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Abstract

Co-clustering methods have been widely applied to document clustering and gene
expression analysis. These methods make use of the duality between features and
samples such that the co-occurring structure of sample and feature clusters can be
extracted. In graph based co-clustering methods, a bipartite graph is constructed
to depict the relation between features and samples. Most existing co-clustering
methods conduct clustering on the graph achieved from the original data matrix,
which doesn’t have explicit cluster structure, thus they require a post-processing
step to obtain the clustering results. In this paper, we propose a novel co-clustering
method to learn a bipartite graph with exactly £ connected components, where k is
the number of clusters. The new bipartite graph learned in our model approximates
the original graph but maintains an explicit cluster structure, from which we can
immediately get the clustering results without post-processing. Extensive empirical
results are presented to verify the effectiveness and robustness of our model.

1 Introduction

Clustering has long been a fundamental topic in unsupervised learning. The goal of clustering is to
partition data into different groups. Clustering methods have been successfully applied to various
areas, such as document clustering [3 [17], image segmentation [18} 7, 8] and bioinformatics 16, [14]].

In clustering problems, the input data is usually formatted as a matrix, where one dimension represents
samples and the other denotes features. Each sample can be seen as a data point characterized by
a vector in the feature space. Alternatively, each feature can be regarded as a vector spanning in
the sample space. Traditional clustering methods propose to cluster samples according to their
distribution on features, or conversely, cluster features in terms of their distribution on samples.

In several types of data, such as document data and gene expression data, duality exists between
samples and features. For example, in document data, we can reasonably assume that documents
can be clustered based on their relations with different word clusters, while word clusters are formed
according to their associations with distinct document clusters. However, in the one-sided clustering
mechanism, the duality between samples and features is not taken into consideration. To make full
use of the duality information, co-clustering methods (also known as bi-clustering methods) are
proposed. The co-clustering mechanism takes advantage of the co-occurring cluster structure among
features and samples to strengthen the clustering performance and gain better interpretation of the
pragmatic meaning of the clusters.
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Several co-clustering methods have been put forward to depict the relations between samples and
features. In the graph based methods, the co-occurring structure between samples and features
is usually treated as a bipartite graph, where the weights of edges indicate the relations between
sample-feature pairs. In the left part of Fig. [[| we show an illustration of such bipartite graph, where
the blue nodes on the left represent features while red nodes on the right show samples. The affinity
between the features and samples is denoted by the weight of the corresponding edge. For example,
B;; denotes the affinity between the ¢-th feature and the j-sample. In [4], the authors propose to
minimize the cut between samples and features, which is equivalent to conducting spectral clustering
on the bipartite graph. However, in this method, since the original graph doesn’t display an explicit
cluster structure, it still calls for the post-processing step like K -mean clustering to obtain the final
clustering indicators, which may not be optimal.

To address this problem, in this paper, we propose a novel graph based co-clustering model to learn a
bipartite graph with exactly k connected components, where k is the number of clusters. The new
bipartite graph learned in our model approximates the original graph but maintains an explicit cluster
structure, from which we can directly get the clustering results without post-processing steps. To
achieve such an ideal structure of the new bipartite graph, we impose constraints on the rank of
its Laplacian or normalized Laplacian matrix and derive algorithms to optimize the objective. We
conduct several experiments to evaluate the effectiveness and robustness of our model. On both
synthetic and benchmark datasets we gain equivalent or even better clustering results than other
related methods.

Notations: Throughout the paper, all the matrices are written as uppercase. For matrix M, the ¢j-th
element of M is denoted by m;;. The trace of matrix M is denoted by T'r(M). The ¢>-norm of
vector v is denoted by ||v||,, the Frobenius norm of matrix M is denoted by || M| 5.

2 Bipartite Spectral Graph Partitioning Revisited

The classic Bipartite Spectral Graph Partitioning (BSGP) method [4] is very effective for co-clustering.
In order to simultaneously partition the rows and columns of a data matrix B € R™ *"2_ we first
view B as the weight matrix of a bipartite graph, where the left-side nodes are the n; rows of B, the
right-side nodes are the ny columns of B, and the weight to connect the i-th left-side node and the
j-th right-side node is b;; (see Fig. The procedure of BSGP is as follows:

~ _1 _1
1) Calculate A = D,, 2 BD, 2, where the diagonal matrices D,, and D,, are deﬁn~ed in Eq.(@).
2) Calculate U and V, which are the leading k left and right singular vectors of A, respectively.
3) Run the K'-means on the rows of F' defined in Eq. (6) to obtain the final clustering results.

