Part of Advances in Neural Information Processing Systems 29 (NIPS 2016)
Yongbo Li, Weisheng Dong, Xuemei Xie, GUANGMING Shi, Xin Li, Donglai Xu
Learning accurate prior knowledge of natural images is of great importance for single image super-resolution (SR). Existing SR methods either learn the prior from the low/high-resolution patch pairs or estimate the prior models from the input low-resolution (LR) image. Specifically, high-frequency details are learned in the former methods. Though effective, they are heuristic and have limitations in dealing with blurred LR images; while the latter suffers from the limitations of frequency aliasing. In this paper, we propose to combine those two lines of ideas for image super-resolution. More specifically, the parametric sparse prior of the desirable high-resolution (HR) image patches are learned from both the input low-resolution (LR) image and a training image dataset. With the learned sparse priors, the sparse codes and thus the HR image patches can be accurately recovered by solving a sparse coding problem. Experimental results show that the proposed SR method outperforms existing state-of-the-art methods in terms of both subjective and objective image qualities.