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Abstract

We consider the problem of high-dimensional structured estimation with norm-
regularized estimators, such as Lasso, when the design matrix and noise are drawn
from sub-exponential distributions. Existing results only consider sub-Gaussian
designs and noise, and both the sample complexity and non-asymptotic estimation
error have been shown to depend on the Gaussian width of suitable sets. In con-
trast, for the sub-exponential setting, we show that the sample complexity and the
estimation error will depend on the exponential width of the corresponding sets,
and the analysis holds for any norm. Further, using generic chaining, we show that
the exponential width for any set will be at most

√
log p times the Gaussian width

of the set, yielding Gaussian width based results even for the sub-exponential case.
Further, for certain popular estimators, viz Lasso and Group Lasso, using a VC-
dimension based analysis, we show that the sample complexity will in fact be the
same order as Gaussian designs. Our general analysis and results are the first in
the sub-exponential setting, and are readily applicable to special sub-exponential
families such as log-concave and extreme-value distributions.

1 Introduction

We consider the following problem of high dimensional linear regression:

y = Xθ∗ + ω , (1)

where y ∈ Rn is the response vector, X ∈ Rn×p has independent isotropic sub-exponential ran-
dom rows, ω ∈ Rn has i.i.d sub-exponential entries and the number of covariates p is much larger
compared to the number of samples n. Given y,X and assuming that θ∗ is ‘structured’, usually char-
acterized as having a small value according to some norm R(·), the problem is to recover θ̂ close
to θ∗. Considerable progress has been made over the past decade on high-dimensional structured
estimation using suitable M-estimators or norm-regularized regression [16, 2] of the form:

θ̂λn = argmin
θ∈Rp

1

2n
‖y −Xθ‖22 + λnR(θ) , (2)

where R(θ) is a suitable norm, and λn > 0 is the regularization parameter. Early work focused
on high-dimensional estimation of sparse vectors using the Lasso and related estimators, where
R(θ) = ‖θ‖1 [13, 22, 23]. Sample complexity of such estimators have been rigorously established
based on the RIP(restricted isometry property) [4, 5] and the more general RE(restricted eigenvalue)
conditions [3, 16, 2]. Several subsequent advances have considered structures beyond `1, using more
general norms such as (overlapping) group sparse norms, k-support norm, nuclear norm, and so on
[16, 8, 7]. In recent years, much of the literature has been unified and nonasymptotic estimation
error bound analysis techniques have been developed for regularized estimation with any norm [2].
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In spite of such advances, most of the existing literature relies on the assumption that entries in
the design matrix X ∈ Rn×p are sub-Gaussian. In particular, recent unified treatments based on
decomposable norms, atomic norms, or general norms all rely on concentration properties of sub-
Gaussian distributions [16, 7, 2]. Certain estimators, such as the Dantzig selector and variants,
consider a constrained problem rather than a regularized problem as in (2) but the analysis again
relies on entries of X being sub-Gaussian [6, 8]. For the setting of constrained estimation, building
on prior work by [10], [20] outlines a possible strategy for such analysis which can work for any
distribution, but works out details only for the sub-Gaussian case. In recent work [9] considered
sub-Gaussian design matrices but with heavy-tailed noise, and suggested modifying the estimator in
(1) via a median-of-means type estimator based on multiple estimates of θ̂ from sub-samples.

In this paper, we establish results for the norm-regularized estimation problem as in (2) for any
norm R(θ) under the assumption that elements Xij of the design matrix X ∈ Rn×p follow a sub-
exponential distribution, whose tails are dominated by scaled versions of the (symmetric) exponen-
tial distribution, i.e., P (|Xij | > t) ≤ c1 exp(−t/c2) for all t ≥ 0 and for suitable constants c1, c2
[12, 21]. To understand the motivation of our work, note that in most of machine learning and
statistics, unlike in compressed sensing, the design matrix cannot be chosen but gets determined
by the problem. In many application domains like finance, climate science, ecology, social net-
work analysis, etc., variables with heavier tails than sub-Gaussians are frequently encountered. For
example in climate science, to understand the relationship between extreme value phenomena like
heavy precipitation variables from the extreme-value distributions are used. While high dimensional
statistical techniques have been used in practice for such applications, currently lacking is the the-
oretical guarantees on their performance. Note that the class of sub-exponential distributions have
heavier tails compared to sub-Gaussians but have all moments. To the best of our knowledge, this
is the first paper to analyze regularized high-dimensional estimation problems of the form (2) with
sub-exponential design matrices and noise.

