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Abstract

Deep neural networks (DNNs) and probabilistic graphical models (PGMs) are
the two main tools for statistical modeling. While DNNs provide the ability to
model rich and complex relationships between input and output variables, PGMs
provide the ability to encode dependencies among the output variables themselves.
End-to-end training methods for models with structured graphical dependencies
on top of neural predictions have recently emerged as a principled way of com-
bining these two paradigms. While these models have proven to be powerful in
discriminative settings with discrete outputs, extensions to structured continuous
spaces, as well as performing efficient inference in these spaces, are lacking. We
propose non-parametric structured output networks (NSON), a modular approach
that cleanly separates a non-parametric, structured posterior representation from
a discriminative inference scheme but allows joint end-to-end training of both
components. Our experiments evaluate the ability of NSONs to capture structured
posterior densities (modeling) and to compute complex statistics of those densities
(inference). We compare our model to output spaces of varying expressiveness and
popular variational and sampling-based inference algorithms.

1 Introduction

In recent years, deep neural networks have led to tremendous progress in domains such as image
classification [1, 2] and segmentation [3], object detection [4, 5] and natural language processing [6, 7].
These achievements can be attributed to their hierarchical feature representation, the development of
effective regularization techniques [8, 9] and the availability of large amounts of training data [10, 11].

While a lot of effort has been spent on identifying optimal network structures and trainings schemes
to enable these advances, the expressiveness of the output space has not evolved at the same rate.
Indeed, it is striking that most neural architectures model categorical posterior distributions that
do not incorporate any structural assumptions about the underlying task; they are discrete and
global (Figure 1a). However, many tasks are naturally formulated as structured problems or would
benefit from continuous representations due to their high cardinality. In those cases, it is desirable to
learn an expressive posterior density reflecting the dependencies in the underlying task.

As a simple example, consider a stripe of n noisy pixels in a natural image. If we want to learn
a neural network that encodes the posterior distribution p✓✓✓(y | x) of the clean output y given the
noisy input x, we must ensure that p✓✓✓ is expressive enough to represent potentially complex noise
distributions and structured enough to avoid modeling spurious dependencies between the variables.

Probabilistic graphical models [12], such as Bayesian networks or Markov random fields, have a
long history in machine learning and provide principled frameworks for such structured data. It is
therefore natural to use their factored representations as a means of enforcing structure in a deep
neural network. While initial results along this line of research have been promising [13, 14], they
focus exclusively on the discrete case and/or mean-field inference.

Instead, we propose a deep neural network that encodes a non-parametric posterior density that
factorizes over a graph (Figure 1b). We perform recurrent inference inspired by message-passing in
this structured output space and show how to learn all components end-to-end.
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Figure 1: Overview: Non-parametric Structured Output Networks. (a) Traditional neural networks use
a series of convolution and inner product modules to predict a discrete posterior without graphical structure
(e.g., VGG [15]). [grey b= optional] (b) Non-parametric structured output networks use a deep neural network to
predict a non-parametric graphical model p✓✓✓(x)(y) (NGM) that factorizes over a graph. A recurrent inference
network (RIN) computes statistics t[p✓✓✓(x)(y)] from this structured output density. At training time, we propagate
stochastic gradients from both NGM and RIN back to the inputs.

1.1 Related Work

Our framework builds upon elements from neural networks, structured models, non-parametric
statistics, and approximate inference. We will first present prior work on structured neural networks
and then discuss the relevant literature on approximate non-parametric inference.

1.1.1 Structured Neural Networks

Structured neural networks combine the expressive representations of deep neural networks with
the structured dependencies of probabilistic graphical models. Early attempts to combine both
frameworks used high-level features from neural networks (e.g., fc7) to obtain fixed unary potentials
for a graphical model [18]. More recently, statistical models and their associated inference tasks have
been reinterpreted as (layers in) neural networks, which has allowed true end-to-end training and
blurred the line between both paradigms: [13, 14] express the classic mean-field update equations
as a series of layers in a recurrent neural network (RNN). Structure inference machines [17] use an
RNN to simulate message-passing in a graphical model with soft-edges for activity recognition. A
full backward-pass through loopy-BP was proposed in [19]. The structural-RNN [16] models all
node and edge potentials in a spatio-temporal factor graph as RNNs that are shared among groups of
nodes/edges with similar semantics. Table 1 summarizes some important properties of these methods.
Notably, all output spaces except for the non-probabilistic work [16] are discrete.

