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Abstract

We present a novel technique for learning the mass matrices in samplers obtained
from discretized dynamics that preserve some energy function. Existing adaptive
samplers use Riemannian preconditioning techniques, where the mass matrices are
functions of the parameters being sampled. This leads to significant complexities in
the energy reformulations and resultant dynamics, often leading to implicit systems
of equations and requiring inversion of high-dimensional matrices in the leapfrog
steps. Our approach provides a simpler alternative, by using existing dynamics in
the sampling step of a Monte Carlo EM framework, and learning the mass matrices
in the M step with a novel online technique. We also propose a way to adaptively
set the number of samples gathered in the E step, using sampling error estimates
from the leapfrog dynamics. Along with a novel stochastic sampler based on
Nosé-Poincaré dynamics, we use this framework with standard Hamiltonian Monte
Carlo (HMC) as well as newer stochastic algorithms such as SGHMC and SGNHT,
and show strong performance on synthetic and real high-dimensional sampling
scenarios; we achieve sampling accuracies comparable to Riemannian samplers
while being significantly faster.

1 Introduction

Markov Chain Monte Carlo sampling is a well-known set of techniques for learning complex Bayesian
probabilistic models that arise in machine learning. Typically used in cases where computing the
posterior distributions of parameters in closed form is not feasible, MCMC techniques that converge
reliably to the target distributions offer a provably correct way (in an asymptotic sense) to draw
samples of target parameters from arbitrarily complex probability distributions. A recently proposed
method in this domain is Hamiltonian Monte Carlo (HMC) [1, 2], that formulates the target density
as an “energy function” augmented with auxiliary “momentum” parameters, and uses discretized
Hamiltonian dynamics to sample the parameters while preserving the energy function. The resulting
samplers perform noticeably better than random walk-based methods in terms of sampling efficiency
and accuracy [1, 3]. For use in stochastic settings, where one uses random minibatches of the data
to calculate the gradients of likelihoods for better scalability, researchers have used Fokker-Planck
correction steps to preserve the energy in the face of stochastic noise [4], as well as used auxiliary
“thermostat” variables to control the effect of this noise on the momentum terms [5, 6]. As with the
batch setting, these methods have exploited energy-preserving dynamics to sample more efficiently
than random walk-based stochastic samplers [4, 7, 8].

A primary (hyper-)parameter of interest in these augmented energy function-based samplers in the
“mass” matrix of the kinetic energy term; as noted by various researchers [1, 3, 6, 8, 9], this matrix
plays an important role in the trajectories taken by the samplers in the parameter space of interest,
thereby affecting the overall efficiency. While prior efforts have set this to the identity matrix or some
other pre-calculated value [4, 5, 7], recent work has shown that there are significant gains to be had in
efficiency as well as convergent accuracy by reformulating the mass in terms of the target parameters
to be sampled [3, 6, 8], thereby making the sampler sensitive to the underlying geometry. This is
done by imposing a positive definite constraint on the adaptive mass, and using it as the metric of
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the Riemannian manifold of probability distributions parametrized by the target parameters. This
constraint also satisfies the condition that the momenta be sampled from a Gaussian with the mass as
the covariance. Often called Riemannian preconditioning, this idea has been applied in both batch [3]
as well as stochastic settings [6, 8] to derive HMC-based samplers that adaptively learn the critically
important mass matrix from the data.

Although robust, these reformulations often lead to significant complexities in the resultant dynamics;
one can end up solving an implicit system of equations in each half-step of the leapfrog dynamics
[3, 6], along with inverting large

(
O(D2)

)
matrices. This is sometimes sidestepped by performing

fixed point updates at the cost of additional error, or restricting oneself to simpler formulations that
honor the symmetric positive definite constraint, such as a diagonal matrix [8]. While this latter
choice ameliorates a lot of the added complexity, it is clearly suboptimal in the context of adapting
to the underlying geometry of the parameter space. Thus we would ideally need a mechanism to
robustly learn this critical mass hyperparameter from the data without significantly adding to the
computational burden.

We address this issue in this work with the Monte Carlo EM (MCEM) [10, 11, 12, 13] framework. An
alternative to the venerable EM technique, MCEM is used to locally optimize maximum likelihood
problems where the posterior probabilities required in the E step of EM cannot be computed in closed
form. In this work, we perform existing dynamics derived from energy functions in the Monte Carlo
E step while holding the mass fixed, and use the stored samples of the momentum term to learn the
mass in the M step. We address the important issue of selecting appropriate E-step sampling iterations,
using error estimates to gradually increase the sample sizes as the Markov chain progresses towards
convergence. Combined with an online method to update the mass using sample covariance estimates
in the M step, this gives a clean and scalable adaptive sampling algorithm that performs favorably
compared to the Riemannian samplers. In both our synthetic experiments and a high dimensional
topic modeling problem with a complex Bayesian nonparametric construction [14], our samplers
match or beat the Riemannian variants in sampling efficiency and accuracy, while being close to an
order of magnitude faster.