In our main result, we obtain bounds on the estimation error ‖∆̂n‖2 = ‖θ̂λn − θ∗‖2, where θ∗ is
the optimal structured parameter. The sample complexity bounds are log p worse compared to the
sub-Gaussian case. For example for the `1 norm, we obtain n = O(s log2 p) sample complexity
bound instead of O(s log p) for the sub-Gaussian case. The analysis depends on two key ingredients
which have been discussed in previous work [16, 2]: 1. The satisfaction of the RE condition on a set
A which is the error set associated with the norm, and 2. The design matrix-noise interaction man-
ifested in the form of lower bounds on the regularization parameter. Specifically, the RE condition
depends on the properties of the design matrix. We outline two different approaches for obtaining
the sample complexity, to satisfy the RE condition: one based on the ‘exponential width’ of A and
another based on the VC-dimension of linear predictors drawn from A [10, 20, 11]. For two widely
used cases, Lasso and group-lasso, we show that the VC-dimension based analysis leads to a sharp
bound on the sample complexity, which is exactly the same order as that for sub-Gaussian design
matrices! In particular, for Lasso with s-sparsity, O(s log p) samples are sufficient to satisfy the RE
condition for sub-exponential designs. Further, we show that the bound on the regularization param-
eter depends on the ‘exponential width’ we(ΩR) of the unit norm ball ΩR = {u ∈ Rp|R(u) ≤ 1}.
Through a careful argument based on generic chaining [19], we show that for any set T ⊂ Rp, the
exponential width we(T ) ≤ cwg(T )

√
log p, where wg(T ) is the Gaussian width of the set T and c

is an absolute constant. Recent advances on computing or bounding wg(T ) for various structured
sets can then be used to bound we(T ). Again, for the case of Lasso, we(ΩR) ≤ c log p.

The rest of the paper is organized as follows. In Section 2 we describe various aspects of the problem
and highlight our contributions. In Section 3 we establish a key result on the relationship between
Gaussian and exponential widths of sets which will be used for our subsequent analysis. In Section
4 we establish results on the regularization parameter λn, RE constant κ and the non-asymptotic
estimation error ‖∆̂n‖2. We show some experimental results before concluding in Section 6.

2 Background and Preliminaries

In this section, we describe various aspects of the problem, introducing notations along the way, and
highlight our contributions. Throughout the paper values of constants change from line to line.
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2.1 Problem setup

We consider the problem defined in (2). The goal of this paper is to establish conditions for consis-
tent estimation and derive bounds on ‖∆̂n‖2 = ‖θ̂ − θ∗‖2.

Error set: Under the assumption λn ≥ βR∗( 1
nX

T (y−Xθ∗)), β > 1, the error vector ∆̂n = θ̂−θ∗
lies in a cone A ⊆ Sp−1 [3, 16, 2].

Regularization parameter: For β > 1, λn ≥ βR∗( 1
nX

T (y −Xθ)) following analysis in [16, 2].

Restricted Eigenvalue (RE) conditions: For consistent estimation, the design matrix X should
satisfy the following RE condition infu∈A

1√
n
‖Xu‖2 ≥ κ on the error set A for some constant

κ > 0 [3, 16, 2, 20, 18]. The RE sample complexity is the number of samples n required to satisfy
the RE condition and has been shown to be related to the Gaussian width of the error set. [7, 2, 20].

Deterministic recovery bounds: If X satisfies the RE condition on the error set A and λn satisfies
the assumptions stated earlier, [2] show the error bound ‖∆̂n‖2 ≤ cΨ(A)λnκ with high probability
(w.h.p), for some constant c, where Ψ(A) = supu∈A

R(u)
‖u‖2 is the norm compatibility constant.