1.1.2 Inference in Structured Neural Networks

In contrast to a discrete and global posterior, which allows inference of common statistics (e.g., its
mode) in linear time, expressive output spaces, as in Figure 1b, require message-passing schemes [20]

Output Space Related Work

VGG MRF-RNN Structural Structure Deep Structured NSONRNN Inference Machines Models
[15] [14] [16] [17] [13] (ours)

Continuous 7 7 X 7 7 X
�Non-parametric � � 7 � � X

Structured 7 X X X X X
�End-to-end Training � X X 7 X X

Prob. Inference D MF 7 MP MF MP
Posterior Sampling X 7 7 X 7 X

Table 1: Output Space Properties Across Models.

[MF: mean-field; MP: message passing; D: direct; ‘�’: not applicable]
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to propagate and aggregate information. Local potentials outside of the exponential family, such
as non-parametric distributions, lead to intractable message updates, so one needs to resort to
approximate inference methods, which include the following two popular groups:

Variational Inference. Variational methods, such as mean-field and its structured variants [12],
approximate an intractable target distribution with a tractable variational distribution by maximizing
the evidence lower bound (ELBO). Stochastic extensions allow the use of this technique even on
large datasets [21]. If the model is not in the conjugate-exponential family [22], as is the case for
non-parametric graphical models, black box methods must be used to approximate an intractable
expectation in the ELBO [23]. For fully-connected graphs with Gaussian pairwise potentials, the
dense-CRF model [24] proposes an efficient way to perform the variational updates using the
permutohedral lattice [25]. For general edge potentials, [26] proposes a density estimation technique
that allows the use of non-parametric edge potentials.

Sampling-based Inference. This group of methods employs (sets of) samples to approximate
intractable operations when computing message updates. Early works use iterative refinements of ap-
proximate clique potentials in junction trees [27]. Non-parametric belief propagation (NBP) [28, 29]
represents each message as a kernel density estimate and uses Gibbs sampling for propagation. Parti-
cle belief propagation [30] represents each message as a set of samples drawn from an approximation
to the receiving node’s marginal, effectively circumventing the kernel smoothing required in NBP.
Diverse particle selection [31] keeps a diverse set of hypothesized solutions at each node that pass
through an iterative augmentation-update-selection scheme that preserves message values. Finally, a
mean shift density approximation has been used as an alternative to sampling in [32].

1.2 Contributions

Our NSON model is inspired by the structured neural architectures (Section 1.1.1). However, in
contrast to those approaches, we model structured dependencies on top of expressive non-parametric
densities. In doing so, we build an inference network that computes statistics of these non-parametric
output densities, thereby replacing the need for more conventional inference (Section 1.1.2).

In particular, we make the following contributions: (1) We propose non-parametric structured output
networks, a novel approach combining the predictive power of deep neural networks with the
structured representation and multimodal flexibility of non-parametric graphical models; (2) We show
how to train the resulting output density together with recurrent inference modules in an end-to-end
way; (3) We compare non-parametric structured output networks to a variety of alternative output
densities and demonstrate superior performance of the inference module in comparison to variational
and sampling-based approaches.

2 Non-parametric Structured Output Networks

Traditional neural networks (Figure 1a; [15]) encode a discrete posterior distribution by predicting
an input-conditioned parameter vector e✓(x) of a categorical distribution, i.e., Y | X = x ⇠ pe✓(x).

Non-parametric structured output networks (Figure 1b) do the same, except that e✓✓✓(x) parameterizes a
continuous graphical model with non-parametric potentials. It consists of three components: A deep
neural network (DNN), a non-parametric graphical model (NGM), and a recurrent inference network
(RIN). While the DNN+NGM encode a structured posterior (b= model), the RIN computes complex
statistics in this output space (b= inference).