2 Preliminaries
2.1 MCMC with Energy-Preserving Dynamics

In Hamiltonian Monte Carlo, the energy function is written as

H(θ,p) = −L(θ) +
1

2
pTM−1p. (1)

Here X is the observed data, and θ denotes the model parameters. L(θ) = log p(X|θ) + log p(θ)
denotes the log likelihood of the data given the parameters along with the Bayesian prior, and
p denotes the auxiliary “momentum” mentioned above. Note that the second term in the energy
function, the kinetic energy, is simply the kernel of a Gaussian with the mass matrix M acting as
covariance. Hamilton’s equations of motions are then applied to this energy function to derive the
following differential equations, with the dot accent denoting a time derivative:

θ̇ = M−1p, ṗ = ∇L(θ).

These are discretized using the generalized leapfrog algorithm [1, 15] to create a sampler that is both
symplectic and time-reversible, upto a discretization error that is quadratic in the stepsize.

Machine learning applications typically see the use of very large datasets for which computing the
gradients of the likelihoods in every leapfrog step followed by a Metropolis-Hastings correction
ratio is prohibitively expensive. To address this, one uses random “minibatches” of the dataset
in each iteration [16], allowing some stochastic noise for improved scalability, and removes the
Metropolis-Hastings (M-H) correction steps [4, 7]. To preserve the system energy in this context one
has to additionally apply Fokker-Planck corrections to the dynamics [17]. The stochastic sampler in
[4] uses these techniques to preserve the canonical Gibbs energy above (1). Researchers have also
used the notion of “thermostats” from the molecular dynamics literature [9, 18, 19, 20] to further
control the behavior of the momentum terms in the face of stochastic noise; the resulting algorithm
[5] preserves an energy of its own [21] as well.

2.2 Adaptive MCMC using Riemannian Manifolds
As mentioned above, learning the mass matrices in these MCMC systems is an important challenge.
Researchers have traditionally used Riemannian manifold refomulations to address this, and integrate
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the updating of the mass into the sampling steps. In [3] the authors use this approach to derive
adaptive variants of first-order Langevin dynamics as well as HMC. For the latter the reformulated
energy function can be written as:

Hgc(θ,p) = −L(θ) +
1

2
pTG(θ)−1p +

1

2
log
{

(2π)D|G(θ)|
}
, (2)

where D is the dimensionality of the parameter space. Note that the momentum variable p can
be integrated out to recover the desired marginal density of θ, in spite of the covariance being a
function of θ. In the machine learning literature, the authors of [8] used a diagonal G(θ) to produce
an adaptive variant of the algorithm in [7], whereas the authors in [6] derived deterministic and
stochastic algorithms from a Riemannian variant of the Nosé-Poincaré energy [9], with the resulting
adaptive samplers preserving symplecticness as well as canonical system temperature.

2.3 Monte Carlo EM

The EM algorithm [22] is widely used to learn maximum likelihood parameter estimates for complex
probabilistic models. In cases where the expectations of the likelihoods required in the E step are
not tractable, one can use Monte Carlo simulations of the posterior instead. The resulting Monte
Carlo EM (MCEM) framework [10] has been widely studied in the statistics literature, with various
techniques developed to efficiently draw samples and estimate Monte Carlo errors in the E step
[11, 12, 13]. For instance, the expected log-likelihood is usually replaced with the following Monte

Carlo approximation: Q(θ|θt) = 1
m

m∑
l=1

log p(X,utl |θ), where u represents the latent augmentation

variables used in EM, and m is the number of samples taken in the E step. While applying this
framework, one typically has to carefully tune the number of samples gathered in the E step, since
the potential distance from the stationary distribution in the early phases would necessitate drawing
relatively fewer samples, and progressively more as the sampler nears convergence.

In this work we leverage this MCEM framework to learn M in (1) and similar energies using samples
of p; the discretized dynamics constitute the E step of the MCEM framework, with suitable updates
to M performed in the corresponding M step. We also use a novel mechanism to dynamically adjust
the sample count by using sampling errors estimated from the gathered samples, as described next.