`1 norm regularization: One example for R(·) we will consider throughout the paper is the `1
norm regularization. In particular we will always consider ‖θ∗‖0 = s.

Group-sparse norms: Another popular example we consider is the group-sparse norm. Let G =
{G1,G2, . . . ,GNG} denote a collection of groups, which are blocks of any vector θ ∈ Rp. For any
vector θ ∈ Rp, let θNG denote a vector with coordinates θNGi = θi if i ∈ GNG , else θNGi = 0.
Let m = maxi∈[1,··· ,NG ] |Gi| be the maximum size of any group. In the group sparse setting for
any subset SG ⊆ {1, 2, . . . , NG} with cardinality |SG | = sG , we assume that the parameter vector
θ∗ ∈ Rp satisfies θ∗NG = ~0, ∀NG 6∈ SG . Such a vector is called SG-group sparse. We will focus on
the case when R(θ) =

∑NG
i=1 ‖θi‖2.

2.2 Contributions

One of our major results is the relationship between the Gaussian and exponential width of sets
using arguments from generic chaining [19]. Existing analysis frameworks for our problem for
sub-Gaussian X and ω obtain results in terms of Gaussian widths of suitable sets associated with
the norm [2, 20]. For sub-exponential X and ω this dependency, in some cases, is replaced by the
exponential width of the set. By establishing a precise relationship between the two quantities, we
leverage existing results on the computation of Gaussian widths for our scenario. Another contribu-
tion is obtaining the same order of the RE sample complexity bound as for the sub-Gaussian case
for `1 and group-sparse norms. While this strong result has already been explored in [11] for `1,
we adapt it for our analysis framework and also extend it to the group-sparse setting. As for the
application of our work, the results are applicable to all log-concave distributions which by defi-
nition are distributions admitting a log-concave density f i.e. a density of the form f = eΨ with
Ψ any concave function. This covers many practically used distributions including extreme value
distributions.

3 Relationship between Gaussian and Exponential Widths

In this section we introduce a complexity parameter of a set we(·), which we call the exponential
width of the set, and establish a sharp upper bound for it in terms of the Gaussian width of the set
wg(·). In particular, we prove the inequality: we(A) ≤ c · wg(A)

√
log p for some fixed constant c.

To see the connection with the rest of the paper, remember that our subsequent results for λn and κ
are expressed in terms of the Gaussian width and exponential width of specific sets associated with
the norm. With this result, we establish precise sample complexity bounds by leveraging a body of
literature on the computation of Gaussian widths for various structured sets [7, 20]. We note that
while the exponential width has been defined and used earlier, see for e.g. [19, 15], to the best of
our knowledge this is the first result establishing the relation between the Gaussian and exponential
widths of sets. Our result relies on generic chaining [19].

3



3.1 Generic Chaining, Gaussian Width and Exponential Widths

Consider a process {Xt}t∈T = 〈h, t〉 indexed by a set T ⊆ Rp, where each element hi has mean
0. It follows from the definition that the process is centered, i.e., E(Xt) = 0,∀t ∈ T . We will
also assume for convenience w.l.o.g that set T is finite. Also, for any s, t ∈ T , consider a canonical
distance metric d(s, t). We are interested in computing the quantity E supt∈T Xt. Now, for reasons
detailed in the supplement, consider that we split T into a sequence of subsets T0 ⊆ T1 ⊆ . . . ⊆ T ,
with T0 = {t0}, |Tn| ≤ 22n for n ≥ 1 and Tm = T for some large m. Let function πn : T → Tn,
defined as πn(t) = {s : d(s, t) ≤ d(s1, t),∀s, s1 ∈ Tn}, maps each point t ∈ T to some point
s ∈ Tn closest according to d. The set Tn and the associated function πn define a partition An
of the set T . Each element of the partition An has some element s ∈ Tn and all t ∈ T closest to
it according to the map πn. Also the size of the partition |An| ≤ 22n . An are called admissible
sequences in generic chaining. Note that there are multiple admissible sequences corresponding to
multiple ways of defining the sets T0, T1, . . . , Tm. We will denote by ∆(An(t)) the diameter of the
element An(t) w.r.t distance metric d defined as ∆(An(t)) = sups,t∈An(t) d(s, t).
Definition 1 γ-functionals: [19] Given α > 0, and a metric space (T, d) we define