At a high level, the DNN, conditioned on an input x, predicts the parameters e✓✓✓ = {e✓ij} (e.g.,
kernel weights, centers and bandwidths) of local non-parametric distributions over a node and its
parents according to the NGM’s graph structure (Figure 1b). Using a function ⌧, these local joint
distributions are then transformed to conditional distributions parameterized by ✓✓✓ = {✓i|j} (e.g.,
through a closed-form conditioning operation) and assembled into a structured joint density p✓✓✓(x)(y)
with conditional (in)dependencies prescribed by the graphical model. Parameters of the DNN are
optimized with respect to a maximum-likelihood loss LM . Simultaneously, a recurrent inference
network (detailed in Figure 2) that takes e✓✓✓ as input, is trained to compute statistics of the structured
distribution (e.g., marginals) using a separate inference loss LI . The following two paragraphs discuss
these elements in more detail.
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Model (DNN+NGM). The DNN is parameterized by a weight vector ���M and encodes a function
from a generic input space X to a Cartesian parameter space ⇥n,

x
���M7�! e✓✓✓(x) = (e✓i,pa(i)(x))n

i=1, (1)

each of whose components models a joint kernel density (Yi, pa(Yi)) ⇠ pe✓i,pa(i)(x) and thus, implic-
itly, the local conditional distribution Yi | pa(Yi) ⇠ p✓i|pa(i)(x) of a non-parametric graphical model

p✓✓✓(x)(y) =
nY

i=1

p✓i|pa(i)(x)(yi | pa(yi)) (2)

over a structured output space Y with directed, acyclic graph G = (Y, E). Here, pa(·) denotes the set
of parent nodes w.r.t. G, which we fix in advance based on prior knowledge or structure learning [12].
The conditional density of a node Y = Yi with parents Y 0 = pa(Yi) and parameters ✓ = ✓i|pa(i)(x)
is thus given by1

p✓(y | y0) =
NX

j=1

w(j) · |B(j)|�1(B(�j)(y � µ(j))), (3)

where the differentiable kernel (u) =
Q

i q(ui) is defined in terms of a symmetric, zero-mean
density q with positive variance and the conditional parameters ✓ = (w,µµµ,B) 2 ⇥ correspond to
the full set of kernel weights, kernel centers, and kernel bandwidth matrices, respectively.2 The
functional relationship between ✓ and its joint counterpart e✓ = e✓i,pa(i)(x) is mediated through a
kernel-dependent conditioning operation ⌧(e✓) = ⌧(ew, eµµµ, eB) = ✓ and can be computed in closed-
form for a wide range of kernels, including Gaussian, cosine, logistic and other kernels with sigmoid

CDF. In particular, for block decompositions eB(j) =
� eB(j)

y 0

0 eB(j)

y0

�
and eµ(j) =

� eµ(j)
y

eµ(j)

y0

�
, we obtain

⌧(e✓) = ✓ =

8
>><

>>:

w(j) / ew(j) · |eB(j)
y0 |�1(eB(�j)

y0 (y0 � eµ(j)
y0 )),

µ(j) = eµ(j)
y ,

B(j) = eB(j)
y .

1  j  N (4)

See Appendix A.1 for a detailed derivation. We refer to the structured posterior density in Eq. (2)
with the non-parametric local potentials in Eq. (3) as a non-parametric structured output network.

Given an output training set DY = {y(i) 2 Y}N 0

i=1, traditional kernel density estimation [33] can be
viewed as an extreme special case of this architecture in which the discriminative, trainable DNN
is replaced with a generative, closed-form estimator and n := 1 (no structure), N := N 0 (#kernels
= #training points), w(i) := (N 0)�1 (uniform weights), B(i) := B(0) (shared covariance) and
µ(i) := y(i) (fixed centers). When learning ���M from data, we can easily enforce parts or all of those
restrictions in our model (see Section 5), but Section 3 will provide all necessary derivations for the
more general case shown above.

