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Abstract

Computing the MAP assignment in graphical models is generally intractable. As a
result, for discrete graphical models, the MAP problem is often approximated us-
ing linear programming relaxations. Much research has focused on characterizing
when these LP relaxations are tight, and while they are relatively well-understood
in the discrete case, only a few results are known for their continuous analog.
In this work, we use graph covers to provide necessary and sufficient conditions
for continuous MAP relaxations to be tight. We use this characterization to give
simple proofs that the relaxation is tight for log-concave decomposable and log-
supermodular decomposable models. We conclude by exploring the relationship
between these two seemingly distinct classes of functions and providing specific
conditions under which the MAP relaxation can and cannot be tight.

1 Introduction

Graphical models are a popular modeling tool for both discrete and continuous distributions. We are
commonly interested in one of two inference tasks in graphical models: finding the most probable
assignment (a.k.a., MAP inference) and computing marginal distributions. These problems are NP-
hard in general, and a variety of approximate inference schemes are used in practice.

In this work, we will focus on approximate MAP inference. For discrete state spaces, linear pro-
gramming relaxations of the MAP problem (specifically, the MAP LP) are quite common [1} |25 [3].
These relaxations replace global marginalization constraints with a collection of local marginaliza-
tion constraints. Wald and Globerson [4]] refer to these as local consistency relaxations (LCRs). The
advantage of LCRs is that they are often much easier to specify and to optimize over (e.g., by using
a message-passing algorithm such as loopy belief propagation (LBP)). However, the analogous re-
laxations for continuous state spaces may not be compactly specified and can lead to an unbounded
number of constraints (except in certain special cases). To overcome this problem, further relax-
ations have been proposed [5; 4]]. By construction, each of these further relaxations can only be tight
if the initial LCR was tight. As a result, there are compelling theoretical and algorithmic reasons to
investigate when LCRs are tight.

Among the most well-studied continuous models are the Gaussian graphical models. For this class
of models, it is known that the continuous MAP relaxation is tight when the corresponding inverse
covariance matrix is positive definite and scaled diagonally dominant (a special case of the so-called
log-concave decomposable models)[4; |6 [7]]. In addition, LBP is known to converge to the correct
solution for Gaussian graphical models and log-concave decomposable models that satisfy a scaled
diagonal dominance condition [8;|9]. While much of the prior work in this domain has focused on
log-concave graphical models, in this work, we provide a general necessary and sufficient condition
for the continuous MAP relaxation to be tight. This condition mirrors the known results for the
discrete case and is based on the notion of graph covers: the MAP LP is tight if and only if the



optimal solution to the MAP problem is an upper bound on the MAP solution over any graph cover,
appropriately scaled. This characterization will allow us to understand when the MAP relaxation is
tight for more general models.

Apart from this characterization theorem, the primary goal of this work is to move towards a uni-
form treatment of the discrete and continuous cases; they are not as different as they may initially
appear. To this end, we explore the relationship between log-concave decomposable models and log-
supermodular decomposable models (introduced here in the continuous case). Log-supermodular
models provide an example of continuous graphical models for which the MAP relaxation is tight,
but the objective function is not necessarily log-concave. These two concepts have analogs in dis-
crete state spaces. In particular, log-concave decomposability is related to log-concave closures of
discrete functions and log-supermodular decomposability is a known condition which guarantees
that the MAP LP is exact in the discrete setting. We prove a number of results that highlight the
similarities and differences between these two concepts as well as a general condition under which
the MAP relaxation corresponding to a pairwise twice continuously differentiable model cannot be
tight.

2 Prerequisites

Let f : X" — R>( be a non-negative function where X’ is the set of possible assignments of each
variable. A function f factors with respect to a hypergraph G = (V,.A), if there exist potential
functions f; : X — R>( foreachi € V and f, : xlel - R> for each & € A such that

f(xla cee ,an) = H fl(irT) H fa('roé)'
eV acA
The hypergraph G together with the potential functions f;cy and f,c 4 define a graphical model.

