Part of Advances in Neural Information Processing Systems 29 (NIPS 2016)
Xiaotong Yuan, Ping Li, Tong Zhang
The Hard Thresholding Pursuit (HTP) is a class of truncated gradient descent methods for finding sparse solutions of $\ell_0$-constrained loss minimization problems. The HTP-style methods have been shown to have strong approximation guarantee and impressive numerical performance in high dimensional statistical learning applications. However, the current theoretical treatment of these methods has traditionally been restricted to the analysis of parameter estimation consistency. It remains an open problem to analyze the support recovery performance (a.k.a., sparsistency) of this type of methods for recovering the global minimizer of the original NP-hard problem. In this paper, we bridge this gap by showing, for the first time, that exact recovery of the global sparse minimizer is possible for HTP-style methods under restricted strong condition number bounding conditions. We further show that HTP-style methods are able to recover the support of certain relaxed sparse solutions without assuming bounded restricted strong condition number. Numerical results on simulated data confirms our theoretical predictions.