γα(T, d) = inf sup
t

∑
n≥0

2n/α∆(An(t)) , (3)

where the inf is taken over all possible admissible sequences of the set T .
Gaussian width: Let {Xt}t∈T = 〈g, t〉 where each element gi is i.i.d N(0, 1). The quantity
wg(T ) = E supt∈T Xt is called the Gaussian width of the set T . Define the distance metric
d2(s, t) = ‖s − t‖2. The relation between Gaussian width and the γ-functionals is seen from
the following result from [Theorem 2.1.1] of [19] stated below:

1

L
γ2(T, d2) ≤ wg(T ) ≤ Lγ2(T, d2) . (4)

Note that, following [Theorem 2.1.5] in [19] any process which satisfies the concentration bound
P (|Xs −Xt| ≥ u) ≤ 2 exp

(
− u2

d2(s,t)2

)
satisfies the upper bound in (4).

Exponential width: Let {Xt}t∈T = 〈e, t〉 where each element ei is is a centered i.i.d exponential
random variable satisfying P (|ei| ≥ u) = exp(−u). Define the distance metrics d2(s, t) = ‖s−t‖2
and d∞(s, t) = ‖s − t‖∞. The quantity we(T ) = E supt∈T Xt is called the exponential width of
the set T . By [Theorem 1.2.7] and [Theorem 5.2.7] in [19], for some universal constant L, we(T )
satisfies:

1

L
(γ2(T, d2) + γ1(T, d∞)) ≤ we(T ) ≤ L(γ2(T, d2) + γ1(T, d∞)) (5)

Note that any process which satisfies the sub-exponential concentration bound P (|Xs−Xt| ≥ u) ≤
2 exp

(
−K min

(
u2

d2(s,t)2 ,
u

d∞(s,t)

))
satisfies the upper bound in the above inequality [15, 19].

3.2 An Upper Bound for the Exponential Width

In this section we prove the following relationship between the exponential and Gaussian widths:

Theorem 1 For any set T ⊂ Rp, for some constant c the following holds:

we(T ) ≤ c · wg(T )
√

log p . (6)

Proof: The result depends on geometric results [Lemma 2.6.1] and [Theorem 2.6.2] in [19].

Theorem 2 [19] Consider a countable set T ⊂ Rp, and a number u > 0. Assume that the
Gaussian width is bounded i.e. S = γ2(T, d2) ≤ ∞. Then there is a decomposition T ⊂ T1 + T2

where T1 + T2 = {t1 + t2 : t1 ∈ T1, t2 ∈ T2}, such that
γ2(T1, d2) ≤ LS , γ1(T1, d∞) ≤ LSu (7)

γ2(T2, d2) ≤ LS , T2 ⊂
LS

u
B1 , (8)

where L is some universal constant and B1 is the unit `1 norm ball in Rp.
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We first examine the exponential widths of the sets T1 and T2. For the set T1:

we(T1) ≤ L[γ2(T1, d2) + γ1(T1, d∞)] ≤ L[S + Su] = L(wg(T ) + wg(T )u) , (9)

where the first inequality follows from (5) and the second inequality follows from (7). We will
need the following result on bounding the exponential width of an unit `1-norm ball in p dimensions
to compute the exponential width of T2. The proof, given in the supplement, is based on the fact
supt∈B1

〈e, t〉 = ‖e‖∞ and then using a simple union bound argument to bound ‖e‖∞.