The bipartite graph can be viewed as an undirected weighted graph G = {V, A} withn = n; + nq
nodes, where V is the node set and the affinity matrix A € R"*™ is

A=L§T ﬂ ()

In the following, we will show that the BSGP method essentially performs spectral clustering with
normalized cut on the graph G.

Suppose the graph G is partitioned into k& components ¥V = {Vy, Vs, ...,V } . According to the
spectral clustering, the normalized cut on the graph G = {V, A} is defined as

k

_ cut(Vi, V\V;)
Neut = ; assoc(V;, V) @

where cut(Vi, V\Vi) = X ey, jev, @igi assoc(Vi, V) =3 iy, ey Gij-

Let Y € R™** be the partition indicator matrix, i.e., y;; = 1 indicates the -th node is partitioned
into the j-th component. Then minimizing the normalized cut defined in Eq.(Z) can be rewritten as
the following problem:
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Figure 1: Ilustration of the structured optimal bipartite graph.

where y; is the i-th column of Y, L = D — A € R™*" is the Laplacian matrix, and D € R™*™ is the
diagonal degree matrix defined as d;; = j i

Let Z=Y(YTDY)™ 2, and denote the identity matrix by I, then problem (3) can be rewritten as

min Tr(Z7'LZ) 4)
ZTDZ=I
Further, denotes F' = D3 7 = D%Y(YTDY)_%, then the problem (4)) can be rewritten as
min Tr(FTLF) (5)
FTR=]

where L = I — D=2 AD™ = is the normalized Laplacian matrix.

We rewrite F' and D as the following block matrices:

U D,
=[] o[> o]

where U € R™*¥, V € R"2*¥, D, € RM*™, D, € R"""2.
Then according to the definition of A in Eq. (T)), the problem (3] can be further rewritten as

max  Tr(UTDy2BD;%V) %
UTU+VTV=]
Note that in addition to the constraint UTU + VTV = I, the U,V should be constrained to be
discrete values according to the definitions of U and V. This discrete constraint makes the problem
very difficult to solve. To address it, we first remove the discrete constraint to make the problem
solvable with Lemmal(l|, and then run K-means on U and V' to get the discrete solution.

Lemma 1 Suppose M € R™*"2, X € R™*F Y € R"**_ The optimal solutions to the problem

max  Tr(XTMY) ®)
XTX+YTY=I
are X = §U1, Y = ?Vb where Uy, V1, are the leading k left and right singular vectors of M,
respectively.

Proof: Denote the Lagrangian function of the problem is £(X, Y, A) = Tr(XTAY)-Tr(A(XT X+
YTY — I)) By setting the derivative of £(X,Y, A) w.r.t. X to zero, we have AY = XA. By taking
the derivative of £(X,Y, A) w.r.t. Y to zero, we have AT X = Y A. Thus AATX = AYA = X A2
Therefore, the optimal solution X should be the eigenvectors of AAT e, the left singular vectors
of M. Similarly, the optimal solution Y should be the right singular vectors of M. Since it is a
maximization problem, the optimal solution X, Y should be the leading k left and right singular
vectors of M, respectively. ]

According to Lemmal[l] if the discrete constraint on U and V' is not considered, the optimal solution
U and V to the problem (7)) are the leading k left and right singular vectors of A = D,, 2 BD, 2,
respectively.

Since the solution U and V' are not discrete values, we need to run the K -means on the rows of F'
defined in Eq.(6) to obtain the final clustering results.



3 Learning Structured Optimal Bipartite Graph for Co-Clustering

3.1 Motivation

We can see from the previous section that the given B or A does not have a very clear clustering
structure (i.e., A is not a block diagonal matrix with proper permutation) and the U and V are
not discrete values, thus we need run the K-means to obtain the final clustering results. However,
K -means is very sensitive to the initialization, which makes the clustering performance unstable and
suboptimal.