We are interested computing sup, ¢y« f©(x). In general, this MAP inference task is NP-hard,
but in practice, local message-passing algorithms based on approximations from statistical physics,
such as LBP, produce reasonable estimates in many settings. Much effort has been invested into
understanding when LBP solves the MAP problem. In this section, we briefly review approximate
MAP inference in the discrete setting (i.e., when X is a finite set). For simplicity and consistency, we
will focus on log-linear models as in [4]. Given a vector of sufficient statistics ¢;(x;) € R¥ for each
i € Vand x; € X and a parameter vector 0; € R¥, we will assume that f;(x;) = exp ((0;, ¢s(x;))) .
Similarly, given a vector of sufficient statistics ¢, (z,) for each « € A and z, € X lol and a
parameter vector 6,, we will assume that f, () = exp ((fu, Pa(Ta))) . We will write ¢(z) to
represent the concatenation of the individual sufficient statistics and 6 to represent the concatenation
of the parameters. The objective function can then be expressed as f¢(z) = exp ({6, ¢(z))) .

2.1 The MAP LP relaxation

The MAP problem can be formulated in terms of mean parameters [[10].

sup log f(z) = sup (0, p)
zeXxn HEM
M={peR™:3r € As.t. E;[¢p(z)] = pu}
where A is the space of all densities over ™ and M is the set of all realizable mean parameters.

In general, M is a difficult object to compactly describe and to optimize over. As a result, one
typically constructs convex outerbounds on M that are more manageable. In the case that &’ is finite,
one such outerbound is given by the MAP LP. For eachi € V and k € X, define ¢; ()5, = z=k}-
Similarly, for each o € A and k € X9, define ¢ (o) = 1z, —k}- With this choice of sufficient
statistics, M is equivalent to the set of all marginal distributions over the individual variables and
elements of A that arise from some joint probability distribution. The MAP LP is obtained by
replacing M with a relaxation that only enforces local consistency constraints.

o(Te) = pi(x;), forallae Aji € a,x; € X
at = L5 0 Sy ) = itz .
Doe, Hilzi) =1, foralli € V

The set of constraints, M, is known as the local marginal polytope. The approximate MAP prob-
lem is then to compute max,,e 1, (6, ().
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(a) A hypergraph graph, G. (b) One possible 2-cover of G.

Figure 1: An example of a graph cover of a factor graph. The nodes in the cover are labeled for the
node that they copy in the base graph.

2.2 Graph covers

In this work, we are interested in understanding when this relaxation is tight (i.e., when does
Sup, e pm, (0 1) = sup,exn log f(x)). For discrete MRFs, the MAP LP is known to be tight in
a variety of different settings [[115 125135 114]]. Two different theoretical tools are often used to inves-
tigate the tightness of the MAP LP: duality and graph covers. Duality has been particularly useful in
the design of convergent and correct message-passing schemes that solve the MAP LP [1}[15; 25 16].
Graph covers provide a theoretical framework for understanding when and why message-passing al-
gorithms such as belief propagation fail to solve the MAP problem [1'7; |18 [3].

Definition 2.1. A graph H covers a graph G = (V, E) if there exists a graph homomorphism
h : H — G such that for all vertices i € G and all j € h='(i), h maps the neighborhood 07 of j in
H bijectively to the neighborhood 0i of i in G.

If a graph H covers a graph G, then H looks locally the same as G. In particular, local message-
passing algorithms such as LBP have difficulty distinguishing a graph and its covers. If h(j) = i,
then we say that j € H is a copy of © € G. Further, H is said to be an M -cover of G if every vertex
of G has exactly M copies in H.

This definition can be easily extended to hypergraphs. Each hypergraph G can be represented in
factor graph form: create a node in the factor graph for each vertex (called variable nodes) and each
hyperedge (called factor nodes) of GG. Each factor node is connected via an edge in the factor graph
to the variable nodes on which the corresponding hyperedge depends. For an example of a 2-cover,
see Figure[l]

To any M-cover H = (VH | AH) of G given by the homomorphism h, we can associate a collection
of potentials: the potential at node i € V# is equal to fn(i)» the potential at node h(i) € G,

and for each 3 € AH, we associate the potential fn(g)- In this way, we can construct a function
I xMIVE 5 Ry such that f7 factorizes over H. We will say that the graphical model H is an

M -cover of the graphical model G whenever H is an M-cover of G and f H is chosen as described
above. It will be convenient in the sequel to write 7 (z) = fH (2! M) where 27" is the m™®
copy of variable i € V.

There is a direct correspondence between u € M, and assignments on graph covers. This corre-
spondence is the basis of the following theorem.
Theorem 2.2 (Ruozzi and Tatikonda |3).

1
sup (0, p) =sup sup sup— log f7 (")
peEML M HecM(a) oH M

where CM(G) is the set of all M-covers of G.

