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Abstract

Recent years have witnessed the superiority of non-convex sparse learning formu-
lations over their convex counterparts in both theory and practice. However, due
to the non-convexity and non-smoothness of the regularizer, how to efficiently
solve the non-convex optimization problem for large-scale data is still quite chal-
lenging. In this paper, we propose an efficient Hybrid Optimization algorithm
for NOn-convex Regularized problems (HONOR). Specifically, we develop a hy-
brid scheme which effectively integrates a Quasi-Newton (QN) step and a Gra-
dient Descent (GD) step. Our contributions are as follows: (1) HONOR incor-
porates the second-order information to greatly speed up the convergence, while
it avoids solving a regularized quadratic programming and only involves matrix-
vector multiplications without explicitly forming the inverse Hessian matrix. (2)
We establish a rigorous convergence analysis for HONOR, which shows that con-
vergence is guaranteed even for non-convex problems, while it is typically chal-
lenging to analyze the convergence for non-convex problems. (3) We conduct
empirical studies on large-scale data sets and results demonstrate that HONOR
converges significantly faster than state-of-the-art algorithms.

1 Introduction

Sparse learning with convex regularization has been successfully applied to a wide range of ap-
plications including marker genes identification [19], face recognition [22], image restoration [2],
text corpora understanding [9] and radar imaging [20]. However, it has been shown recently that
many convex sparse learning formulations are inferior to their non-convex counterparts in both the-
ory and practice [27, 12, 23, 25, 16, 26, 24, 11]. Popular non-convex sparsity-inducing penalties
include Smoothly Clipped Absolute Deviation (SCAD) [10], Log-Sum Penalty (LSP) [6] and Mini-
max Concave Penalty (MCP) [23]. Although non-convex sparse learning reveals its advantage over
the convex one, it remains a challenge to develop an efficient algorithm to solve the non-convex
optimization problem especially for large-scale data.

DC programming [21] is a popular approach to solve non-convex problems whose objective func-
tions can be expressed as the difference of two convex functions. However, a potentially non-trivial
convex subproblem is required to solve at each iteration, which is not practical for large-scale prob-
lems. SparseNet [16] can solve a least squares problem with a non-convex penalty. At each step,
SparseNet solves a univariate subproblem with a non-convex penalty which admits a closed-form
solution. However, to establish the convergence analysis, the parameter of the non-convex penalty
is required to be restricted to some interval such that the univariate subproblem (with a non-convex
penalty) is convex. Moreover, it is quite challenging to extend SparseNet to non-convex problems
with a non-least-squares loss, as the univariate subproblem generally does not admit a closed-form
solution. The GIST algorithm [14] can solve a class of non-convex regularized problems by itera-
tively solving a possibly non-convex proximal operator problem, which in turn admits a closed-form
solution. However, GIST does not well exploit the second-order information. The DC-PN algorithm
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[18] can incorporate the second-order information to solve non-convex regularized problems but it
requires to solve a non-trivial regularized quadratic subproblem at each iteration.

In this paper, we propose an efficient Hybrid Optimization algorithm for NOn-convex Regularized
problems (HONOR), which incorporates the second-order information to speed up the convergence.
HONOR adopts a hybrid optimization scheme which chooses either a Quasi-Newton (QN) step or
a Gradient Descent (GD) step per iteration mainly depending on whether an iterate has very small
components. If an iterate does not have any small component, the QN-step is adopted, which uses
L-BFGS to exploit the second-order information. The key advantage of the QN-step is that it does
not need to solve a regularized quadratic programming and only involves matrix-vector multipli-
cations without explicitly forming the inverse Hessian matrix. If an iterate has small components,
we switch to a GD-step. Our detailed theoretical analysis sheds light on the effect of such a hy-
brid scheme on the convergence of the algorithm. Specifically, we provide a rigorous convergence
analysis for HONOR, which shows that every limit point of the sequence generated by HONOR is
a Clarke critical point. It is worth noting that the convergence analysis for a non-convex problem
is typically much more challenging than the convex one, because many important properties for a
convex problem may not hold for non-convex problems. Empirical studies are also conducted on
large-scale data sets which include up to millions of samples and features; results demonstrate that
HONOR converges significantly faster than state-of-the-art algorithms.