Lemma 1 Consider the set B1 = {t ∈ Rp : ‖t‖1 ≤ 1}. Then for some universal constant L:

we(B1) = E

[
sup
t∈B1

〈e, t〉
]
≤ L log p . (10)

The exponential width of T2 is:

we(T2) = we((LS/u)B1) = (LS/u)we(B1) = (L/u)wg(T )we(B1) ≤ (L/u)wg(T ) log p . (11)

The first equality follows from (8) as T2 is a subset of a (LS/u)-scaled `1 norm ball, the second
inequality follows from elementary properties of widths of sets and the last inequality follows from
Lemma 1. Now as stated in Theorem 2, u in (9) and (11) is any number greater than 0. We choose
u =
√

log p and noting that (1 +
√

log p) ≤ L
√

log p for some constant L yields:

we(T1) ≤ Lwg(T )
√

log p, we(T2) ≤ Lwg(T )
√

log p (12)

The final step, following arguments as [Theorem 2.1.6] [19], is to bound exponential width of set T .

we(T ) = E[sup
t∈T
〈h, t〉] ≤ E[ sup

t1∈T1

〈h, t1〉] + E[ sup
t2∈T2

〈h, t2〉] ≤ we(T1) + we(T2) ≤ Lwg(T )
√

log p .

This proves Theorem 1.

4 Recovery Bounds

We obtain bounds on the error vector ∆̂n = θ̂ − θ∗. If the regularization parameter λn ≥
βR∗( 1

nX
T (y − Xθ∗)), β > 1 and the RE condition is satisfied on the error set A with RE con-

stant κ, then [2, 16] obtain the following error bound w.h.p for some constant c:

‖∆̂n‖2 ≤ c ·
λn
κ

Ψ(A) , (13)

where Ψ(A) is the norm compatibility constant given by supu∈A(R(u)/‖u‖2).

4.1 Regularization Parameter

As discussed earlier, for our analysis the regularization parameter should satisfy λn ≥
βR∗( 1

nX
T (y − Xθ∗)), β > 1. Observe that for the linear model (1), ω = y − Xθ∗ is the noise,

implying that λn ≥ βR∗( 1
nX

Tω). With e denoting a sub-exponential random vector with i.i.d
entries,

E

[
R∗
(

1

n
XTω

)]
= E

[
sup
u∈ΩR

‖ω‖2
〈

1

n
XT ω

‖ω‖2
, u

〉]
=

1

n
E[‖ω‖2]E

[
sup
u∈ΩR

〈e, u〉
]
. (14)

The first equality follows from the definition of dual norm. The second inequality follows from
the fact that X and ω are independent of each other. Also by elementary arguments [21],
e = XT (ω/|ω‖2) has i.i.d sub-exponential entries with sub-exponential norm bounded by
supω∈Rn ‖〈XT

i , ω/‖ω‖2〉‖ψ1
. The above argument was first proposed for the sub-Gaussian case

in [2]. For sub-exponential design and noise, the difference compared to the sub-Gaussian case is
the dependence on the exponential width instead of the Gaussian width of the unit norm ball. Us-
ing known results on the Gaussian widths of unit `1 and group-sparse norms, corollaries below are
derived using the relationship between Gaussian and exponential widths derived in Section 3:
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Corollary 1 If R(·) is the `1 norm, for sub-exponential design matrix X and noise ω,

E

[
R∗
(

1

n
XT (y −Xθ∗)

)]
≤ η0√

n
log p . (15)

Corollary 2 If R(·) is the group-sparse norm, for sub-exponential design matrix X and noise ω,

E

[
R∗
(

1

n
XT (y −Xθ∗)

)]
≤ η0√

n

√
(m+ logNG) log p . (16)

4.2 The RE condition

For Gaussian and sub-Gaussian X , previous work has established RIP bounds of the form κ1 ≤
inf
u∈A

