounter tractable subproblems.

3. We demonstrate the utility of our lifted And/Or schematic and tight upper bounds by developing
a Rao-Blackwellised lifted importance sampling algorithm, enabling the user to systematically
explore the accuracy versus complexity trade-off. We demonstrate experimentally that it vastly
improves the accuracy of estimation on several real-world datasets.

2 Background and Terminology

And/Or Search Spaces. The And/Or search space model is a general perspective for searching over
graphical models, including both probabilistic networks and constraint networks [6]. And/Or search
spaces allow for many familiar graph notions to be used to characterize algorithmic complexity.
Given a graphical model, M “ xG,Φy, where G “ xV,Ey is a graph and Φ is a set of features or
potentials, and a rooted tree T that spans G in such a manner that the edges of G that are not in T
are all back-edges (i.e., T is a pseudo tree [6]), the corresponding And/Or Search Space, denoted
ST pRq, contains alternating levels of And nodes and Or nodes. Or nodes are labeled with Xi, where
Xi P varspΦq. And nodes are labeled with xi and correspond to assignments to Xi. The root of the
And/Or search tree is an Or node corresponding to the root of T .

Intuitively, the pseudo tree can be viewed as a schematic for the structure of an And/Or search space
associated with a graphical model, which denotes (1) the conditioning order on the set varspΦq, and
(2) the locations along this ordering at which the model decomposes into independent subproblems.
Given a pseudotree, we can generate the corresponding And/Or search tree via a straightforward
algorithm [6] that adds conditioning branches to the pseudo tree representation during a DFS walk
over the structure. Adding a cache that stores the value of each subproblem (keyed by an assignment
to its context) allows each subproblem to be computed just once, and converts the search tree into
a search graph. Thus the cost of inference is encoded in the pseudo tree. In Section 3, we define a
lifted analogue to the backbone pseudo tree, called a lifted And/Or schematic, and in Section 3, we
use the definition to prove cost of inference bounds for probabilistic logic models.

First Order Logic. An entity (or a constant) is an object in the model about which we would like to
reason. Each entity has an associated type, τ . The set of all unique types forms the set of base types
for the model. A domain is a set of entities of the same type τ ; we assume that each domain is finite
and is disjoint from every other domain in the model. A variable, denoted by a lower-case letter, is a
symbolic placeholder that specifies where a substitution may take place. Each variable is associated
with a type τ ; a valid substitution requires that a variable be replaced by an object (either an entity or
another variable) with the same type. We denote the domain associated with a variable v by ∆v .

We define a predicate, denoted by Rpt1 :: τ1, . . . , tk :: τkq, to be a k-ary functor that maps typed
entities to binary-valued random variables (also called parameterized random variable [15]). A
substitution is an expression of the form tt1 “ x1, . . . , tk “ xku where ti are variables of type τi
and xi are either entities or variables of type τi. Given a predicate R and a substitution θ “ tt1 “
x1, . . . , tk “ xku, the application of θ to R yields another k-ary functor functor with each ti replaced
by xi, called an atom. If all the xi are entities, the application yields a random variable. In this case,
we refer to θ as a grounding of R, and Rθ as a ground atom. We adopt the notation θi to refer to the
i-th assignment of θ, i.e. θi “ xi.
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Statistical Relational Models combine first-order logic and probabilistic graphical models. A
popular SRM is Markov logic networks (MLNs) [17]. An MLN is a set of weighted first-order logic
clauses. Given entities, the MLN defines a Markov network over all the ground atoms in its Herbrand
base (cf. [7]), with a feature corresponding to each ground clause in the Herbrand base. (We assume
Herbrand interpretations throughout this paper.) The weight of each feature is the weight of the
corresponding first-order clause. The probability distribution associated with the Markov network
is given by: P pxq “ 1

Z expp
ř

i winipxqq where wi is the weight of the ith clause and nipxq is its
number of true groundings in x, and Z “

ř

x expp
ř

i winipxqq is the partition function. In this
paper, we focus on computing Z. It is known that many inference problems over MLNs can be
reduced to computing Z.