2 Non-convex Sparse Learning

We focus on the following non-convex regularized optimization problem:

min
x∈Rn

{f(x) = l(x) + r(x)} , (1)

where we make the following assumptions throughout the paper:

(A1) l(x) is coercive, continuously differentiable and ∇l(x) is Lipschitz continuous with con-
stant L. Moreover, l(x) > −∞ for all x ∈ R

n.

(A2) r(x) =
∑n

i=1 ρ(|xi|), where ρ(t) is non-decreasing, continuously differentiable and con-
cave with respect to t in [0,∞); ρ(0) = 0 and ρ′(0) 6= 0 with ρ′(t) = ∂ρ(t)/∂t denoting
the derivative of ρ(t) at the point t.

Remark 1 Assumption (A1) allows l(x) to be non-convex. Assumption (A2) implies that ρ(|xi|) is
generally non-convex with respect to xi and the only convex case is ρ(|xi|) = λ|xi| with λ > 0.
Moreover, ρ(|xi|) is continuously differentiable with respect to xi in (−∞, 0) ∪ (0,∞) and non-
differentiable at xi = 0. In particular, ∂ρ(|xi|)/∂xi = σ(xi)ρ

′(|xi|) for any xi 6= 0, where
σ(xi) = 1, if xi > 0; σ(xi) = −1, if xi < 0 and σ(xi) = 0, otherwise. In addition, ρ′(0) > 0 must
hold (Otherwise ρ′(0) < 0 implies ρ(t) ≤ ρ(0) + ρ′(0)t < 0 for any t > 0, contradicting the fact
that ρ(t) is non-decreasing). It is also easy to show that, under the assumptions above, both l(x)
and r(x) are locally Lipschitz continuous. Thus, the Clarke subdifferential [7] is well-defined.

The commonly used least squares loss and the logistic regression loss satisfy the assumption (A1);
we can add a small term δ‖x‖2 to make them coercive. The following popular non-convex regular-
izers satisfy the assumption (A2), where λ > 0 and θ > 0 except that θ > 2 for SCAD.

• LSP: ρ(|xi|) = λ log(1 + |xi|/θ).

• SCAD: ρ(|xi|) =







λ|xi|, if |xi| ≤ λ,
−x2

i
+2θλ|xi|−λ2

2(θ−1) , if λ < |xi| ≤ θλ,

(θ + 1)λ2/2, if |xi| > θλ.

• MCP: ρ(|xi|) =

{

λ|xi| − x2
i /(2θ), if |xi| ≤ θλ,

θλ2/2, if |xi| > θλ.

Due to the non-convexity and non-differentiability of problem (1), the traditional subdifferential
concept for the convex optimization is not applicable here. Thus, we use the Clarke subdifferential
[7] to characterize the optimality of problem (1). We say x̄ is a Clarke critical point of problem (1),
if 0 ∈ ∂of(x̄), where ∂of(x̄) is the Clarke subdifferential of f(x) at x = x̄. To be self-contained,
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we briefly review the Clarke subdifferential: for a locally Lipschitz continuous function f(x), the
Clarke generalized directional derivative of f(x) at x = x̄ along the direction d is defined as

fo(x̄;d) = lim sup
x→x̄,α↓0

f(x+ αd)− f(x)

α
.

Then, the Clarke subdifferential of f(x) at x = x̄ is defined as

∂of(x̄) = {δ ∈ R
n : fo(x̄;d) ≥ dTδ, ∀d ∈ R

n}.

Interested readers may refer to Proposition 4 in the Supplement A for more properties about the
Clarke Subdifferential. We want to emphasize that some basic properties of the subdifferential of a
convex function may not hold for the Clarke Subdifferential of a non-convex function.