3 Mass-Adaptive Sampling with Monte Carlo EM
3.1 The Basic Framework

Riemannian samplers start off by reformulating the energy function, making the mass a function
of θ and adding suitable terms to ensure constancy of the marginal distributions. Our approach is
fundamentally different: we cast the task of learning the mass as a maximum likelihood problem
over the space of symmetric positive definite matrices. For instance, we can construct the following
problem for standard HMC:

max
M�0

L(θ)− 1

2
pTM−1p− 1

2
log |M |. (3)

Recall that the joint likelihood is p(θ,p) ∝ exp(−H(θ,p)), H(·, ·) being the energy from (1). Then,
we use correct samplers that preserve the desired densities in the E step of a Monte Carlo EM
(MCEM) framework, and use the obtained samples of p in the corresponding M step to perform
suitable updates for the mass M . Specifically, to wrap the standard HMC sampler in our framework,
we perform the generalized leapfrog steps [1, 15] to obtain proposal updates for θ,p followed by
Metropolis-Hastings corrections in the E step, and use the obtained p values in the M step. The
resultant adaptive sampling method is shown in Alg. 1.

Note that this framework can also be applied to stochastic samplers that preserve the energy, upto
standard discretization errors. We can wrap the SGHMC sampler [4] in our framework as well,
since it uses Fokker-Planck corrections to approximately preserve the energy (1) in the presence
of stochastic noise. We call the resulting method SGHMC-EM, and specify it in Alg. 3 in the
supplementary.

As another example, the SGNHT sampler [5] is known to preserve a modified Gibbs energy [21];
therefore we can propose the following max-likelihood problem for learning the mass:

max
M�0

L(θ)− 1

2
pTM−1p− 1

2
log |M |+ µ(ξ − ξ̄)2/2, (4)
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where ξ is the thermostat variable, and µ, ξ̄ are constants chosen to preserve correct marginals. The
SGNHT dynamics can used in the E step to maintain the above energy, and we can use the collected
p samples in the M step as before. We call the resultant method SGNHT-EM, as shown in Alg. 2.
Note that, unlike standard HMC above, we do not perform Metropolis-Hastings corrections steps on
the gathered samples for these cases. As shown in the algorithms, we collect one set of momenta
samples per epoch, after the leapfrog iterations. We use S_count to denote the number of such
samples collected before running an M-step update.

The advantage of this MCEM approach over the parameter-dependent Riemannian variants is twofold:

1. The existing Riemannian adaptive algorithms in the literature [3, 6, 8] all start by modifying the
energy function, whereas our framework does not have any such requirement. As long as one uses a
sampling mechanism that preserves some energy with correct marginals for θ, in a stochastic sense
or otherwise, it can be used in the E step of our framework.

2. The primary disadvantage of the Riemannian algorithms is the added complexity in the dynamics
derived from the modified energy functions. One typically ends up using generalized leapfrog
dynamics [3, 6], which can lead to implicit systems of equations; to solve these one either has to use
standard solvers that have complexity at least cubic in the dimensionality [23, 24], with scalability
issues in high dimensional datasets, or use fixed point updates with worsened error guarantees. An
alternative approach is to use diagonal covariance matrices, as mentioned earlier, which ignores the
coordinate correlations. Our MCEM approach sidesteps all these issues by keeping the existing
dynamics of the desired E step sampler unchanged. As shown in the experiments, we can match or
beat the Riemannian samplers in accuracy and efficiency by using suitable sample sizes and M step
updates, with significantly improved sampling complexities and runtimes.

3.2 Dynamic Updates for the E-step Sample Size

Algorithm 1 HMC-EM

Input: θ(0), ε, LP_S, S_count
· Initialize M ;
repeat
· Sample p(t) ∼ N(0,M);
for i = 1 to LP_S do
· p(i) ← p(i+ε−1), θ(i) ← θ(i+ε−1);
· p(i+ε/2) ← p(i) − ε

2∇θH(θ(i),p(i));
· θ(i+ε) ← θ(i) + ε

2∇pH(θ(i),p(i+ε/2));
· p(i+ε) ← p(i+ε/2) − ε

2∇θH(θ(i+ε),p(i+ε/2));
end for
· Set

(
θ(t+1),p(t+1)

)
from

(
θLP _S+ε,pLP _S+ε

)
using Metropolis-Hastings

· Store MC-EM sample p(t+1);
if (t+ 1) mod S_count = 0 then
· Update M using MC-EM samples;

end if
· Update S_count as described in the text;

until forever

We now turn our attention to the task of
learning the sample size in the E step from
the data. The nontriviality of this issue
is due to the following reasons: first, we
cannot let the sampling dynamics run to
convergence in each E step without making
the whole process prohibitively slow; sec-
ond, we have to account for the correlation
among successive samples, especially early
on in the process when the Markov chain is
far from convergence, possibly with “thin-
ning” techniques; and third, we may want
to increase the sample count as the chain
matures and gets closer to the stationary
distribution, and use relatively fewer sam-
ples early on.