Probabilistic Theorem Proving (PTP) [9] is an algorithm for computing Z in MLNs. It lifts the
two main steps in propositional inference: conditioning (Or nodes) and decomposition (And nodes).
In lifted conditioning, the set of truth assignments to ground atoms of a predicate R are partitioned
into multiple parts such that in each part (1) all truth assignment have the same number of true atoms
and (2) the MLNs obtained by applying the truth assignments are identical. Thus, if R has n ground
atoms, the lifted search procedure will search over Opn ` 1q new MLNs while the propositional
search procedure will search over Op2nq MLNs, an exponential reduction in complexity. In lifted
decomposition, the MLN is partitioned into a set of MLNs that are not only identical (up to a
renaming) but also disjoint in the sense that they do not share any ground atoms. Thus, unlike the
propositional procedure which creates n disjoint MLNs and searches over each, the lifted procedure
searches over just one of the n MLNs (since they are identical). Unfortunately, lifted decomposition
and lifted conditioning cannot always be applied and in such cases PTP resorts to propositional
conditioning and decomposition. A drawback of PTP is that unlike propositional And/Or search
which has tight complexity guarantees (e.g., exponential in the treewidth and pseudotree height),
there are no (tight) formal guarantees on the complexity of PTP.1 We address this limitation in the
next two sections.

3 Lifted And/Or Schematics

S1([x],1,2,UN)

R1([x],1,2,UN) R1([x],1,2,UN)

S1([x,y],2,2,UN)

(y,1,2)

R1([x],1,2,UN)

S1([x,y],2,2,UN)

(x,1,2)

(x,1,2)

Figure 1: Possible schematics for (a) Rpxq _ Spxq, (b) Rpxq
_Spx, yq and (c) Rpxq _Rpyq _ Spx, yq, ∆x “∆y “ 2.
UN stands for unknown. Circles and diamonds represent

lifted Or and And nodes respectively.

Our goal in this section is to define a lifted
analogue the pseudotree notion employed
by the propositional And/Or framework.
The structure must encode (1) all infor-
mation contained in a propositional pseu-
dotree (a conditioning order, conditional
independence assumptions), as well as (2)
additional information needed by the PTP
algorithm in order to exploit the symme-
tries of the lifted model. Since the symme-
tries that can be exploited highly depend
on the amount of evidence, we encode the
SRM after evidence is instantiated, via a process called shattering [2]. Thus, while a pseudotree
encodes a graphical model, a schematic encodes an (SRM, evidence set) pair.

Definition A lifted Or node is a vertex labeled by a 6 ´ tuple xR,Θ, α, i, c, ty, where (1) R is a
k-ary predicate, (2) Θ is a set of valid substitutions for R, (3) α P t1, . . . , ku, represents the counting
argument for the predicate Rpt1 :: τ1, . . . , tk :: τkq and specifies a domain τα to be counted over, (4)
i is an identifier of the block of the partition being counted over, (5) c P Z` is the number of entities
in block i, and (6) t P tTrue, False, Unknownu is the truth value of the set of entities in block i.

Definition A lifted And node is a vertex labeled by F , a (possibly empty) set of formulas, where
a formula f is a pair ptpO, θ, bqu, wq, in which O is a lifted Or node xR,Θ, α, i, c, ty, θ P Θ ,
b P tTrue, Falseu, and w P R. Formulas are assumed to be in clausal form.

Definition A lifted And/Or schematic, S “ xVS , ES , vry, is a rooted tree comprised of lifted Or
nodes and lifted And nodes. S must obey the following properties:

• Every lifted Or node O P VS has a single child node N P VS .
• Every lifted And node A P VS has a (possibly empty) set of children tN1, . . . , Nnu Ă VS .

1Although, complexity bounds exist for related inference algorithms such as first-order decomposition trees
[20], they are not as tight as the ones presented in this paper.
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• For each pair of lifted Or nodes O,O1 P VS , with respective labels xR,Θ, α, i, c, ty,
xR1,Θ1, α1, i1, c1, t1y, pR, iq ‰ pR1, i1q. Pairs pR, iq uniquely identify lifted Or nodes.
• For every lifted Or node O P VS with label xR,Θ, α, i, c, ty, @θ P Θ,@α1 ‰ α, either (1) ∆θα1 =
1, or (2) θα1 P X , where X has appeared as the decomposer label [9] of some edge in pathSpO, vrq.
• For each formula fi “ ptpO, θ, bqu, wq appearing at a lifted And node A, @O P tpO, θ, bqu,
O P pathSpvr, Aq. We call the set of edges tpO,Aq | O P FormulaspAqu the back edges of S.
• Each edge between a lifted Or node O and its child node N is unlabeled. Each edge between
a lifted And node A and its child node N may be (1) unlabeled or (2) labeled with a pair pX, cq,
where X is a set of variables, called a decomposer set, and c P Z` is the the number of equivalent
entities in the block of x represented by the subtree below. If it is labeled with a decomposer set X
then (a) for every substitution set Θ labeling a lifted Or node O1 appearing in the subtree rooted at
N , Di s.t .@θ P Θ, θi P X and (b) @ decomposer sets Y labeling edges in the subtree rooted at N ,
Y XX “ H.