Theorem [2.2] claims that the optimal value of the MAP LP is equal to the supremum over all MAP
assignments over all graph covers, appropriately scaled. In particular, the proof of this result shows
that, under mild conditions, there exists an M-cover H of G and an assignment ™ such that

a7 log fH (xf) = sup,,c 4, (0, 1)
3 Continuous MRFs

In this section, we will describe how to extend the previous results from discrete to continuous MRFs
(i.e., X = R) using graph covers. The relaxation that we consider here is the appropriate extension



of the MAP LP where each of the sums are replaced by integrals [4]].

3 densities 7;, T4 S.t.
[ Talw)droy; = Ti(x;), foralla e Aji€a,z;e X
"o =KL o], foralli e V

bo =Er_[ba], foralla € A

My =

Our goal is to understand under what conditions this continuous relaxation is tight. Wald and Glober-
son [4] have approached this problem by introducing a further relaxation of My, which they call the
weak local consistency relaxation (weak LCR). They provide conditions under which the weak LCR
(and hence the above relaxation) is tight. In particular, they show that weak LCR is tight for the class
of log-concave decomposable models. In this work, we take a different approach. We first prove
the analog of Theorem [2.2]in the continuous case and then we show that the known conditions that
guarantee tightness of the continuous relaxation are simple consequences of this general theorem.

Theorem 3.1.

1
sup (A, ) =sup sup sup — log f(x')
pEM, M HeeM(G) o1 M

where CM (G) is the set of all M-covers of G.

The proof of Theorem [3.1]is conceptually straightforward, albeit technical, and can be found in
Appendix |Al The proof approximates the expectations in M, as expectations with respect to sim-
ple functions, applies the known results for finite spaces, and takes the appropriate limit. Like its
discrete counterpart, Theorem [3.1] provides necessary and sufficient conditions for the continuous
relaxation to be tight. In particular, for the relaxation to be tight, the optimal solution on any M-
cover, appropriately scaled, cannot exceed the value of the optimal solution of the MAP problem
over G.

3.1 Tightness of the MAP relaxation

Theorem provides necessary and sufficient conditions for the tightness of the continuous re-
laxation. However, checking that the maximum value attained on any M -cover is bounded by the
maximum value over the base graph to the M, in and of itself, appears to be a daunting task. In
this section, we describe two families of graphical models for which this condition is easy to ver-
ify: the log-concave decomposable functions and the log-supermodular decomposable functions.
Log-concave decomposability has been studied before, particularly in the case of Gaussian graphi-
cal models. Log-supermodularity with respect to graphical models, however, appears to have been
primarily studied in the discrete case.

3.1.1 Log-concave decomposability

A function f : R™ — R is log-concave if f(z)*f(y)!=* < f(Azx + (1 — \)y) for all 7,y € R"
and all A € [0, 1]. If f can be written as a product of log-concave potentials over a hypergraph G,
we say that f is log-concave decomposable over G.

Theorem 3.2. If f is log-concave decomposable, then sup, log f(z) = sup,,e aq, (0, 1)-
Proof. By log-concave decomposability, for any M-cover H of G,

M
FA@, . aM) < f© (W) ,

which we obtain by applying the definition of log-concavity separately to each of the M copies of
the potential functions for each node and factor of G. As aresult, sup,1 . f7(2!,... M) <

sup, f¢(z)M. The proof of the theorem then follows by applying Theorem 3.1 O

Wald and Globerson [4] provide a different proof of Theorem 3.2]by exploiting duality and the weak
LCR.



3.1.2 Log-supermodular decomposability

Log-supermodular functions have played an important role in the study of discrete graphical models,
and log-supermodularity arises in a number of classical correlations inequalities (e.g., the FKG
inequality). For log-supermodular decomposable models, the MAP LP is tight and the MAP problem
can be solved exactly in polynomial time [19; 20]. In the continuous case, log-supermodularity is
defined analogously to the discrete case. That is, f : R™ — Rx¢ is log-supermodular if f(x) f(y) <
fl@ny)f(zVy)forall z,y € R™, where x V y is the componentwise maximum of the vectors
z and y and = A y is the componentwise minimum. Continuous log-supermodular functions are
sometimes said to be multivariate totally positive of order two [21]. We will say that a graphical
model is log-supermodular decomposable if f can be factorized as a product of log-supermodular
potentials.