To this end, we leverage techniques de-
rived from the MCEM literature in statis-
tics [11, 13, 25] to first evaluate a suitable
“test” function of the target parameters at
certain subsampled steps, using the gath-
ered samples and current M step estimates.

We then use confidence intervals created around these evaluations to gauge the relative effect of
successive MCEM estimates over the Monte Carlo error. If the updated values of these functions
using newer M-step estimates lie in these intervals, we increase the number of samples collected in
the next MCEM loop.

Specifically, similar to [13], we start off with the following test function for HMC-EM (Alg. 1):
q(·) =

[
M−1p,∇L(θ)

]
. We then subsample some timesteps as mentioned below, evaluate q at

those steps, and create confidence intervals using sample means and variances:

mS =
1

S

S∑
s=1

qs, vS =
1

S

S∑
s=1

q2
s −m2

S , CS := mS ± z1−α/2vS ,
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where S denotes the subsample count, z1−α/2 is the (1− α) critical value of a standard Gaussian, and
CS the confidence interval mentioned earlier. For SGNHT-EM (Alg. 2), we use the following test
function: q(·) =

[
M−1p,∇L(θ) + ξM−1p,pTM−1p

]
, derived from the SGNHT dynamics.

Algorithm 2 SGNHT-EM

Input: θ(0), ε, A, LP_S, S_count
· Initialize ξ(0), p(0) and M ;
repeat

for i = 1 to LP_S do
· p(i+1) ← p(i) − εξ(i)M−1p(i) − ε∇̃L(θ(i))+√

2AN (0, ε);
· θ(i+1) ← θ(i) + εM−1p(i+1);
· ξ(i+1) ← ξ(i)+ε

[
1
Dp(i+1)TM−1p(i+1) − 1

]
;

end for
· Set

(
θ(t+1),p(t+1), ξ(t+1)

)
=(

θ(LP _S+1),p(LP _S+1), ξ(LP _S+1)
)
;

· Store MC-EM sample p(t+1);
if (t+ 1) mod S_count = 0 then
· Update M using MC-EM samples;

end if
· Update S_count as described in the text;

until forever

One can adopt the following method de-
scribed in [25]: choose the subsampling
offsets {t1 . . . tS} as ts =

∑s
i=1 xi, where

xi − 1 ∼ Poisson(νid), with suitably cho-
sen ν ≥ 1 and d > 0. We found both this
and a fixed set of S offsets to work well in
our experiments.

With the subsamples collected using this
mechanism, we calculate the confidence
intervals as described earlier. The assump-
tion is that this interval provides an esti-
mate of the spread of q due to the Monte
Carlo error. We then perform the M-step,
and evaluate q using the updated M-step es-
timates. If this value lies in the previously
calculated confidence bound, we increase
S as S = S + S/SI in the following iter-
ation to overcome the Monte Carlo noise.
See [11, 13] for details on these procedures.
Values for the constants ν, α, d, SI , as well
as initial estimates for S are given in the

supplementary. Running values for S are denoted S_count hereafter.

3.3 An Online Update for the M-Step
Next we turn our attention to the task of updating the mass matrices using the collected momenta
samples. As shown in the energy functions above, the momenta are sampled from zero-mean
normal distributions, enabling us to use standard covariance estimation techniques from the literature.
However, since we are using discretized MCMC to obtain these samples, we have to address the
variance arising from the Monte Carlo error, especially during the burn-in phase. To that end, we
found a running average of the updates to work well in our experiments; in particular, we updated the
inverse mass matrix, denoted as MI , at the kth M-step as:

M
(k)
I = (1− κ(k))M (k−1)

I + κ(k)M
(k,est)
I , (5)

where M (k,est)
I is a suitable estimate computed from the gathered samples in the kth M-step, and{

κ(k)
}

is a step sequence satisfying some standard assumptions, as described below. Note that the
MIs correspond to the precision matrix of the Gaussian distribution of the momenta; updating this
during the M-step also removes the need to invert the mass matrices during the leapfrog iterations.
Curiously, we found the inverse of the empirical covariance matrix to work quite well as M (k,est)

I in
our experiments.