The lifted And/Or Schematic is a general structure for specifying the inference procedure in SRMs.
It can encode models specified in many formats, such as Markov Logic [17] and PRV models [15].
Given a model and evidence set, constructing a schematic conversion into a canonical form is achieved
via shattering [2, 11], whereby exchangeable variables are grouped together. Inference only requires
information on the size of these groups, so the representation omits information on the specific
variables in a given group. Figure 1 shows And/Or schematics for three MLNs.

Algorithm 1 Function evalNode(And)
1: Input: a schematic, T with And root node, a counting store cs
2: Output: a real number, w
3: N “ root(T )
4: for formula f P N do
5: w “ wˆ calculateWeightpf, csq
6: for childN 1 of T do
7: cs1 “ sumOutDoneAtomspcs,Nq
8: if pN,N 1q has label xV, b, cby then
9: if ExpV, bq, ccy P cs s.t. v P V then
10: cs2 “ cs1 Y xpV, bq, xtu, tptu, cbqyy

11: xP,My “getCC(V, b, cs2) //get cc for V
12: for assignment pai, kiq PM do
13: //give v its own entry in cs
14: cs3 “ updateCCAtDecomposerpcs2, V, v, pai, 1qq
15: w “ wˆevalNodepN 1, cs3qki

16: else
17: w “ wˆevalNodepN 1, csq
18: return w

Algorithm 2 Function evalNode(Or)
1: Input: a schematic, T with Or Node root, a counting store cs
2: Output: a real number, w
3: if pxroot(T),cs)y, wq P cache then return w
4: xR,Θ, α, b, c, t, P y = root(T )
5: T 1 “ child(xR,Θ, α, b, c, t, y, T q
6: V “ tv | θ P Θ, θα “ vu
7: xP, txai, kiyuy “getCC(V, b)
8: w “ 0
9: if t P tTrue, Falseu then
10: cs1 = updateCC(xP,My, R, tv)
11: w “evalNode(T 1,cs1)
12: else
13: assigns = ttv1, . . . , vnu | vi P t0, . . . , kiuu
14: for tv1, . . . , vnu P assigns do
15: cs1 = updateCC(xP,My, R, tv1, . . . , vnu)

16: w “ w `
´´

śn
i“1

`ki
vi

˘

¯

evalNodepT 1, cs1q
¯

17: insertCache(xR,Θ, α, b, c, t, P y, w)
18: return w

3.1 Lifted Node Evaluation Functions-We describe the inference procedure in Algorithms 1 and 2.
We require the notion of a counting store in order to track counting assignments over the variables in
the model. A counting store is a set of pairs xpV, iq, ccy, where V is a set of variables that are counted
over together, i is a block identifier, and cc is a counting context. A counting context (introduced in
[16]), is a pair xPr,My, where Pr is a list of m predicates and M : tTrue, Falseum Ñ k, is a map
from truth assignments to Pr to a non-negative integer denoting the count of the number of entities
in the i-th block of the partition of each v P V that take that assignment. We initialize the algorithm
by a call to Algorithm 1 with an appropriate schematic S and empty counting store.

The lifted And node function (Algorithm 1) first computes the weight of any completely conditioned
formulas. It then makes a set of evalNode calls for each of its children O; if pA,Oq has decomposer
label V , it makes a call for each assignment in each block of the partition of V ; otherwise it makes a
single call to O. The algorithm takes the product of the resulting terms along with the product of
the weights and returns the result. The lifted Or node function (Algorithm 2) retrieves the set of all
assignments previously made to its counting argument variable set; it then makes an evalNode call to
its child for each completion to its assignment set that is consistent with its labeled truth value, and
takes their weighted sum, where the weight is the number of symmetric assignments represented by
each assignment completion.