3 Proposed Optimization Algorithm: HONOR

Since each decomposable component function of the regularizer is only non-differentiable at the
origin, the objective function is differentiable, if the segment between any two consecutive iterates
do not cross any axis. This motivates us to design an algorithm which can keep the current iterate
in the same orthant of the previous iterate. Before we present the detailed HONOR algorithm, we
introduce two functions as follows:

Define a function π : Rn 7→ R
n with the i-th entry being:

πi(xi; yi) =

{

xi, if σ(xi) = σ(yi),
0, otherwise,

where y ∈ R
n (yi is the i-th entry of y) is the parameter of the function π; σ(·) is the sign function

defined as follows: σ(xi) = 1, if xi > 0; σ(xi) = −1, if xi < 0 and σ(xi) = 0, otherwise.

Define the pseudo-gradient ⋄f(x) whose i-th entry is given by:

⋄if(x) =



















∇il(x) + ρ′(|xi|), if xi > 0,
∇il(x)− ρ′(|xi|), if xi < 0,
∇il(x) + ρ′(0), if xi = 0, ∇il(x) + ρ′(0) < 0,
∇il(x)− ρ′(0), if xi = 0, ∇il(x)− ρ′(0) > 0,
0, otherwise,

where ρ′(t) is the derivative of ρ(t) at the point t.

Remark 2 If r(x) is convex, ⋄f(x) is the minimum-norm sub-gradient of f(x) at x. Thus,−⋄f(x)
is a descent direction. However, ⋄f(x) is not even a sub-gradient of f(x) if r(x) is non-convex.
This indicates that some obvious concepts and properties for a convex problem may not hold in the
non-convex case. Thus, it is significantly more challenging to develop and analyze algorithms for a
non-convex problem.

Interestingly, we can still show that vk = − ⋄ f(xk) is a descent direction at the point xk (refer
to Supplement D and replace pk = π(dk;vk) with vk). To utilize the second-order information,
we may perform the optimization along the direction dk = Hkvk , where Hk is a positive definite
matrix containing the second-order information. However, dk is not necessarily a descent direction.
To address this issue, we use the following slightly modified direction pk:

pk = π(dk;vk).

We can show that pk is a descent direction (proof is provided in Supplement D). Thus, we can
perform the optimization along the direction pk. Recall that we need to keep the current iterate in
the same orthant of the previous iterate. So the following iterative scheme is proposed:

xk(α) = π(xk + αpk; ξk), (2)

where

ξki =

{

σ(xk
i ), if xk

i 6= 0,
σ(vki ), if xk

i = 0,
(3)
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and α is a step size chosen by the following line search procedure: for constants α0 > 0, β, γ ∈
(0, 1) and m = 0, 1, · · · , find the smallest integer m with α = α0β

m such that the following
inequality holds:

f(xk(α)) ≤ f(xk)− γα(vk)Tdk. (4)

However, only using the above iterative scheme may not guarantee the convergence. The main chal-
lenge is: if there exists a subsequence K such that {xk

i }K converges to zero, it is possible that for

sufficiently large k ∈ K, |xk
i | is arbitrarily small but never equal to zero (refer to the proof of The-

orem 1 for more details). To address this issue, we propose a hybrid optimization scheme. Specifi-
cally, for a small constant ǫ > 0, if Ik = {i ∈ {1, · · · , n} : 0 < |xk

i | ≤ min(‖vk‖, ǫ), xk
i v

k
i < 0}

is not empty, we switch the iteration to the following gradient descent step (GD-step):

xk(α) = argmin
x

{

∇l(xk)T (x− xk) +
1

2α
‖x− xk‖2 + r(x)

}

,

where α is a step size chosen by the following line search procedure: for constants α0 > 0, β, γ ∈
(0, 1) and m = 0, 1, · · · , find the smallest integer m with α = α0β

m such that the following
inequality holds:

f(xk(α)) ≤ f(xk)−
γ

2α
‖xk(α)− xk‖2. (5)

The detailed steps of the algorithm are presented in Algorithm 1.