To address this challenging and fundamental problem, we target to learn a new graph similarity matrix
S eR"™™or P e R"*" ag

S:{POT ﬂ ©)

such that the new graph is more suitable for clustering task. In our strategy, we learn an S that has
exact k connected components, see Fig. [T} Obviously such a new graph can be considered as the
ideal graph for clustering task with providing clear clustering structure. If S has exact k& connected
components, we can directly obtain the final clustering result based on S, without running K -means
or other discretization procedures as traditional graph based clustering methods have to do.

The learned structured optimal graph similarity matrix S should be as close as possible to the given
graph affinity matrix A, so we propose to solve the following problem:

i — A3 1
PZO,IEI%I:HLSGQ IS I (10)

where (2 is the set of matrices S € R™*"™ which have exact k& connected components.

According to the special structure of A and S in Eq. (I) and Eq. (9), the problem (I0) can be written
as

i P — B 11
on,lgluanSeQ I I an

The problem (TT]) seems very difficult to solve since the constraint S € €2 is intractable to handle. In
the next subsection, we will propose a novel and efficient algorithm to solve this problem.

3.2 Optimization

If the similarity matrix S is nonnegative, then the Laplacian matrix Lg = Dg — S associated with .S
has an important property as follows [[13} 12, [111 [2].

Theorem 1 The multiplicity k of the eigenvalue 0 of the Laplacian matrix Lg is equal to the number
of connected components in the graph associated with S.

Theorem [1|indicates that if rank(Lg) = n — k, the constraint S € Q will be held. Therefore, the
problem (11} can be rewritten as:

i P - B|? .
PZO,PI:I,{%TI@(LS):n,k H ||F (12)

Suppose 0;(Lg) is the i-th smallest eigenvalue of Lg. Note that o;(Lg) > 0 because Lg is positive
semi-definite. The problem is equivalent to the following problem for a large enough A:

k
. 2
pgﬁﬂﬂ”P*EWF+A;;“U$) (13)

When A is large enough (note that o;(Lg) > 0 for every ), the optimal solution S to the problem

will make the second term Zle 0;(Lg) to be zero, and thus the constraint rank(Lg) = n — k
in the problem (12) would be satisfied.

According to the Ky Fan’s Theorem [6], we have:

k
i(Lg) = i Tr(FTLgF 14
2 olls) = o min,  Tr(F'LsF) a4



Therefore, the problem (T3)) is further equivalent to the following problem
min || P — B + \Tr(FTLgF)
st. P>0,Pl=1,FcRvk FTp =

The problem (I3) is much easier to solve compared with the rank constrained problem (I2)). We can
apply the alternating optimization technique to solve this problem.

When P is fixed, the problem (I3) becomes:
min Tr(FTLgF) (16)

FeRnxk FTF=]

5)

The optimal solution F' is formed by the k eigenvectors of Lg corresponding to the & smallest
eigenvalues.

When F is fixed, the problem (I5) becomes

. _ 2 T
poin P = Bl + ATr(F LsF) (17)

According to the property of Laplacian matrix, we have the following relationship:

1 = — 2
Tr(F'LgF) = 5;;||f¢ — filly s (18)
i=1 5=

where f; is the i-th row of F.
Thus according to the structure of S defined in Eq.(9), Eq.(I8) can be rewritten as

Tr(FTLsF) =3 S IIfi — fil2pis (19)

i=1 j=1

Based on Eq. (I9), the problem can be rewritten as

ny na

. 2 2
polmin Z; Z; (pij — big)” + Al fi — fill5 pig (20)

=1 j=
Note that the problem (20) is independent between different 7, so we can solve the following problem
individually for each 4. Denote v;; = || fi — f; ||§, and denote v; as a vector with the j-th element as
v;; (same for p; and b;), then for each ¢, the problem (20) can be written in the vector form as
2

min

pT1=1,p;>0

2y

pi — (bi —

2",

This problem can be solved by an efficient iterative algorithm [9].