These updates also induce a fresh perspective on the convergence of the overall MCEM procedure.
Existing convergence analyses in the statistics literature fall into three broad categories: a) the almost
sure convergence presented in [26] as t→∞ with increasing sample sizes, b) the asymptotic angle
presented in [27], where the sequence of MCEM updates are analyzed as an approximation to the
standard EM sequence as the sample size, referred to as S_count above, tends to infinity, and c)
the asymptotic consistency results obtained from multiple Gibbs chains in [28], by letting the chain
counts and iterations tend to∞. Our analysis differs from all of these, by focusing on the maximum
likelihood situations noted above as convex optimization problems, and using SGD convergence
techniques [29] for the sequence of iterates M (k)

I .

Proposition 1. Assume the M (k,est)
I ’s provide an unbiased estimate of ∇J , and have bounded

eigenvalues. Let inf‖MI−M∗
I ‖2>ε∇J(MI) > 0 ∀ε > 0. Further, let the sequence

{
κ(k)

}
satisfy∑

k κ
(k) =∞,

∑
k

(
κ(k)

)2
<∞. Then the sequence

{
M

(k)
I

}
converges to the MLE of the precision

almost surely.
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Recall that the (negative) precision is a natural parameter of the normal distribution written in
exponential family notation, and that the log-likelihood is a concave function of the natural parameters
for this family; this makes max-likelihood a convex optimization problem over the precision, even in
the presence of linear constraints [30, 31]. Therefore, this implies that the problems (3), (4) have a
unique maximum, denoted by M∗I above. Also note that the update (5) corresponds to a first order
update on the iterates with an L2-regularized objective, with unit regularization parameter; this is
denoted by J(MI) in the proposition. That is, J is the energy preserved by our sampler(s), as a
function of the mass (precision), augmented with an L2 regularization term. The resultant strongly
convex optimization problem can be analyzed using SGD techniques under the assumptions noted
above; we provide a proof in the supplementary for completeness.

We should note here that the “stochasticity” in the proof does not refer to the stochastic gradients
of L(θ) used in the leapfrog dynamics of Algorithms 2 through 5; instead we think of the collected
momenta samples as a stochastic minibatch used to compute the gradient of the regularized energy,
as a function of the covariance (mass), allowing us to deal with the Monte Carlo error indirectly. Also
note that our assumption on the unbiasedness of the M (k,est)

I estimates is similar to [26], and distinct
from assuming that the MCEM samples of θ are unbiased; indeed, it would be difficult to make this
latter claim, since stochastic samplers in general are known to have a convergent bias.

3.4 Nosé-Poincaré Variants
We next develop a stochastic version of the dynamics derived from the Nosé-Poincaré Hamiltonian,
followed by an MCEM variant. This allows for a direct comparison of the Riemann manifold formula-
tion and our MCEM framework for learning the kinetic masses, in a stochastic setting with thermostat
controls on the momentum terms and desired properties like reversibility and symplecticness provided
by generalized leapfrog discretizations. The Nosé-Poincaré energy function can be written as [6, 9]:

HNP = s

[
−L(θ) +

1

2

(p
s

)
M−1

(p
s

)
+
q2

2Q
+ gkT log s−H0

]
, (6)

where L(θ) is the joint log-likelihood, s is the thermostat control, p and q the momentum terms
corresponding to θ and s respectively, and M and Q the respective mass terms. See [6, 9] for
descriptions of the other constants. Our goal is to learn both M and Q using the MCEM framework,
as opposed to [6], where both were formulated in terms of θ. To that end, we propose the following
system of equations for the stochastic scenario:

pt+ε/2 = p +
ε

2

[
s∇̃L(θ)− B(θ)√

s
M−1pt+ε/2

]
,

ε

4Q
(qt+

ε/2)2 +

[
1 +

A(θ)sε

2Q

]
qt+

ε/2

−
[
q +

ε

2

[
−gkT (1 + log s) +

1

2

(
pt+ε/2

s

)
M−1

(
pt+ε/2

s

)
+ L̃(θ) +H0

]]
= 0,

st+ε = s+ ε

[
qt+ε/2

Q

(
s+ st+

ε/2
)]
, θt+ε = θ + εM−1p

[
1

s
+

1

st+ε

]
,

pt+ε = pt+ε/2 +
ε

2

[
st+ε∇̃L(θt+ε)− B(θt+ε)√

st+ε
M−1pt+ε/2

]
, qt+ε = qt+

ε/2 +
ε

2

[
H0 + L̃(θt+ε)

− gkT (1 + log st+ε) +
1

2

(
pt+ε/2

st+ε

)
M−1

(
pt+ε/2

st+ε

)
− A(θ)st+ε

2Q
qt+

ε/2 −
(
qt+ε/2

)2
2Q

]
,

(7)

where t+ ε/2 denotes the half-step dynamics, ˜ signifies noisy stochastic estimates, and A(θ) and
B(θ) denote the stochastic noise terms, necessary for the Fokker-Planck corrections [6]. Note that
we only have to solve a quadratic equation for qt+ε/2 with the other updates also being closed-form,
as opposed to the implicit system of equations in [6].
Proposition 2. The dynamics (7) preserve the Nosé-Poincaré energy (6).