Remark 3 Algorithm 1 is similar to OWL-QN-type algorithms in [1, 3, 4, 17, 13]. However,
HONOR is significantly different from them: (1) The OWL-QN-type algorithms can only handle ℓ1-
regularized convex problems while HONOR is applicable to a class of non-convex problems beyond
ℓ1-regularized ones. (2) The convergence analyses of the OWL-QN-type algorithms heavily rely on
the convexity of the ℓ1-regularized problem. In contrast, the convergence analysis for HONOR is
applicable to non-convex cases beyond the convex ones, which is a non-trivial extension.

Algorithm 1: HONOR: Hybrid Optimization for NOn-convex Regularized problems

1 Initialize x0, H0 and choose β, γ ∈ (0, 1), ǫ > 0, α0 > 0;
2 for k = 0 to maxiter do

3 Compute vk ← − ⋄ f(xk) and Ik = {i ∈ {1, · · · , n} : 0 < |xk
i | ≤ ǫk, xk

i v
k
i < 0}, where

ǫk = min(‖vk‖, ǫ);
4 Initialize α← α0;

5 if Ik = ∅ then
6 (QN-step)

7 Compute dk ← Hkvk with a positive definite matrix Hk using L-BFGS;

8 Alignment: pk ← π(dk;vk);
9 while Eq. (4) is not satisfied do

10 α← αβ; xk(α)← π(xk + αpk; ξk);
11 end

12 else
13 (GD-step)
14 while Eq. (5) is not satisfied do
15 α← αβ;

16 xk(α)← argmin
x

{

∇l(xk)T (x− xk) + 1
2α‖x− xk‖2 + r(x)

}

;

17 end

18 end

19 xk+1 ← xk(α);
20 if some stopping criterion is satisfied then

21 stop and return xk+1;
22 end

23 end
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4 Convergence Analysis

We first present a few basic propositions and then provide the convergence theorem based on the
propositions; all proofs of the presented propositions are carefully handled due to the lack of con-
vexity. First of all, an optimality condition is presented (proof is provided in Supplement B), which
will be directly used in the proof of Theorem 1.

Proposition 1 Let x̄ = limk∈K,k→∞ xk, vk = − ⋄ f(xk) and v̄ = − ⋄ f(x̄), where K is a

subsequence of {1, 2, · · · , k, k + 1, · · · }. If lim infk∈K,k→∞ |vki | = 0 for all i ∈ {1, · · · , n}, then
v̄ = 0 and x̄ is a Clarke critical point of problem (1).

We subsequently show that we have a Lipschitz-continuous-like inequality in the following propo-
sition (proof is provided in Supplement C), which is crucial to prove the final convergence theorem.

Proposition 2 Let vk = −⋄f(xk), xk(α) = π(xk+αpk; ξk) and qk
α = 1

α
(π(xk+αpk; ξk)−xk)

with α > 0. Then under assumptions (A1) and (A2), we have

(i) ∇l(xk)T (xk(α) − xk) + r(xk(α)) − r(xk) ≤ −(vk)T (xk(α)− xk), (6)

(ii) f(xk(α)) ≤ f(xk)− α(vk)Tqk
α +

α2L

2
‖qk

α‖
2. (7)

We next show that both line search criteria in the QN-step [Eq. (4)] and the GD-step [Eq. (5)] at any
iteration k is satisfied in a finite number of trials (proof is provided in Supplement D).

Proposition 3 At any iteration k of the HONOR algorithm, if xk is not a Clarke critical point of
problem (1), then (a) for the QN-step, there exists an α ∈ [ᾱk, α0] with 0 < ᾱk ≤ α0 such that the
line search criterion in Eq. (4) is satisfied; (b) for the GD-step, the line search criterion in Eq. (5) is
satisfied whenever α ≥ βmin(α0, (1 − γ)/L). That is, both line search criteria at any iteration k
are satisfied in a finite number of trials.

We are now ready to provide the convergence proof for the HONOR algorithm:

Theorem 1 The sequence {xk} generated by the HONOR algorithm has at least a limit point and
every limit point of {xk} is a Clarke critical point of problem (1).