The overall complexity of depends on the number of entries in the counting store at each step of
inference. Note that Algorithm 1 reduces the size of the store by summing out over atoms that leave
context. Algorithm 2 increases the size of the store at atoms with unknown truth value by splitting
the current assignment into True and False blocks w.r.t. its atom predicate. Atoms with known truth
value leave the size of the store unchanged.
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4 Complexity Analysis
Algorithms 1 and 2 describe a DFS-style traversal of the lifted search space associated with S. As our
notion of complexity, we are interested in specifying the maximum number of times any node VS P S
is replicated during instantiation of the search space. We describe this quantity as SSN pSq. Our goal
in this section is to define the function SSN pSq, which we refer to as the induced lifted width of S.

4.1 Computing the Induced Lifted Width of a Schematic-In the propositional And/Or framework,
the inference cost of a pseudotree T is determined by DR, the tree decomposition of the graph
G “ xNodespT q, BackEdgespT qy induced by the variable ordering attained by traversing T along
any DFS ordering from root to leaves. [6]. Inference is Opexppwqq, where w is the size of the largest
cluster in DR. The analogous procedure in lifted And/Or requires additional information be stored at
each cluster. Lifted tree decompositions are identical to their propositional counterparts with two
exceptions. First, each cluster Ci requires the ordering of its nodes induced by the original order of
S. Second, each cluster Ci that contains a node which occurs after a decomposer label requires the
inclusion of the decomposer label. Formally:

Definition The tree sequence TS associated with schematic S is a partially ordered set such that:
(1) O P NodespSq ñ O P TS , (2) pA,Nq with label l P EdgespSq ñ pA, lq P TS , and (3)
AncpN1, N2, Sq ñ N1 ă N2 P TS .

Definition The path sequence P associated with tree sequence TS of schematic S is any totally
ordered subsequence of TS .
Definition Given a schematic S and its tree sequence TS , the Lifted Tree Decomposition of TS ,
denoted DS , is a pair pC, T q in which C is a set of path sequences and T is a tree whose nodes are the
members of C satisfying the following properties: (1) @pO,Aq P BackEdgespP q, Di s.t. O,A P Ci,
(2) @i, j, k s.t Ck P PathT pCi, Cjq, Ci X Cj Ď Ck, (3) @A P TS , O P Ci, A ă O ñ A P Ci.
Given the partial ordering of nodes defined by S, each schematic S induces a unique Lifted Tree
Decomposition, DS . Computing SSN pSq requires computing maxCiPC SSCpCiq. There exists a
total ordering over the nodes in each Ci; hence the lifted structure in each Ci constitutes a path. We
take the lifted search space generated by each cluster C to be a tree; hence computing the maximum
node replication is equivalent to computing the number of leaves in SSC .

In order to calculate the induced lifted width of a given path, we must first determine which Or
nodes are counted over dependently. Let VC “ tv | xR,Θ, α, i, c, ty P C, θ P Θ, θα “ vu be the set
of variables that are counted over by an Or node in cluster C. Let VC be a partition of VC into its
dependent variable counting sets; i.e. define the binary relation CS “ tpv1, v2q | DxR,Θ, α, i, c, ty P
VS s.t Dθ, θ

1 P Θ, θα “ v1, θ
1
α “ v2u. Then V “ tv1 | pv, v1q P C`S u, where C`S is the transitive

closure of CS . Let VC “ tVj | v1, v2 P Vj ðñ pv1, v2q P C
`
S u. Variables that appear in a set

Vj P VC refer to the same set of objects; thus all have the same type τj and they all share the same
partition of the entities of Tj . Let Pj denote the partition of the entities of Tj w.r.t variable set Vj .
Then each block pij P Pj is counted over independently (we refer to each pij as a dependent counting
path ). Thus we can calculate the total leaves corresponding to cluster C by taking the product of the
leaves of each pij block:

SSCpCq “
ś

VjPVC
ś

pijPPj
SSpppijq (1)

Analysis of lifted Or nodes that count over the same block pij depends on the structure of the
decomposers sets over the structure. First, we consider the case in which C contains no decomposers.