The proof is a straightforward application of the Fokker-Planck corrections for stochastic noise
to the Hamiltonian dynamics derived from (6), and is provided in the supplementary. With these
dynamics, we first develop the SG-NPHMC algorithm (Alg. 4 in the supplementary) as a counterpart
to SGHMC and SGNHT, and wrap it in our MCEM framework to create SG-NPHMC-EM (Alg. 5
in the supplementary). As we shall demonstrate shortly, this EM variant performs comparably to
SGR-NPHMC from [6], while being significantly faster.
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4 Experiments
In this section we compare the performance of the MCEM-augmented variants of HMC, SGHMC
as well as SGNHT with their standard counterparts, where the mass matrices are set to the identity
matrix. We call these augmented versions HMC-EM, SGHMC-EM, and SGNHT-EM respectively.
As baselines for the synthetic experiments, in addition to the standard samplers mentioned above, we
also evaluate RHMC [3] and SGR-NPHMC [6], two recent algorithms based on dynamic Riemann
manifold formulations for learning the mass matrices. In the topic modeling experiment, for scalability
reasons we evaluate only the stochastic algorithms, including the recently proposed SGR-NPHMC,
and omit HMC, HMC-EM and RHMC. Since we restrict the discussions in this paper to samplers
with second-order dynamics, we do not compare our methods with SGLD [7] or SGRLD [8].

4.1 Parameter Estimation of a 1D Standard Normal Distribution

In this experiment we aim to learn the parameters of a unidimensional standard normal distribution in
both batch and stochastic settings, using 5, 000 data points generated from N (0, 1), analyzing the
impact of our MC-EM framework on the way. We compare all the algorithms mentioned so far: HMC,
HMC-EM, SGHMC, SGHMC-EM, SGNHT, SGNHT-EM, SG-NPHMC, SG-NPHMC-EM along
with RHMC and SGR-NPHMC. The generative model consists of normal-Wishart priors on the mean
µ and precision τ , with posterior distribution p(µ, τ |X) ∝ N(X|µ, τ)W(τ |1, 1), whereW denotes
the Wishart distribution. We run all the algorithms for the same number of iterations, discarding
the first 5, 000 as “burn-in”. Batch sizes were fixed to 100 for all the stochastic algorithms, along
with 10 leapfrog iterations across the board. For SGR-NPHMC and RHMC, we used the observed
Fisher information plus the negative Hessian of the prior as the tensor, with one fixed point iteration
on the implicit system of equations arising from the dynamics of both. For HMC we used a fairly
high learning rate of 1e− 2. For SGHMC and SGNHT we used A = 10 and A = 1 respectively. For
SGR-NPHMC we used A,B = 0.01.

METHOD RMSE (µ) RMSE (τ ) TIME
HMC 0.0196 0.0197 0.417MS
HMC-EM 0.0115 0.0104 0.423MS
RHMC 0.0111 0.0089 5.748MS
SGHMC 0.1590 0.1646 0.133MS
SGHMC-EM 0.0713 0.2243 0.132MS
SG-NPHMC 0.0326 0.0433 0.514MS
SG-NPHMC-EM 0.0274 0.0354 0.498MS
SGR-NPHMC 0.0240 0.0308 3.145MS
SGNHT 0.0344 0.0335 0.148MS
SGNHT-EM 0.0317 0.0289 0.148MS

Table 1: RMSE of the sampled means, precisions and per-
iteration runtimes (in milliseconds) from runs on synthetic
Gaussian data.

We show the RMSE numbers col-
lected from post-burn-in samples as
well as per-iteration runtimes in Ta-
ble 1. An “iteration” here refers to a
complete E step, with the full quota
of leapfrog jumps. The improvements
afforded by our MCEM framework
are immediately noticeable; HMC-
EM matches the errors obtained from
RHMC, in effect matching the sam-
ple distribution, while being much
faster (an order of magnitude) per it-
eration. The stochastic MCEM algo-
rithms show markedly better perfor-
mance as well; SGNHT-EM in partic-
ular beats SGR-NPHMC in RMSE-τ while being significantly faster due to simpler updates for the
mass matrices. Accuracy improvements are particularly noticeable for the high learning rate regimes
for HMC, SGHMC and SG-NPHMC.