For any collection of vectors 2, ..., 2% € R™, let z(x!,. .., 2¥) be the vector whose j* compo-
nent is the i largest element of x%, e ,:L'? foreach j € {1,...,n}.

Theorem 3.3. If f is log-supermodular decomposable, then sup, log f(x) = sup,,e p, (6, 1)-
Proof. By log-supermodular decomposability, for any M -cover H of G,

M
At M < T G 6 aM).
m=1

Again, this follows by repeatedly applying the definition of log-supermodularity separately to
each of the M copies of the potential functions for each node and factor of G. As a result,
supg om [ 2M) < supp w Hf\f:l fE(z™). The proof of the theorem then fol-
lows by applying Theorem 3.1} O

.....

4 Log-supermodular decomposability vs. log-concave decomposability

As discussed above, log-concave decomposable and log-supermodular decomposable models are
both examples of continuous graphical models for which the MAP relaxation is tight. These two
classes are not equivalent: twice continuously differentiable functions are supermodular if and only
if all off diagonal elements of the Hessian matrix are non-negative. Contrast this with twice con-
tinuously differentiable concave functions where the Hessian matrix must be negative semidefinite.
In particular, this means that log-supermodular functions can be multimodel. In this section, we
explore the relationship between log-supermodularity and log-concavity.

4.1 Gaussian MRFs

We begin with the case of Gaussian graphical models, i.e., pairwise graphical models given by

1
f(l‘) X = (—1/2xTAx + bT:I;) = ]é_‘[/exp (—214“'.%‘? + b1$l> (IELE exp (—Aijxixj)
i 2,3

for some symmetric positive definite matrix A € R™*™ and vector b € R". Here, f factors over the
graph G corresponding to the non-zero entries of the matrix A.

Gaussian graphical models are a relatively well-studied class of continuous graphical models.
In fact, sufficient conditions for the convergence and correctness of Gaussian belief propagation
(GaBP) are known for these models. Specifically, GaBP converges to the optimal solution if the
positive definite matrix A is walk-summable, scaled diagonally dominant, or log-concave decom-
posable [22;[7;18;19]. These conditions are known to be equivalent [23; 6].

Definition 4.1. T' € R"*" is scaled diagonally dominant if Fw € R"™,w > 0 such that |Us;|w; >
Zj;ﬁi 5| w;.

In addition, the following theorem provides a characterization of scaled diagonal dominance (and
hence log-concave decomposability) in terms of graph covers for these models.

Theorem 4.2 (Ruozzi and Tatikondal6). Let A be a symmetric positive definite matrix. The following
are equivalent.



1. A is scaled diagonally dominant.
2. All covers of A are positive definite.
3. All 2-covers of A are positive definite.

The proof of this theorem constructs a specific 2-cover whose covariance matrix has negative eigen-
values whenever the matrix A is positive definite but not scaled diagonally dominant. The joint
distribution corresponding to this 2-cover is not bounded from above, so the optimal value of the
MAP relaxation is +oo as per Theorem [3.1

For Gaussian graphical models, log-concave decomposability and log-supermodular decomposabil-
ity are related: every positive definite, log-supermodular decomposable model is log-concave de-
composable, and every positive definite, log-concave decomposable model is a signed version of
some positive definite, log-supermodular decomposable Gaussian graphical model. This follows
from the following simple lemma.

Lemma 4.3. A symmetric positive definite matrix A is scaled diagonally dominant if and only if the
matrix B such that By; = A;; for all t and B;; = —|Aj| for all i # j is positive definite.

If A is positive definite and scaled diagonally dominant, then the model is log-concave decompos-
able. In contrast, the model would be log-supermodular decomposable if all of the off-diagonal ele-
ments of A were negative, independent of the diagonal. In particular, the diagonal could have both
positive and negative elements, meaning that f(x) could be either log-concave, log-convex, or nei-
ther. As log-convex quadratic forms do not correspond to normalizable Gaussian graphical models,
the log-convex case appears to be less interesting as the MAP problem is unbounded from above.
However, the situation is entirely different for constrained (over some convex set) log-quadratic
maximization. As an example, consider a box constrained log-quadratic maximization problem
where the matrix A has all negative off-diagonal entries. Such a model is always log-supermodular
decomposable. Hence, the MAP relaxation is tight, but the model is not necessarily log-concave.

4.2 Pairwise twice differentiable MRFs

All of the results from the previous section can be extended to general twice continuously differen-
tiable functions over pairwise graphical models (i.e., || = 2 for all & € A). In this section, unless
otherwise specified, assume that all models are pairwise.