( 1√
n

)‖Xu‖2 ≤ sup
u∈A

( 1√
n

)‖Xu‖2 ≤ κ2. In particular, RIP is satisfied w.h.p if the number of

samples is of the order of square of the Gaussian width of the error set ,i.e., O(w2
g(A)), which we

will call the sub-Gaussian RE sample complexity bound. As we move to heavier tails, establishing
such two-sided bounds requires assumptions on the boundedness of the Euclidean norm of the rows
ofX [15, 17, 10]. On the other hand, analysis of only the lower bound requires very few assumptions
onX . In particular, ‖Xu‖2 being the sum of random non-negative quantities the lower bound should
be satisfied even with very weak moment assumptions on X . Making these observations, [10, 17]
develop arguments obtaining sub-Gaussian RE sample complexity bounds when set A is the unit
sphere Sp−1 even for design matrices having only bounded fourth moments. Note that with such
weak moment assumptions, a non-trivial non-asymptotic upper bound cannot be established. Our
analysis for the RE condition essentially follow this premise and arguments from [10].

4.2.1 A Bound Based on Exponential Width

We obtain a sample complexity bound which depends on the exponential width of the error set A.
The result we state below follows along similar arguments made in [20], which in turn are based on
arguments from [10, 14].

Theorem 3 Let X ∈ Rn×p have independent isotropic sub-exponential rows. Let A ⊆ Sp−1,
0 < ξ < 1, and c is a constant that depends on the sub-exponential normK = supu∈A ‖|〈X,u〉|‖ψ1

.
Let we(A) denote the exponential width of the set. Then for some τ > 0 with probability atleast
(1− exp(−τ2/2)),

inf
u∈A
‖Xu‖2 ≥ cξ(1− ξ2)2

√
n− 4we(A)− ξτ . (17)

Contrasting the result (17) with previous results for the sub-Gaussian case [2, 20] the dependence
on wg(A) on the r.h.s is replaced by we(A), thus leading to a log p worse sample complexity bound.
The corollary below applies the result for the `1 norm. Note that results from [1] for `1 norm show
RIP bounds w.h.p for the same number of samples.

Corollary 3 For an s-sparse θ∗ and `1 norm regularization, if n ≥ c · s log2 p then with probability
atleast (1− exp(−τ2/2)) and constants c, κ depending on ξ and τ ,

inf
u∈A
‖Xu‖2 ≥ κ . (18)

4.2.2 A Bound Based on VC-Dimensions

In this section, we show a stronger sub-Gaussian RE sample complexity result for sub-exponential
X and `1, group-sparse regularization. The arguments follow along similar lines to [11, 10].

Theorem 4 Let X ∈ Rn×p be a random matrix with isotropic random sub-exponential rows Xi ∈
Rp. Let A ⊆ Sp−1, 0 < ξ < 1, c is a constant that depends on the sub-exponential norm K =
supu∈A ‖|〈X,u〉|‖ψ1 and define β = c(1− ξ2)2. Let we(A) denote the exponential width of the set
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A. Let Cξ = {I[|〈Xi, u〉| > ξ], u ∈ A} be a VC-class with VC-dimension V C(Cξ) ≤ d. For some
suitable constant c1, if n ≥ c1(d/β2), then with probability atleast 1− exp(−η0β

2n):

inf
u∈A

1√
n
‖Xu‖2 ≥

cξ(1− ξ2)2

2
. (19)

Consider the case of `1 norm. A consequence of the above result is that the RE condition is satisfied
on the set B = {u|‖u‖0 = s1} ∩ Sp−1 for some s1 ≥ c · s where c is a constant that will depend
on the RE constant κ when n is O(s1 log p). The argument follows from the fact that B ∩ Sp−1 is a
union of

(
p
s1

)
spheres. Thus the result is obtained by applying Theorem 4 to each sphere and using

a union bound argument. The final step involves showing that the RE condition is satisfied on the
error set A if it is satisfied on B using Maurey’s empirical approximation argument [17, 18, 11].