4.2 Parameter Estimation in 2D Bayesian Logistic Regression

Next we present some results obtained from a Bayesian logistic regression experiment, using both
synthetic and real datasets. For the synthetic case, we used the same methodology as [6]; we generated
2, 000 observations from a mixture of two normal distributions with means at [1,−1] and [−1, 1], with
mixing weights set to (0.5, 0.5) and the covariance set to I . We then classify these points using a linear
classifier with weights {W0,W1} = [1,−1], and attempt to learn these weights using our samplers.
We put N (0, 10I) priors on the weights, and used the metric tensor described in §7 of [3] for the
Riemannian samplers. In the (generalized) leapfrog steps of the Riemannian samplers, we opted to
use 2 or 3 fixed point iterations to approximate the solutions to the implicit equations. Along with this
synthetic setup, we also fit a Bayesian LR model to the Australian Credit and Heart regression datasets
from the UCI database, for additional runtime comparisons. The Australian credit dataset contains
690 datapoints of dimensionality 14, and the Heart dataset has 270 13-dimensional datapoints.
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METHOD RMSE (W0) RMSE (W1)
HMC 0.0456 0.1290
HMC-EM 0.0145 0.0851
RHMC 0.0091 0.0574
SGHMC 0.2812 0.2717
SGHMC-EM 0.2804 0.2583
SG-NPHMC 0.4945 0.4263
SG-NPHMC-EM 0.0990 0.4229
SGR-NPHMC 0.1901 0.1925
SGNHT 0.2035 0.1921
SGNHT-EM 0.1983 0.1729

Table 2: RMSE of the two regression parameters,
for the synthetic Bayesian logistic regression ex-
periment. See text for details.

For the synthetic case, we discard the first
10, 000 samples as burn-in, and calculate RMSE
values from the remaining samples. Learning
rates were chosen from {1e−2, 1e−4, 1e−6},
and values of the stochastic noise terms were se-
lected from {0.001, 0.01, 0.1, 1, 10}. Leapfrog
steps were chosen from {10, 20, 30}. For the
stochastic algorithms we used a batchsize of
100.

The RMSE numbers for the synthetic dataset
are shown in Table 2, and the per-iteration run-
times for all the datasets are shown in Table 3.
We used initialized S_count to 300 for HMC-
EM, SGHMC-EM, and SGNHT-EM, and 200
for SG-NPHMC-EM. The MCEM framework
noticeably improves the accuracy in almost all cases, with no computational overhead. Note the
improvement for SG-NPHMC in terms of RMSE for W0. For the runtime calculations, we set all
samplers to 10 leapfrog steps, and fixed S_count to the values mentioned above.

METHOD TIME (SYNTH) TIME (AUS) TIME (HEART)
HMC 1.435MS 0.987MS 0.791MS
HMC-EM 1.428MS 0.970MS 0.799MS
RHMC 1550MS 367MS 209MS
SGHMC 0.200MS 0.136MS 0.112MS
SGHMC-EM 0.203MS 0.141MS 0.131MS
SG-NPHMC 0.731MS 0.512MS 0.403MS
SG-NPHMC-EM 0.803MS 0.525MS 0.426MS
SGR-NPHMC 6.720MS 4.568MS 3.676MS
SGNHT 0.302MS 0.270MS 0.166MS
SGNHT-EM 0.306MS 0.251MS 0.175MS

Table 3: Per-iteration runtimes (in milliseconds) for Bayesian logistic
regression experiments, on both synthetic and real datasets.

The comparisons with the
Riemannian algorithms tell
a clear story: though we
do get somewhat better
accuracy with these sam-
plers, they are orders of
magnitude slower. In
our synthetic case, for in-
stance, each iteration of
RHMC (consisting of all
the leapfrog steps and the
M-H ratio calculation) takes
more than a second, us-
ing 10 leapfrog steps and 2
fixed point iterations for the
implicit leapfrog equations, whereas both HMC and HMC-EM are simpler and much faster. Also
note that the M-step calculations for our MCEM framework involve a single-step closed form update
for the precision matrix, using the collected samples of p once every S_count sampling steps; thus
we can amortize the cost of the M-step over the previous S_count iterations, leading to negligible
changes to the per-sample runtimes.