The detailed algorithm to solve the problem is summarized in Algorithm[I} In the algorithm,
we can only update the m nearest similarities for each data points in P and thus the complexity of
updating P and updating F' (only need to compute top k£ eigenvectors on very sparse matrix) can
be reduced significantly. Nevertheless, Algorithm [[| needs to conduct eigen-decomposition on an
n X n(n = n1 + ng) matrix in each iteration, which is time consuming. In the next section, we will
propose another optimization algorithm, which only needs to conduct SVD on an n; X ny matrix in
each iteration, and thus is much more efficient than Algorithmm

Algorithm 1 Algorithm to solve the problem (I5).

input B € R™*"2_cluster number k, a large enough .
output P € R™*"2 and thus S € R"*" defined in Eq.@]} with exact k connected components.
Initialize F© € R™**, which is formed by the k eigenvectors of L = D — A corresponding to the k
smallest eigenvalues, A is defined in Eq. .
while not converge do
1. For each i, update the i-th row of P by solving the problem (1)), where the j-th element of
viis vi; = || fi = fll5.
2. Update F, which is formed by the k eigenvectors of Lg = Dg — S corresponding to the k
smallest eigenvalues.
end while




4 Speed Up the Model

~ _1 _1
If the similarity matrix S is nonnegative, then the normalized Laplacian matrix Lg = I —D¢*SDg?
associated with .S also has an important property as follows [11} 2].

Theorem 2 The multiplicity k of the eigenvalue 0 of the normalized Laplacian matrix Lg is equal to
the number of connected components in the graph associated with S.

Theorem [2|indicates that if rank(Ls) = n — k, the constraint S € © will be hold. Therefore, the
problem (11)) can also be rewritten as

min P — B|?% (22)
P>0,P1=1,rank(Ls)=n—k

Similarly, the problem (22)) is equivalent to the following problem for a large enough value of A:
min || P — B2 + \Tr(FTLgF)

(23)
st. P>0,Pl=1,FecR"™k FTF =1
Again, we can apply the alternating optimization technique to solve problem (23).
~ _1 1
When P is fixed, since Lg = I — Dy *>SDg?, the problem li becomes
1 1
a Tr(FTD4?SDg?F 24
FeRnIXg,?TF:I r( o s'F) @4)
We rewrite F' and Dg as the following block matrices:
| U | Dsu
F[V}’ DS[ st} (25)
where U € R™*F V. € R"2*k Dg, € R XM Dg, € R"2X"2,
Then according to the definition of S in Eq. (9), the problem can be further rewritten as
11
max  Tr(UTDgZPDg2V) (26)

UTU+VTV=I
According to Lemmal[I] the optlmal solutlon U and V to the problem (26) are the leading k left and
right singular vectors of S = Dy 2 PD sz , respectively.
When F' is fixed, the problem . 23) becomes

min || P — B2 + \Tr(FTLgF)

27)
st. P>0,P1=1
According to the property of normalized Laplacian matrix, we have the following relationship:
2
Tr(FTLgF) = Z Z (28)
=1 j=1
; 2
; ; R | D A ¥

Thus according to the structure of S defined in Eq.{H), and denote v;; = H VI T 4 2,the problem

[27) can be rewritten as

ny no

Av;
po i 2 2 0 — )+ A

=1 j=1
which has the same form as in Eq. (20) and thus can be solved efficiently.

The detailed algorithm to solve the problem is summarized in Algorithm[2] In the algorithm, we
can also only update the m nearest similarities for each data points in P and thus the complexity of
updating P and updating F' can be reduced significantly.



Note that Algorithm [2] only needs to conduct SVD on an n; X np matrix in each iteration. In
some cases, min(ny, ng) < (n; + ns), thus Algorithmis much more efficient than Algorithm
Therefore, in the next section, we use Algorithm E]to conduct the experiments.

Algorithm 2 Algorithm to solve the problem (23).

input B € R™*"2_cluster number k, a large enough .

output P € R™:*"2 and thus S € R"*"™ defined in Eq.@]) with exact k connected components.
Initialize F € R™**, which is formed by the k eigenvectors of L = I — D~ 3AD" 2 corresponding
to the k smallest eigenvalues, A is defined in Eq. (T)).

while not converge do

1. For each i, update the i-th row of P by solving the problem (1)), where the j-th element of
2

v; IS v = ‘ \}Zlﬁ-_ \;;7 ;

2. Update F' = { g ] where U and V' are the leading & left and right singular vectors of
S= DSTéPDgé respectively and Dg = [ Dsu }

' ’ DSU

end while

5 Experimental Results

In this section, we conduct multiple experiments to evaluate our model. We will first introduce the
experimental settings throughout the section and then present evaluation results on both synthetic and
benchmark datasets.