Theorem 4.4. Iflog f(x) is strictly concave and twice continuously differentiable, the following are
equivalent.

1. V?(log f)(z) is scaled diagonally dominant for all x.
2. V2%(log f7)(x™) is negative definite for every graph cover H of G and every z*.
3. V2(log f7)(x™) is negative definite for every 2-cover H of G and every z'1.

The equivalence of 1-3 in Theorem [4.4]follows from Theorem 4.2}

Corollary 4.5. If V*(log f)(z) is scaled diagonally dominant for all x, then the continuous MAP
relaxation is tight.

Corollary 4.6. If f is log-concave decomposable over a pairwise graphical model and strictly log-
concave, then V*(log f)(x) is scaled diagonally dominant for all z.

Whether or not log-concave decomposability is equivalent to the other conditions listed in the state-
ment of Theorem [4.4] remains an open question (though we conjecture that this is the case). Similar
ideas can be extended to general twice continuously differentiable functions.

Theorem 4.7. Suppose log f(x) is twice continuously differentiable with a maximum at x*. Let
Bi; = |V2(log f)(x*)ij| for all i # j and By; = V?(log f)(z*)i:. If [ admits a pairwise factoriza-
tion over G and B has both positive and negative eigenvalues, then the continuous MAP relaxation
is not tight.

Proof. If B has both positive and negative eigenvalues, then there exists a 2-cover H of G such that
V2(log f7)(x*,x*) has both positive and negative eigenvalues. As a result, the lift of 2* to the



2-cover fH is a saddle point. Consequently, /7 (z*,2*) < sup,u f¥ (). By Theorem[3.1] the
continuous MAP relaxation cannot be tight. O

This negative result is quite general. If V2(log f) is positive definite but not scaled diagonally
dominant at any global optimum, then the MAP relaxation is not tight. In particular, this means that
all log-supermodular decomposable functions that meet the conditions of the theorem must be s.d.d.
at their optima.

Algorithmically, Moallemi and Van Roy [9] argued that belief propagation converges for models
that are log-concave decomposable and scaled diagonally dominant. It is unknown whether or not a
similar convergence argument applies to log-supermodular decomposable functions.

4.3 Concave closures

Many of the tightness results in the discrete case can be seen as a specific case of the continuous
results described above. Again, suppose that X' C R is a finite set.

Definition 4.8. The concave closure of a function g : X™ — RU {—o0} at x € R™ is given by

gla) =supd > Aw)gy) : 2, Ay) =1L, Ay)y = 2,A(y) 2 0

yexn

Equivalently, the concave closure of a function is the smallest concave function such that g(z) <
G(x) for all z. A function and its concave closure must necessarily have the same maximum. Com-
puting the concave (or convex) closure of a function is NP-hard in general, but it can be efficiently
computed for certain special classes of discrete functions. In particular, when X = {0, 1} and log f
is supermodular, then its concave closure can be computed in polynomial time as it is equal to the
Lovasz extension of log f. The Lovasz extension has a number of interesting properties. Most
notably, it is linear (the Lovasz extension of a sum of functions is equal to sum of the Lovasz ex-
tensions). Define the log-concave closure of f to be f(z) = exp(log f(x)). As a result, if f is

log-supermodular decomposable, then f is log-concave decomposable.

Theorem 4.9. If f = [[;cv fi [loea foo then sup,exn f(2) = 3 1 pq, (6 1)-

This theorem is a direct consequence of Theorem [3.2] For example, the tightness results of Bayati
et al. [[11] and Sanghavi et al. [14] (and indeed many others) can be seen as a special case of this
theorem. Even when |X| is not finite, the concave closure can be similarly defined, and the the-
orem holds in this case as well. Given the characterization in the discrete case, this suggests that
there could be a, possibly deep, connection between log-concave closures and log-supermodular
decomposability.

5 Discussion

We have demonstrated that the same necessary and sufficient condition based on graph covers for
the tightness of the MAP LP in the discrete case translates seamlessly to the continuous case. This
characterization allowed us to provide simple proofs of the tightness of the MAP relaxation for log-
concave decomposable and log-supermodular decomposable models. While the proof of Theorem
is nontrivial, it provides a powerful tool to reason about the tightness of MAP relaxations. We
also explored the intricate relationship between log-concave and log-supermodular decomposablity
in both the discrete and continuous cases which provided intuition about when the MAP relaxation
can or cannot be tight for pairwise graphical models.