Proof It follows from Proposition 3 that both line search criteria in the QN-step [Eq. (4)] and the
GD-step [Eq. (5)] at each iteration can be satisfied in a finite number of trials. Let αk be the accepted
step size at iteration k. Then we have

f(xk)− f(xk+1) ≥ γαk(vk)Tdk = γαk(vk)THkvk (QN-step), (8)

or f(xk)− f(xk+1) ≥
γ

2αk
‖xk+1 − xk‖2 ≥

γ

2α0
‖xk+1 − xk‖2 (GD-step). (9)

Recall that Hk is positive definite and γ > 0, αk > 0, which together with Eqs.(8), (9) imply
that {f(xk)} is monotonically decreasing. Thus, {f(xk)} converges to a finite value f̄ , since f is
bounded from below (note that l(x) > −∞ and r(x) ≥ 0 for all x ∈ R

n). Due to the boundedness
of {xk} (see Proposition 7 in Supplement F), the sequence {xk} generated by the HONOR algorithm
has at least a limit point x̄. Since f is continuous, there exists a subsequence K of {1, 2 · · · , k, k +
1, · · · } such that

lim
k∈K,k→∞

xk = x̄, (10)

lim
k→∞

f(xk) = lim
k∈K,k→∞

f(xk) = f̄ = f(x̄). (11)

In the following, we prove the theorem by contradiction. Assume that x̄ is not a Clarke critical point
of problem (1). Then by Proposition 1, there exists at least one i ∈ {1, · · · , n} such that

lim inf
k∈K,k→∞

|vki | > 0. (12)
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We next consider the following two cases:

(a) There exist a subsequence K̃ of K and an integer k̃ > 0 such that for all k ∈ K̃, k ≥ k̃, the

GD-step is adopted. Then for all k ∈ K̃, k ≥ k̃, we have

xk+1 =argmin
x

{

∇l(xk)T (x− xk) +
1

2αk
‖x− xk‖2 + r(x)

}

.

Thus, by the optimality condition of the above problem and properties of the Clarke subdifferential
(Proposition 4 in Supplement A), we have

0 ∈ ∇l(xk) +
1

αk
(xk+1 − xk) + ∂or(xk+1). (13)

Taking limits with k ∈ K̃ for Eq. (9) and considering Eqs. (10), (11), we have

lim
k∈K̃,k→∞

‖xk+1 − xk‖2 ≤ 0⇒ lim
k∈K̃,k→∞

xk = lim
k∈K̃,k→∞

xk+1 = x̄. (14)

Taking limits with k ∈ K̃ for Eq. (13) and considering Eq. (14), αk ≥ βmin(α0, (1 − γ)/L)
[Proposition 3] and ∂or(·) is upper-semicontinuous (upper-hemicontinuous) [8] (see Proposition 4
in the Supplement A), we have

0 ∈ ∇l(x̄) + ∂or(x̄) = ∂of(x̄),

which contradicts the assumption that x̄ is not a Clarke critical point of problem (1).

(b) There exists an integer k̂ > 0 such that for all k ∈ K, k ≥ k̂, the QN-step is adopted. According
to Remark 7 (in Supplement F), we know that the smallest eigenvalue of Hk is uniformly bounded
from below by a positive constant, which together with Eq. (12) implies

lim inf
k∈K,k→∞

(vk)THkvk > 0. (15)

Taking limits with k ∈ K for Eq. (8), we have

lim
k∈K,k→∞

γαk(vk)THkvk ≤ 0,

which together with γ ∈ (0, 1), αk ∈ (0, α0] and Eq. (15) implies that

lim
k∈K,k→∞

αk = 0. (16)

Eq. (12) implies that there exist an integer ǩ > 0 and a constant ǭ > 0 such that ǫk =

min(‖vk‖, ǫ) ≥ ǭ for all k ∈ K, k ≥ ǩ. Notice that for all k ∈ K, k ≥ k̂, the QN-step is
adopted. Thus, we obtain that Ik = {i ∈ {1, · · · , n} : 0 < |xk

i | ≤ ǫk, xk
i v

k
i < 0} = ∅ for all

k ∈ K, k ≥ k̂. We also notice that, if |xk
i | ≥ ǭ, then there exists a constant ᾱi > 0 such that