5.1 Experimental Settings

We compared our method (denoted by SOBG) with two related co-clustering methods, including
Bipartite Spectral Graph Partition (BSGP) [4] and Orthogonal Nonnegative Matrix Tri-Factorizations
(ONMTF) [3]. Also, we introduced several one-sided clustering methods to the comparison, which
are K-means clustering, Normalized Cut (NCut) and Nonnegative Matrix Factorization (NMF).

For methods requiring a similarity graph as the input, i.e., NCut and NMF, we adopted the self-tuning
Gaussian method [19] to construct the graph, where the number of neighbors was set to be 5 and the
o value was self-tuned. In the experiment, there are four methods involving K -means clustering,
which are K-means, NCut, BSGP and ONMTF (the latter three methods need K-means as the
post-processing step to get the clustering results). When running K -means we used 100 random
initializations for all these four methods and recorded the average performance over these 100 runs as
well as the best one with respect to the K'-means objective function value.

In our method, to accelerate the algorithmic procedure, we determined the parameter A in an heuristic
way: first specify the value of A with an initial guess; next, we computed the number of zero
eigenvalues in Lg in each iteration, if it was larger than k, then divided A by 2; if smaller then
multiplied X by 2; otherwise we stopped the iteration.

The number of clusters was set to be the ground truth. The evaluation of different methods was based
on the percentage of correctly clustered samples, i.e., clustering accuracy.

5.2 Results on Synthetic Data

In this subsection, we first apply our method to the synthetic data as a sanity check. The synthetic
data is constructed as a two-dimensional matrix, where rows and columns come from three clusters
respectively. Row clusters and column clusters maintain mutual dependence, i.e., rows and columns
from the first cluster form a block along the diagonal of the data matrix, and this also holds true
for the second and third cluster. The number of rows for each cluster is 20, 30 and 40 respectively,
while the number of columns is 30, 40 and 50. Each block is generated randomly with elements
i.i.d. sampled from Gaussian distribution A/(0, 1). Also, we add noise to the “non-block" area of the
data matrix, i.e., all entries in the matrix excluding elements in the three clusters. The noise can be
denoted as 7 x §, where § is Gaussian noise i.i.d. sampled from Gaussian distribution A/(0, 1) and r
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Figure 2: Illustration of the data matrix in different settings of noise. Different rows of figures come
from different settings of noise. In each row, figures on the left column are the original data matrices
generated in the experiment, while on the right column display the bipartite matrix B learned in our
model which approximates the original data matrix and maintains the block structure.

Methods Noise = 0.6 Noise = 0.7 Noise = 0.8 Noise =0.9
K-means 99.17 97.50 71.67 39.17
NCut 99.17 95.00 46.67 38.33
Clustering NMF 98.33 95.00 46.67 37.50
Accuracy(%) BSGP 100.00 93.33 62.50 40.00
on Rows ONMTF 99.17 97.50 71.67 39.17
SOBG 100.00 100.00 98.33 84.17
K-means 100.00 95.56 51.11 46.67
NCut 100.00 91.11 60.00 38.89
Clustering NMF 100.00 90.00 47.78 37.78
Accuracy(%) BSGP 100.00 93.33 63.33 46.67
on Columns ONMTF 100.00 95.56 51.11 46.67
SOBG 100.00 100.00 100.00 87.78

Table 1: Clustering accuracy comparison on rows and columns of the synthetic data in different
portion of noise.

is the portion of noise. We set r to be {0.6, 0.7, 0.8, 0.9} respectively so as to evaluate the robustness
of different methods under the circumstances of various disturbance.

We apply all comparing methods to the synthetic data and assess their ability to cluster the rows and
columns. One-sided clustering methods are applied to the data twice (once to cluster rows and the
other time to cluster columns) such that clustering accuracy on these two dimensions can be achieved.
Co-clustering methods can obtain clustering results on both dimensions simultaneously in one run.