4.2 Lifted Or Nodes with No Decomposer-Consider ORC,Vj ,i, the sequence of nodes in C that
perform conditioning over the i-th block of the partition of the variables in Vj . The nodes inORC,Vj ,i
count over the same set of entities. A conditioning assignment at O assigns ct P t0 . . . cu entities to
True and cf “ c´ct entities to False w.r.t. its predicate, breaking the symmetry over the c elements
in the block. Each O1 P ORp,Vj ,i that occurs after O must perform counting over two sets of size ct
and cf separately. The number of assignments for block tVj , iu grows exponentially with the number
of ancestors counting over tVj , iu whose truth value is unknown. Formally, let cij be the size of the
i-th block of the partition of Vj , and let nij “ |tO | O P ORC,Vj ,i, N “ xR,Θ, α, i, c, unknownyu|.
For an initial domain size cij and predicate count nij , we must compute the number of possible ways
to represent cij as a sum of 2nij non-negative integers. Define kij “ 2nij . We can count the number
of leaf nodes generated by counting the number of weak compositions of cij into kij parts. Thus the
number of search space leaves corresponding to pij generated by C is:

SSpppijq “W pcij , kijq “
`

cij`kij´1
kij´1

˘

(2)
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Example Consider the example in Figure 1(a). There is a single path from the root to a leaf. The
set of variables appearing on the path, V “ txu, and hence the partition of V into variables that are
counted over together yields ttxuu. Thus n1,1 “ |tpR1p2, Unq, S1p2, Unqu| “ 2, c1,1 “ 2, and
k1,1 “ 4. So we can count the leaves of the model by the expression

`

2`4´1
4´1

˘

“ 5!
3!2! “ 10.

Algorithm 3 Function countPathLeaves
1: Input: a subsequence path P
2: Output: fpxq : Z` Ñ Z`, where x is a domain size and fpxq

is the number of search space leaves generated by P
3: //we represent the recursive polynomial
apwc1 - wc2q as a triple pa,wc1, wc2q,
where a P Z, and wc1, wc2 are either weak
compositions (base case) or triples of this
type (recursive case)

4: type WCP = WC INT |WCD (INT,WCP,WCP)
5: //evalPoly constructs the polynomial
6: function MAKEPOLY((WC nq, pt, a, sq)
7: return WCD ( n

2t´a
,WC n,WC pn´ 2t´aqq

8: function MAKEPOLY((WCD (c, wc1, wc2qq, pt, a, sqq
9: return WCDpa,makePoly wc1 pt, a, sq,makePoly wc2 pt´
s, a´ s, sqq

10: //applyDec divides out the Or nodes with
counting variables that are decomposers

11: function APPLYDEC(d,(WC a))
12: return WC pa{p2dqq
13: function APPLYDEC(d,(WCD (a,b,c)))
14: return WCD (a,applyDec d b,applyDec d c)
15: //evalPoly creates a function that takes a

domain and computes the differences of the
constituent weak compositions

16: function EVALPOLY((WCD (a,b,c)),x)
17: return aˆ (evalPoly b x - evalPoly c x)
18: function EVALPOLY((WC a),x)
19: return

`x`a´1
a´1

˘

20: t = totalOrNodes(P )
21: dv = orNodesWithDecomposerCountingArgument(P )
22: poly = WC 2t; orNodesAbove=0;orNodesBetween=0
23: forN of P do
24: ifN “ pA, xv, p, cyq then
25: poly = makePoly poly (t,orNodesAbove,orNodesBetween)
26: orNodesBetween=0
27: else
28: orNodesAbove++;orNodesBetween++

return 2dvˆ evalPoly (applyDec dv poly)

4.3 Lifted Or Nodes with Decomposers- To
determine the size of the search tree induced by
a subsequence P that contains decomposers, we
must consider whether the counting argument
of each Or node is decomposed on.

4.3.1 Lifted Or Nodes with Decomposers
as Non Counting Arguments

We first consider the case when ORC,Vj ,i con-
tains decomposer variables as non-counting
arguments. For each parent-to-child edge
(A,N,label l), Algorithm 1 generates a child for
each non-zero assignment in the counting store
containing the decomposer variable. If a path
subsequence over variable v of initial domain c
has n Or nodes, k of which occur below the de-
composer label, then we can compute the num-
ber of assignments in the counting store at each
decomposer as 2n´k. Further, we can compute
the number of non-zero leaves generated by each
assignment can be computed as the difference
in leaves from the model over n Or nodes and
the model over k Or nodes. Hence the result-
ing model has

`

2n´k
˘

´

`

c`2n´1
2n´1

˘

´
`

c`2k´1
2k´1

˘

¯

leaves. This procedure can be repeated by recur-
sively applying the rule to split each weak com-
position into a difference of weak compositions
for each decomposer label present in the subse-
quence under consideration (Algorithm 3). The
final result is a polynomial in c, which, when
given a domain size, returns the number of leaves generated by the path subsequence.