Corollary 4 For set A ⊆ Sp−1, which is the error set for the `1 norm, if n ≥ c2s log(ep/s)/β2

for some suitable constant c2, then with probability atleast 1 − exp(−η0nβ
2) − 1

wη1pη1−1 , where
η0, η1, w > 1 are constants, the following result holds for κ depending on the constant ξ:

inf
u∈A

1√
n
‖Xu‖2 ≥ κ . (20)

Essentially the same arguments for the group-sparse norm lead to the following result:

Corollary 5 For set A ⊆ Sp−1, which is the error set for the group-sparse norm, if n ≥ (c(msG +
sG log(eNG/sG)))/β2, then with probability atleast 1 − exp(−η0nβ

2) − 1

wη1N
η1−1

G mη1−1
where

η0, η1, w > 1 are constants and κ depending on constant ξ,

inf
u∈A

1√
n
‖Xu‖2 ≥ κ . (21)

4.3 Recovery Bounds for `1 and Group-Sparse Norms

We combine result (13) with results obtained for λn and κ previously for `1 and group-sparse norms.

Corollary 6 For the `1 norm, when n ≥ cs log p for some constant c, with high probability:

‖∆̂n‖2 ≤ O(
√
s log p/

√
n) . (22)

Corollary 7 For the group-sparse norm, when n ≥ c(msG + sG log(NG)), for some constant c,
with high probability:

‖∆̂n‖2 ≤ O

(√
sG log p(m+ logNG)

n

)
. (23)

Both bounds are
√

log p worse compared to corresponding bounds for the sub-Gaussian case. In
terms of sample complexity, n should scale as O(s log2 p), instead of O(s log p) for sub-Gaussian,
for `1 norm and O(sG log p(m + logNG)), instead of O(sG(m + logNG)) for the sub-Gaussian
case, for group-sparse lasso to get upto a constant order error bound.

5 Experiments

We perform experiments on synthetic data to compare estimation errors for Gaussian and sub-
exponential design matrices and noise for both `1 and group sparse norms. For `1 we run exper-
iments with dimensionality p = 300 and sparsity level s = 10. For group sparse norms we run
experiments with dimensionality p = 300, max. group size m = 6, number of groups NG = 50
groups each of size 6 and 4 non-zero groups. For the design matrix X , for the Gaussian case we
sample rows randomly from an isotropic Gaussian distribution, while for sub-exponential design
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Figure 2: Estimation error ‖∆̂n‖2 vs sample size for `1 (left) and group-sparse norms (right). The curve for
sub-exponential designs and noise decays slower than Gaussians.

matrices we sample each row of X randomly from an isotropic extreme-value distribution. The
number of samples n in X is incremented in steps of 10 with an initial starting value of 5. For the
noise ω, it is sampled i.i.d from the Gaussian and extreme-value distributions with variance 1 for
the Gaussian and sub-exponential cases respectively. For each sample size n, we repeat the proce-
dure above 100 times and all results reported in the plots are average values over the 100 runs. We
report two sets of results. Figure 1 shows percentage of success vs sample size for the noiseless
case when y = Xθ∗. A success in the noiseless case denotes exact recovery which is possible when
the RE condition is satisfied. Hence we expect the sample complexity for recovery to be order of
square of Gaussian width for Gaussian and extreme-value distributions as validated by the plots in
Figure 1. Figure 2 shows average estimation error vs number of samples for the noisy case when
y = Xθ∗+ω. The noise is added only for runs in which exact recovery was possible in the noiseless
case. For example when n = 5 we do not have any results in Figure 2 as even noiseless recovery is
not possible. For each n, the estimation errors are average values over 100 runs. As seen in Figure
2, the error decay is slower for extreme-value distributions compared to the Gaussian case.

6 Conclusions

This paper presents a unified framework for analysis of non-asymptotic error and structured recovery
in norm regularized regression problems when the design matrix and noise are sub-exponential,
essentially generalizing the corresponding analysis and results for the sub-Gaussian case. The main
observation is that the dependence on Gaussian width is replaced by the exponential width of suitable
sets associated with the norm. Together with the result on the relationship between exponential and
Gaussian widths, previous analysis techniques essentially carry over to the sub-exponential case. We
also show that a stronger result exists for the RE condition for the Lasso and group-lasso problems.
As future work we will consider extending the stronger result for the RE condition for all norms.
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