In Table [I] we summarize the clustering accuracy comparison on both rows and columns under
different settings of noise. In Fig. [2| we display the corresponding original data matrix and the
bipartite matrix B learned in our model. We can notice that when the portion of noise r is relatively
low, i.e., 0.6 and 0.7, the block structure of the original data is clear, then all methods perform fairly
well in clustering both rows and columns. However, as r increases, the block structure in the original
data blurs thus brings obstacles to the clustering task. With high portion of noise, all other methods
seem to be disturbed to a large extent while our method shows apparent robustness. Even when the
portion of noise becomes as high as 0.9, such that the structure of clusters in the original data becomes
hard to distinguish with eyes, our method still excavates a reasonable block arrangement with a
clustering accuracy of over 80%. Also, we can find that co-clustering methods usually outperform
one-sided clustering methods since they utilize the interrelations between rows and columns. The
interpretation of the co-clustering structure strengthens the performance, which conforms to our
theoretical analysis.



Methods Reuters21578 | LUNG Prostate-MS | prostateCancerPSA410
Ave | 40.86+4.59 61.91+£6.00 | 46.47+3.26 | 64.154+9.40
K-means
Best | 32.77 71.43 45.34 62.92
NCut Ave | 26.9240.93 69.67+14.26 | 46.86+1.19 | 55.0640.00
Best | 29.18 79.80 47.20 55.06
NMF 3091 75.86 47.83 55.06
BSGP Ave | 11.4440.39 64.95+£5.06 | 46.27+0.00 | 57.3040.00
Best | 11.26 70.94 46.27 57.30
Ave | 17.57£1.95 61.31+10.34 | 45.46+3.18 | 62.924+0.00
ONMTE Best | 27.90 7143 45.34 62.92
SOBG 43.94 78.82 62.73 69.66

Table 2: Clustering accuracy comparison on four benchmark datasets. For the four methods involving
K-means clustering, i.e., K-means, NCut, BSGP and ONMTF, their average performance (Ave) over
100 repetitions and the best one (Best) w.r.t. K-means objective function value were both reported.

5.3 Results on Benchmark Data

In this subsection, we use four benchmark datasets for the evaluation. There are one document dataset
and three gene expression datasets participating in the experiment, the property of which is introduced
in details as below.

Reuters21578 dataset is processed and downloaded from http://www.cad.zju.edu.cn/
home/dengcai/Data/TextData.html. It contains 8293 documents in 65 topics. Each
document is depicted by its frequency on 18933 terms.

LUNG dataset [[1]] provides a source for the study of lung cancer. It has 203 samples in five classes,
among which there are 139 adenocarcinoma (AD), 17 normal lung (NL), 6 small cell lung cancer
(SMCL), 21 squamous cell carcinoma (SQ) as well as 20 pulmonary carcinoid (COID) samples. Each
sample has 3312 genes.

Prostate-MS dataset [[15] contains a total of 332 samples from three different classes, which are
69 samples diagnosed as prostate cancer, 190 samples of benign prostate hyperplasia, as well as 63
normal samples showing no evidence of disease. Each sample has 15154 genes.

ProstateCancerPSA410 dataset [[10] describes gene information of patients with prostate-specific
antigen (PSA)-recurrent prostate cancer. It includes a total of 89 samples from two classes. Each
sample has 15154 genes.

Before the clustering process, feature scaling was performed on each dataset such that features are on
the same scale of [0, 1]. Also, the ¢5-norm of each feature was normalized to 1.

Table 2] summarizes the clustering accuracy comparison on these benchmark datasets. Our method
performs equally or even better than the alternatives on all these datasets. This verifies the effective-
ness of our method in the practical situation. There is an interesting phenomenon that the advantage of
our method tends to be more obvious for higher dimensional data. This is because high-dimensional
features make the differences in the distance between samples to be smaller thus the cluster structure
of the original data becomes vague. In this case, since our model is more robust compared with the
alternative methods (verified in the synthetic experiments), we can get better clustering results.

6 Conclusions

In this paper, we proposed a novel graph based co-clustering model. Different from existing methods
which conduct clustering on the graph achieved from the original data, our model learned a new
bipartite graph with explicit cluster structure. By imposing the rank constraint on the Laplacian matrix
of the new bipartite graph, we guaranteed the learned graph to have exactly k£ connected components,
where k is the number of clusters. From this ideal structure of the new bipartite graph learned in
our model, the obvious clustering structure can be obtained without resorting to post-processing
steps. We presented experimental results on both synthetic data and four benchmark datasets, which
validated the effectiveness and robustness of our model.
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