Example Consider the example in Figure 1(c). Again there is a single path from the root to a leaf. The
set of variables appearing on the path is V “ tx, yu. The partition of V into variables that are counted
over together yields V “ ttx, yuu.Algorithm 3 returns the polynomial fpxq “ 2pW px, 4q´W px, 2qq.
So the search space contains 2p

`

2`4´1
4´1

˘

´
`

2`2´1
2´1

˘

q “ 14 leaves.

4.3.2 Lifted Or Nodes with Decomposers as Counting Arguments

The procedure is similar for the case when P contains Or nodes that count over variables that have
been decomposed one addition. Or nodes that count over a variable that has previously appeared as
the decomposer label of an ancestor in the path have a domain size of 1 and hence always spawn
W p1, 2q “ 2 children instead of W px, 2q children. If there are d Or nodes in P that count over
decomposed variables, we must divide the k term of each weak composition in our polynomial by 2d.
Lines 11´ 14 of Algorithm 3 perform this operation.

Example Consider the example shown in Figure 1(b). Again there is one path from the root
to leaf, with V “ tx, yu; partitioning V into sets of variables that are counted over together
yields V “ ttxu, tyuu. Thus n1,1 “ |tpR1p2, Unqu| “ 1, c1,1 “ 2, and k1,1 “ 2. Similarly,
n2,1 “ |tS1p2, Unq|s| “ 1, c2,1 “ 2, and k2,1 “ 2. Algorithm 3 returns the constant functions
f1pxq “ f2pxq “ 2ˆW px, 1q “ 2. Equation 1 indicates that we take the product of these functions.
So the search space contains 4 leaves regardless of the domain sizes of x and y.

4.4 Overall Complexity-Detailed analysis, as well as a proof of correctness of Algorithm 3 is given
in the supplemental material section. Here we give general complexity results.
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Theorem 4.1 Given a lifted And/Or Schematic S with associated Tree Decomposition DS “ pC, T q,
the overall time and space complexity of inference in S is OpmaxCiPCSSCpCiqq.

5 An Application: Rao-Blackwellised Importance Sampling

Algorithm 4 Function makeRaoFunction
1: Input: a schematic S
2: Output: fpxq : CS Ñ Z`
3: find the clusters of S
4: pC, T q = findTreeDecomposition(S)
5: sizef “ tu
6: for Ci of C do
7: P = dependentCountingPaths(Ci)
8: cf “ tu
9: for pVj ,Pjq of P do
10: fj = countPathLeaves(Pj )
11: cf .append(xVJ , fjy)
12: sizef .append(cf )

return sizef

Algorithm 5 Function evalRaoFunction
1: Input: a counting store, cs, a list of list of size functions, sf
2: Output: s P Z`, the cost of exact inference
3: clusterCosts “ tu
4: for cfi of sf do
5: clusterCost “ 1
6: for xVj , fjy of cfi do
7: assigns “ getCCpVjq

8: for sk of assigns do
9: clusterCost “ clusterCostˆ fjpskq

10: clusterCosts.append(clusterCost)
return maxpclusterCostsq

Rao-Blackwellisation [1, 3] is a variance-reduction
technique which combines exact inference with
sampling. The idea is to partition the ground atoms
into two sets: a set of atoms, say X that will be
sampled and a set of atoms that will be summed
out analytically using exact inference techniques,
say Y. Typically, the accuracy (variance decreases)
improves as the cardinality of Y is increased. How-
ever, so does the cost of exact inference, which in
turn decreases the accuracy because fewer samples
are generated. Thus, there is a trade-off.

Rao-Blackwellisation is particularly useful in lifted
sampling schemes because subproblems over large
sets of random variables are often tractable (e.g.
subproblems containing 2n assignments can often
be summed out in Opnq time via lifted condition-
ing, or in Op1q time via lifted decomposition). The
approach presented in Section 3 is ideal for this
task because Algorithm 3 returns a function that
is specified at the schematic level rather than the
search space level. Computing the size of the re-
maining search space requires just the evaluation of
a set of polynomials. In this section, we introduce
our sampling scheme, which adds Rao-Blackwellisation to lifted importance sampling (LIS) (as
detailed in [9, 10]). Technically, LIS is a minor modification of PTP, in which instead of searching
over all possible truth assignments to ground atoms via lifted conditioning, the algorithm generates a
random truth assignment (lifted sampling), and weighs it appropriately to yield an unbiased estimate
of the partition function.