Inference (RIN). In contrast to traditional classification networks with discrete label posterior,
non-parametric structured output networks encode a complex density with rich statistics. We employ
a recurrent inference network with parameters ���I to compute such statistics t from the predicted
parameters e✓✓✓(x) 2 ⇥n,

e✓✓✓(x)
���I7�! t[p✓✓✓(x)]. (5)

Similar to conditional graphical models, the underlying assumption is that the input-conditioned
density p✓✓✓(x) contains all information about the semantic entities of interest and that we can infer
whichever statistic we are interested in from it. A popular example of a statistic is a summary statistic,

t[p✓✓✓(x)](yi) = opy\yi
p✓✓✓(x)(y) d(y\yi), (6)

which is known as sum-product BP (op =
R

; computing marginals) and max-product BP (op =
max; computing max-marginals). Note, however, that we can attach recurrent inference networks
corresponding to arbitrary tasks to this meta representation. Section 4 discusses the necessary details.

1We write B(�j) :=
⇣
B(j)

⌘�1
and B�T :=

�
B�1

�> to avoid double superscripts.
2Note that ✓ represents the parameters of a specific node; different nodes may have different parameters.
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3 Learning Structured Densities using Non-Parametric Back-Propagation

The previous section introduced the model and inference components of a non-parametric structured
output network. We will now describe how to learn the model (DNN+NGM) from a supervised
training set (x(i),y(i)) ⇠ pD.

3.1 Likelihood Loss

We write ✓✓✓(x;���M ) = ⌧(e✓✓✓(x;���M )) to explicitly refer to the weights ���M of the deep neural network
predicting the non-parametric graphical model (Eq. (1)). Since the parameters of p✓✓✓(x) are determin-
istic predictions from the input x, the only free and learnable parameters are the components of ���M .

We train the DNN via empirical risk minimization with a negative log-likelihood loss LM ,

���⇤
M = argmin

���M

E(x,y)⇠bpD [LM (✓✓✓(x;���M ),y)]

= argmax
���M

E(x,y)⇠bpD [log p✓✓✓(x;���M )(y)],
(7)

where bpD refers to the empirical distribution and the expectation in Eq. (7) is taken over the fac-
torization in Eq. (2) and the local distributions in Eq. (3). Note the similarities and differences
between a non-parametric structured output network and a non-parametric graphical model with
unary potentials from a neural network: Both model classes describe a structured posterior. However,
while the unaries in the latter perform a reweighting of the potentials, a non-parametric structured
output network predicts those potentials directly and allows joint optimization of its DNN and NGM
components by back-propagating the structured loss first through the nodes of the graphical model
and then through the layers of the neural network all the way back to the input.

3.2 Topological Non-parametric Gradients

We optimize Eq. (7) via stochastic gradient descent of the loss LM w.r.t. the deep neural network
weights ���M using Adam [34]. Importantly, the gradients r���M LM (✓✓✓(x;���M ),y) decompose into a
factor from the deep neural network and a factor from the non-parametric graphical model,

r���M LM (✓✓✓(x;���M ),y) =
@ log p✓✓✓(x;���M )(y)

@ e✓e✓e✓(x;���M )
· @

e✓e✓e✓(x;���M )

@ ���M
, (8)

where the partial derivatives of the second factor can be obtained via standard back-propagation and
the first factor decomposes according to the graphical model’s graph structure G,

@ log p✓✓✓(x;���M )(y)

@ e✓e✓e✓(x;���M )
=

nX

i=1

@ log p✓i|pa(i)(x;���M )(yi | pa(yi))

@ e✓e✓e✓(x;���M )
. (9)

The gradient of a local model w.r.t. the joint parameters e✓e✓e✓(x;���M ) is given by two factors accounting
for the gradient w.r.t. the conditional parameters and the Jacobian of the conditioning operation,

@ log p✓i|pa(i)(x;���M )(yi | pa(yi))

@ e✓e✓e✓(x;���M )
=
@ log p✓i|pa(i)(x;���M )(yi | pa(yi))

@ ✓✓✓(x;���M )
· @ ✓

✓✓(x;���M )

@ e✓✓✓(x;���M )
. (10)

Note that the Jacobian takes a block-diagonal form, because ✓ = ✓i|pa(i)(x;���M ) is independent
of e✓ = e✓j,pa(j)(x;���M ) for i 6= j. Each block constitutes the backward-pass through a node Yi’s
conditioning operation,

@ ✓

@ e✓
=
@ (w,µµµ,B)