A Proof of Theorem 3.1]

The proof of this theorem proceeds in two parts. First, we will argue that
1
sup (0,p) >sup sup sup— log f(a").
HEML M HeCM(G) zH M

To see this, fix an M-cover, H, of G via the homomorphism A and consider any assignment x,
Construct the mean parameters p’ € M, as follows.



JEV(H):h(j)=1

1
Ti(x;) = i Z 6($§{ - i) 1 = /Ti(mi)(bi(xi)dxi
1

Ta(Ta) =

Z 5(%?—%,1) ,U:x = /Ta(xa)(ba(xa)dxa

BEA(H):h(B)=a
Here, 0(+) is the Dirac delta functio This implies that
1
S log (™) = (0,4) < sup (0, ).
HEML

For the other direction, fix some p’ € M such that i/ is generated by the vector of densities 7.
We will prove the result for locally consistent probability distributions with bounded support. The
result for arbitrary 7 will then follow by constructing sequences of these distributions that converge
(in measure) to 7. For simplicity, we will assume that each potential function is strictly positiveﬂ

Consider the space [—t, t}|V| for some positive integer t. We will consider local probability dis-
tributions that are supported on subsets of this space. That is, supp(7;) C [—t,¢] for each i and
supp(7a) C [—t,1]!*! for each . For a fixed positive integer s, divide the interval [—t, ] into 25+ 1¢
intervals of size 1/2° and let Sy, denote the k™ interval. This partitioning divides [, ]!V into dis-

joint cubes of volume 1/ 25IV1 The distribution 7 can be approximated as a sequence of distributions

71,72, ... as follows. Define a vector of approximate densities 7% by setting

5(z)) & 2° [, Tilwi)das, if ) € Sy
Y 0, otherwise

[e3%

ol & 9lals J"ij:jea s, Ta(@a)dza, ifay, €I}, jeq Sk,
0, otherwise

We have 7% — T, f[it)t] 78 (x;)pi(w;)dr;  —  pi for each i € V(G), and
f[_t ]lad 75 (20)Pa (o )dz o — pil, for each a € A(G).
The continuous MAP relaxation for local probability distributions of this form can be expressed in
terms of discrete variables over X = {1,...,25"1¢}. To see this, define 1§ (z;) = [ 77 (2;)da;
foreach z; € {1,...,2° ¢t} and p%(20) = [ 75(xa)daq foreach z, € {1,..., 2571}l The
corresponding MAP LP objective, evaluated at 11°, is then

S ui) [ 2logfiledei+ 3 Snitea) [ 2 logalea)dna (1)

i€V oz Sz, acA zq Za
This MAP LP objective corresponds to a discrete graphical model that factors over the hypergraph

G, with potential functions corresponding to the above integrals over the partitions indexed by the
vector z.

¢ JT ew (/ 251ogfi<xi>dxi> T e (/ 2'“1ogfa<xa>dxa>
i€V (@) Sz acA(G) Sza
= H exp </ 2|V(G)Slogf¢(o:i)dx) H exp (/ 2|V(G)|Slogfa(za)dx>
eV (Q) Sz a€A(G) Ox

Every assignment selects a single cube indexed by z. The value of the objective is calculated by
averaging log f over the cube indexed by z. As a result, max, g°(z) < sup, f(x) and for any
M-cover H of G, max_.m g™5%(21, ... 2M) < supim fH (2!, ... 2M). As this upper bound
holds for any fixed s, it must also hold for any vector of distributions that can be written as a limit of
such distributions. Now, by applying Theorem[2.2]for the discrete case, (0, 1//) = lim,_, (6, pt°) <
SUp s SUP e (@) SUPH ﬁ log (2™ as desired. To finish the proof, observe that any Riemann
integrable density can be arbitrarily well approximated by densities of this form as ¢ — oo.

'In order to make this precise, we would need to use Lebesgue integration or take a sequence of probability
distributions over the space R V1 that arbitrarily well-approximate the desired assignment 27 .

The same argument will apply in the general case, but each of the local distributions must be contained in
the support of the corresponding potential function (i.e., supp(7;) C supp(f;)) for the integrals to exist.