5.1 Computing the size bounding function-Given a schematic S “ xVS , ES , vry to sample, we
introduce a preprocessing step that constructs a size evaluation function for each v P VS . Algorithm
4 details the process of creating the function for one node. It takes as input the schematic S rooted at
v. It first finds the tree decomposition of S. The algorithm then finds the dependent paths in each
cluster; finally, it applies Algorithm 3 to each dependent path and wraps the resulting function with
the variable dependency. It returns a list of list of (variable,function) pairs.

5.2 Importance Sampling at lifted Or Nodes-Importance sampling at lifted Or nodes is similar to
its propositional analogue. Each lifted Or node is now specified by an 8-tuple xR,Θ, α, i, c, t, Q, sfy,
in which Q is the proposal distribution for pR, iq, and sf is the output of Algorithm 4. The sampling
algorithm takes an additional input, cb, specifying the complexity bound for Rao-Blackwellisation.
Given an or Node where t “unknown, we first compute the cost of exact inference.

Algorithm 5 describes the procedure. It takes as input (1) the list of lists sf output by Algorithm 4,
and (2) the counting store, detailing the counting assignments already made by the current sample.
For each sublist in the input list, the algorithm evaluates each (variable,function) pair by (1) retrieving
the list of current assignments from the counting store, (2) evaluating the function for the domain size
of each assignment, and (3) computing the product of the results. Each of these values represents a
bound on the cost of inference for a single cluster; Algorithm 5 returns c, the maximum of this list.

If c ă“ cb we call evalNodepSq; otherwise we sample assignment i from Q with probability
qi, update the counting store with assignment i, and call sampleNodepS1q, where S1 is the child
schematic, yielding estimate ŵ of the partition function of S1. We then return δ̂S “ ŵ

qi
as the estimate

of the partition function at S.

5.3 Importance Sampling at lifted And Nodes-Importance sampling at lifted And nodes differs
from its propositional counterpart in that a decomposer labeled edge pA, T q represents d distributions
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that are not only independent but also identical. Let A be a lifted And node that we wish to
sample, with children S1, . . . , Sk, with corresponding decomposer labels d1 . . . dk (for each edge
with no decomposer label take di “ 1). Then the estimator for the partition function at A is:
δ̂A “

ś

iPt1..ku

ś

jPt1..diu
δTi .
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Figure 2: Log variance as a function of time.

We ran our Rao-Blackwellised Importance Sam-
pler on three benchmark SRMs and datasets: (1)
The friends, smokers and Asthma MLN and dataset
described in [19], (2) The webKB MLN for col-
lective classification and (3) The Protein MLN, in
which the task is to infer protein interactions from
biological data. All models are available from
www.alchemy.cs.washington.edu.

Setup. For each model, we set 10% randomly se-
lected ground atoms as evidence, and designated
them to have True value. We then estimated the
partition function via our Rao-Blackwellised sampler
with complexity bounds t0, 10, 100, 1000u (bound of
0 yields the LIS algorithm). We used the uniform
distribution as our proposal. We ran each sampler
50 times and computed the sample variance of the
estimates.

Results. Figure 2 shows the sample variance of the
estimators as a function of time. We see that the
Rao-Blackwellised samplers typically have smaller
variance than LIS . However, increasing the complex-
ity bound typically does not improve the variance
as a function of time (but the variance does improve
as a function of number of samples). Our results
indicate that the structure of the model plays a role
in determining the most efficient complexity bound
for sampling. In general, models with large decom-
posers, especially near the bottom of the schematic,
will benefit from a larger complexity bound, because
it is often more efficient to perform exact inference
over a decomposer node.

7 Conclusions and Future Work

In this work, we have presented an inference-aware
representation of SRMs based on the And/Or frame-
work. Using this framework, we have proposed an
accurate and efficient method for bounding the cost of inference for the family of lifted condition-
ing based algorithms, such as Probabilistic Theorem Proving. Given a shattered SRM, we have
shown how the method can be used to quickly identify tractable subproblems of the model. We
have presented one immediate application of the scheme by developing a Rao-Blackwellised Lifted
Importance Sampling Algorithm, which uses our bounding scheme as a variance reducer.
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