xk
i (α) = πi(x

k
i + αpki ; ξ

k
i ) = xk

i + αpki for all α ∈ (0, ᾱi], as {pki } is bounded (Proposition 8

in Supplement F). Therefore, we conclude that, for all k ∈ K, k ≥ k̄ = max(ǩ, k̂) and for all
i ∈ {1, · · · , n}, at least one of the following three cases must happen:

xk
i = 0⇒ xk

i (α) = πi(x
k
i + αpki ; ξ

k
i ) = xk

i + αpki , ∀α > 0,

or |xk
i | > ǫk ≥ ǭ⇒ xk

i (α) = πi(x
k
i + αpki ; ξ

k
i ) = xk

i + αpki , ∀α ∈ (0, ᾱi],

or xk
i v

k
i ≥ 0⇒ xk

i p
k
i ≥ 0⇒ xk

i (α) = πi(x
k
i + αpki ; ξ

k
i ) = xk

i + αpki , ∀α > 0.

It follows that there exists a constant ᾱ > 0 such that

qk
α =

1

α
(xk(α) − xk) = pk, ∀k ∈ K, k ≥ k̄, α ∈ (0, ᾱ]. (17)

Thus, considering |pki | = |πi(d
k
i ; v

k
i )| ≤ |d

k
i | and vki p

k
i ≥ vki d

k
i for all i ∈ {1, · · · , n}, we have

‖qk
α‖

2 = ‖pk‖2 ≤ ‖dk‖2 = (vk)T (Hk)2vk, ∀k ∈ K, k ≥ k̄, α ∈ (0, ᾱ], (18)

(vk)Tqk
α = (vk)Tpk ≥ (vk)Tdk = (vk)THkvk, ∀k ∈ K, k ≥ k̄, α ∈ (0, ᾱ]. (19)
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According to Proposition 8 (in Supplement F), we know that the largest eigenvalue of Hk is uni-
formly bounded from above by some positive constant M . Thus, we have

(vk)T (Hk)2vk ≤
2

αL
(vk)THkvk −

(

2

αL
−M

)

(vk)THkvk, ∀k,

which together with Eqs. (18), (19) and dk = Hkvk implies

‖qk
α‖

2 ≤
2

αL
(vk)Tqk

α −

(

2

αL
−M

)

(vk)Tdk, ∀k ∈ K, k ≥ k̄, α ∈ (0, ᾱ]. (20)

Considering Eqs. (7), (20), we have

f(xk(α)) ≤ f(xk)− α

(

1−
αLM

2

)

(vk)Tdk, ∀k ∈ K, k ≥ k̄, α ∈ (0, ᾱ],

which together with (vk)Tdk = (vk)THkvk ≥ 0 implies that the line search criterion in the
QN-step [Eq. (4)] is satisfied if

1−
αLM

2
≥ γ , 0 < α ≤ α0 and 0 < α ≤ ᾱ, ∀k ∈ K, k ≥ k̄.

Considering the backtracking form of the line search in QN-step [Eq. (4)], we conclude that the line
search criterion in the QN-step [Eq. (4)] is satisfied whenever

αk ≥ βmin(min(ᾱ, α0), 2(1− γ)/(LM)) > 0, ∀k ∈ K, k ≥ k̄.

This leads to a contradiction with Eq. (16).

By (a) and (b), we conclude that x̄ = limk∈K,k→∞ xk is a Clarke critical point of problem (1). �

5 Experiments

In this section, we evaluate the efficiency of HONOR on solving the non-convex regularized lo-

gistic regression problem1 by setting l(x) = 1/N
∑N

i=1 log(1 + exp(−yiaTi x)), where ai ∈
R

n is the i-th sample associated with the label yi ∈ {1,−1}. Three non-convex regulariz-
ers (LSP, MCP and SCAD) are included in experiments, where the parameters are set as λ =
1/N and θ = 10−2λ (θ is set as 2 + 10−2λ for SCAD as it requires θ > 2). We com-
pare HONOR with the non-convex solver2 GIST [14] on three large-scale, high-dimensional
and sparse data sets which are summarized in Table 1. All data sets can be downloaded from
http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/.