4.3 Topic Modeling using a Nonparametric Gamma Process Construction

Next we turn our attention to a high-dimensional topic modeling experiment using a nonparametric
Gamma process construction. We elect to follow the experimental setup described in [6]. Specifically,
we use the Poisson factor analysis framework of [32]. Denoting the vocabulary as V , and the
documents in the corpus as D, we model the observed counts of the vocabulary terms as DV×N =
Poi(ΦΘ), where ΘK×N models the counts of K latent topics in the documents, and ΦV×K denotes
the factor load matrix, that encodes the relative importance of the vocabulary terms in the latent topics.
Following standard Bayesian convention, we put model the columns of Φ as φ·,k ∼ Dirichlet(α),
using normalized Gamma variables: φv,k = γv∑

v γv
, with γv ∼ Γ(α, 1). Then we have θn,k ∼

Γ(rk,
pj

1−pj ); we put β(a0, b0) priors on the document-specific mixing probabilities pj . We then set
the rks to the atom weights generated by the constructive Gamma process definition of [14]; we refer
the reader to that paper for the details of the formulation. It leads to a rich nonparametric construction
of this Poisson factor analysis model for which closed-form Gibbs updates are infeasible, thereby
providing a testing application area for the stochastic MCMC algorithms. We omit the Metropolis
Hastings correction-based HMC and RHMC samplers in this evaluation due to poor scalability.
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(a) (b)

Figure 1: Test perplexities plotted against (a) post-burnin iterations and (b) wall-clock time for the
20-Newsgroups dataset. See text for experimental details.

We use count matrices from the 20-Newsgroups and Reuters Corpus Volume 1 corpora [33]. The
former has 2, 000 words and 18, 845 documents, while the second has a vocabulary of size 10, 000
over 804, 414 documents. We used a chronological 60−40 train-test split for both datasets. Following
standard convention for stochastic algorithms, following each minibatch we learn document-specific
parameters from 80% of the test set, and calculate test perplexities on the remaining 20%. Test
perplexity, a commonly used measure for such evaluations, is detailed in the supplementary.

As noted in [14], the atom weights have three sets of components: the Eks, Tks and the hyperparame-
ters α, γ and c. As in [6], we ran three parallel chains for these parameters, collecting samples of the
momenta from the Tk and hyperparameter chains for the MCEM mass updates. We kept the mass of
the Ek chain fixed to IK , and chose K = 100 as number of latent topics. We initialized S_count,
the E-step sample size in our algorithms, to 50 for NPHMC-EM and 100 for the rest. Increasing
S_count over time yielded fairly minor improvements, hence we kept it fixed to the values above
for simplicity. Additional details on batch sizes, learning rates, stochastic noise estimates, leapfrog
iterations etc are provided in the supplementary. For the 20-Newsgroups dataset we ran all algorithms
for 1, 500 burn-in iterations, and collected samples for the next 1, 500 steps thereafter, with a stride
of 100, for perplexity calculations. For the Reuters dataset we used 2, 500 burn-in iterations. Note
that for all these algorithms, an “iteration” corresponds to a full E-step with a stochastic minibatch.

METHOD 20-NEWS REUTERS TIME(20-NEWS)
SGHMC 759 996 0.047S
SGHMC-EM 738 972 0.047S
SGNHT 757 979 0.045S
SGNHT-EM 719 968 0.045S
SGR-NPHMC 723 952 0.410S
SG-NPHMC 714 958 0.049S
SG-NPHMC-EM 712 947 0.049S

Table 4: Test perplexities and per-iteration runtimes on 20-
Newsgroups and Reuters datasets.

The numbers obtained at the end
of the runs are shown in Table 2,
along with per-iteration runtimes.
The post-burnin perplexity-vs-
iteration plots from the 20-
Newsgroups dataset are shown in
Figure 1. We can see significant
improvements from the MCEM
framework for all samplers, with
that of SGNHT being highly pro-
nounced (719 vs 757); indeed,
the SG-NPHMC samplers have
lower perplexities (712) than those obtained by SGR-NPHMC (723), while being close to an order
of magnitude faster per iteration for 20-Newsgroups even when the latter used diagonalized metric
tensors, ostensibly by avoiding implicit systems of equations in the leapfrog steps to learn the kinetic
masses. The framework yields nontrivial improvements for the Reuters dataset as well.

5 Conclusion
We propose a new theoretically grounded approach to learning the mass matrices in Hamiltonian-
based samplers, including both standard HMC and stochastic variants, using a Monte Carlo EM
framework. In addition to a newly proposed stochastic sampler, we augment certain existing samplers
with this technique to devise a set of new algorithms that learn the kinetic masses dynamically from
the data in a flexible and scalable fashion. Experiments conducted on synthetic and real datasets
demonstrate the efficacy and efficiency of our framework, when compared to existing Riemannian
manifold-based samplers.
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