References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

(13]

[14]

(15]

(16]

(17]

(18]

[19]

(20]

[21]

[22]

(23]

A. Globerson and T. S. Jaakkola. Fixing max-product: Convergent message passing algorithms for MAP
LP-relaxations. In Proc. 21st Neural Information Processing Systems (NIPS), Vancouver, B.C., Canada,
2007.

T. Werner. A linear programming approach to max-sum problem: A review. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 29(7):1165-1179, 2007.

N. Ruozzi and S. Tatikonda. Message-passing algorithms: Reparameterizations and splittings. [EEE
Transactions on Information Theory, 59(9):5860-5881, Sept. 2013.

Y. Wald and A. Globerson. Tightness results for local consistency relaxations in continuous MRFs. In
Proc. 30th Uncertainty in Artifical Intelligence (UAI), Quebec City, Quebec, Canada, 2014.

T. P. Minka. Expectation propagation for approximate Bayesian inference. In Proceedings of the Seven-
teenth conference on Uncertainty in Artificial Intelligence (UAI), pages 362-369, 2001.

N. Ruozzi and S. Tatikonda. Message-passing algorithms for quadratic minimization. Journal of Machine
Learning Research, 14:2287-2314, 2013.

D. M. Malioutov, J. K. Johnson, and A. S. Willsky. Walk-sums and belief propagation in Gaussian
graphical models. Journal of Machine Learning Research, 7:2031-2064, 2006.

C. C. Moallemi and B. Van Roy. Convergence of min-sum message passing for quadratic optimization.
Information Theory, IEEE Transactions on, 55(5):2413 —2423, May 2009.

C. C. Moallemi and B. Van Roy. Convergence of min-sum message-passing for convex optimization.
Information Theory, IEEE Transactions on, 56(4):2041 —2050, April 2010.

M. J. Wainwright and M. L. Jordan. Graphical models, exponential families, and variational inference.
Foundations and Trends®) in Machine Learning, 1(1-2):1-305, 2008.

M. Bayati, C. Borgs, J. Chayes, and R. Zecchina. Belief propagation for weighted b-matchings on arbi-
trary graphs and its relation to linear programs with integer solutions. SIAM Journal on Discrete Mathe-
matics, 25(2):989-1011, 2011.

V. Kolmogorov and R. Zabih. What energy functions can be minimized via graph cuts? In Computer
VisionECCV 2002, pages 65-81. Springer, 2002.

S. Sanghavi, D. M. Malioutov, and A. S. Willsky. Belief propagation and LP relaxation for weighted
matching in general graphs. Information Theory, IEEE Transactions on, 57(4):2203 2212, April 2011.

S. Sanghavi, D. Shah, and A. S. Willsky. Message passing for maximum weight independent set. Infor-
mation Theory, IEEE Transactions on, 55(11):4822-4834, Nov. 2009.

M. J. Wainwright, T. S. Jaakkola, and A. S. Willsky. MAP estimation via agreement on (hyper)trees:
Message-passing and linear programming. [Information Theory, IEEE Transactions on, 51(11):3697—
3717, Nov. 2005.

David Sontag, Talya Meltzer, Amir Globerson, Yair Weiss, and Tommi Jaakkola. Tightening LP relax-
ations for MAP using message-passing. In 24th Conference in Uncertainty in Artificial Intelligence, pages
503-510. AUAI Press, 2008.

P. O. Vontobel. Counting in graph covers: A combinatorial characterization of the Bethe entropy function.
Information Theory, IEEE Transactions on, Jan. 2013.

P. O. Vontobel and R. Koetter. Graph-cover decoding and finite-length analysis of message-passing itera-
tive decoding of LDPC codes. CoRR, abs/cs/0512078, 2005.

S. Iwata, L. Fleischer, and S. Fujishige. A strongly polynomial-time algorithm for minimizing submodular
functions. Journal of The ACM, 1999.

A. Schrijver. A combinatorial algorithm minimizing submodular functions in strongly polynomial time.
Journal of Combinatorial Theory, Series B, 80(2):346 — 355, 2000.

S. Karlin and Y. Rinott. Classes of orderings of measures and related correlation inequalities. i. multivari-
ate totally positive distributions. Journal of Multivariate Analysis, 10(4):467 — 498, 1980.

Y. Weiss and W. T. Freeman. Correctness of belief propagation in Gaussian graphical models of arbitrary
topology. Neural Comput., 13(10):2173-2200, Oct. 2001.

D. M. Malioutov. Approximate inference in Gaussian graphical models. Ph.D. thesis, EECS, MIT, 2008.