Table 1: Data set statistics.

datasets kdd2010a kdd2010b url

♯ samples N 510,302 748,401 2,396,130
dimensionality n 20,216,830 29,890,095 3,231,961

All algorithms are implemented in Mat-
lab 2015a under a Linux operating sys-
tem and executed on an Intel Core
i7-4790 CPU (@3.6GHz) with 32GB
memory. We choose the starting points
x0 for the compared algorithms using the same random vector whose entries are i.i.d. sampled from
the standard Gaussian distribution. We terminate the compared algorithms if the relative change of
two consecutive objective function values is less than 10−5 or the number of iterations exceeds 1000
(HONOR) or 10000 (GIST). For HONOR, we set γ = 10−5, β = 0.5, α0 = 1 and the number of
unrolling steps in L-BFGS as m = 10. For GIST, we use the non-monotone line search in exper-
iments as it usually performs better than its monotone counterpart. To show how the convergence
behavior of HONOR varies over the parameter ǫ, we use three values: ǫ = 10−10, 10−6, 10−2.

We report the objective function value (in log-scale) vs. CPU time (in seconds) plots in Figure 1.
We can observe from Figure 1 that: (1) If ǫ is set to a small value, the QN-step is adopted at almost
all steps in HONOR and HONOR converges significantly faster than GIST for all three non-convex

1We do not include the term δ‖x‖2 in the objective and find that the proposed algorithm still works well.
2We do not involve SparseNet, DC programming and DC-PN in comparison, because (1) adapting

SparseNet to the logistic regression problem is challenging; (2) DC programming is shown to be much in-
ferior to GIST; (3) The objective function value of DC-PN is larger than GIST in most cases [18].
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regularizers on all three data sets. This shows that using the second-order information greatly speeds
up the convergence. (2) When ǫ increases, the ratio of the GD-step adopted in HONOR increases.
Meanwhile, the convergence performance of HONOR generally degrades. In some cases, setting
a slightly larger ǫ and adopting a small number of GD steps even sligtly boosts the convergence
performance of HONOR (the green curves in the first row). But setting ǫ to a very small value is
always safe to guarantee the fast convergence of HONOR. (3) When ǫ is large enough, the GD steps
dominate all iterations of HONOR and HONOR converge much slower. In this case, HONOR con-
verges even slower than GIST. The reason is that, at each iteration of HONOR, extra computational
cost is required in addition to the basic computation in the GD-step. Moreover, the non-monotone
line search is used in GIST while the monotone line search is adopted in the GD-step. (4) In some
cases (the first row), GIST is trapped in a local solution which has a much larger objective function
value than HONOR with a small ǫ. This implies that HONOR may have a potential of escaping
from high error plateau which often exists in high dimensional non-convex problems. These results
show the great potential of HONOR for solving large-scale non-convex sparse learning problems.
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Figure 1: Objective function value (in log-scale) vs. CPU time (in seconds) plots for differ-
ent non-convex regularizers and different large-scale and high-dimensional data sets. The ra-
tios of the GD-step adopted in HONOR are: LSP (kdd2010a): 0%, 1%, 34%; LSP (kdd2010b):
0%, 2%, 27%; LSP (url): 0.1%, 2%, 35%; MCP (kdd2010a): 0%, 88%, 100%; MCP (kdd2010b):
0%, 89%, 100%; MCP (url): 0%, 97%, 100%; SCAD (kdd2010a): 0%, 43%, 100%; SCAD (2010b):
0%, 32%, 99.5%; SCAD (url): 0%, 79%, 100%.

6 Conclusions

In this paper, we propose an efficient optimization algorithm called HONOR for solving non-convex
regularized sparse learning problems. HONOR incorporates the second-order information to speed
up the convergence in practice and uses a carefully designed hybrid optimization scheme to guaran-
tee the convergence in theory. Experiments are conducted on large-scale data sets and results show
that HONOR converges significantly faster than state-of-the-art algorithms. In our future work, we
plan to develop parallel/distributed variants of HONOR to tackle much larger data sets.
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