@ (ew, eµµµ, eB)
=

2

66664

@w
@ ew

@w
@eµµµ

@w
@ eB

0 @µµµ
@eµµµ 0

0 0 @B
@ eB

3

77775
, (11)

where the individual entries are given by the derivatives of Eq. (4), e.g.,

@w

@ ew = (w ⌦ w + diag(w)) · diag(ew)�1. (12)
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Similar equations exist for the derivatives of the weights w.r.t. the kernel locations and kernel
bandwidth matrices; the remaining cases are simple projections. In practice, we may be able to group
the potentials p✓i|pa(i)

according to their semantic meaning, in which case we can train one potential
per group instead of one potential per node by sharing the corresponding parameters in Eq. (9).

All topological operations can be implemented as separate layers in a deep neural network and the
corresponding gradients can be obtained using automatic differentiation.

3.3 Distributional Non-parametric Gradients

We have shown how the gradient of the loss factorizes over the graph of the output space. Next, we
will provide the gradients of those local factors log p✓(y | y0) (Eq. (3)) w.r.t. the local parameters
✓ = ✓i|pa(i). To reduce notational clutter, we introduce the shorthand by(k) := B(�k)(y � µ(k)) to
refer to the normalized input and provide only final results; detailed derivations for all gradients and
worked out examples for specific kernels can be found in Appendix A.2.

Kernel Weights.

rw log p✓(y | y0) =
⌘

w>⌘
, ⌘ :=

✓
|B(�k)|(by(k))

◆N

k=1

. (13)

Note that w is required to lie on the standard (N�1)-simplex �(N�1). Different normalizations are
possible, including a softmax or a projection onto the simplex, i.e., ⇡�(N�1)(w(i)) = max(0, w(i) + u)
and u is the unique translation such that the positive points sum to 1 [35].

Kernel Centers.

rµµµ log p✓(y | y0) =
w � �

w>⌘
, � :=

✓
�B(�>k)

|B(k)|
· @(by

(k))

@by(k)

◆N

k=1

. (14)

The kernel centers do not underlie any spatial restrictions, but proper initialization is important.
Typically, we use the centers of a k-means clustering with k := N to initialize the kernel centers.

Kernel Bandwidth Matrices.

rB log p✓(y | y0) =
w � �

w>⌘
, � :=

✓
�B(�>k)

|B(k)|
·
✓
(by(k)) +

@(by(k))

@by(k)
by(>k)

◆◆N

k=1

. (15)

While computation of the gradient w.r.t. B is a universal approach, specific kernels may allow
alternative gradients: In a Gaussian kernel, for instance, the Gramian of the bandwidth matrix acts as a
covariance matrix. We can thus optimize B(k)B(>k) in the interior of the cone of positive-semidefinite
matrices by computing the gradients w.r.t. the Cholesky factor of the inverse covariance matrix.

4 Inferring Complex Statistics using Neural Belief Propagation

The previous sections introduced non-parametric structured output networks and showed how their
components, DNN and NGM, can be learned from data. Since the resulting posterior density p✓✓✓(x)(y)
(Eq. (2)) factorizes over a graph, we can, in theory, use local messages to propagate beliefs about statis-
tics t[p✓✓✓(x)(y)] along its edges (BP; [20]). However, special care must be taken to handle intractable
operations caused by non-parametric local potentials and to allow an end-to-end integration.

For ease of exposition, we assume that we can represent the local conditional distributions as a set of
pairwise potentials {�(yi, yj)}, effectively converting our directed model to a normalized MRF. This
is not limiting, as we can always convert a factor graph representation of Eq. (2) into an equivalent
pairwise MRF [36]. In this setting, a BP message µi!j(yj) from Yi to Yj takes the form

µi!j(yj) = opyi
�(yi, yj) · µ·!i(yi), (16)

where the operator opy computes a summary statistic, such as integration or maximization, and
µ·!i(yi) is the product of all incoming messages at Yi. In case of a graphical model with non-
parametric local distributions (Eq. (3)), this computation is not feasible for two reasons: (1) the pre-
messages µ·!i(yi) are products of sums, which means that the number of kernels grows exponentially
in the number of incoming messages; (2) the functional opy does not usually have an analytic form.
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Figure 2: Inferring Complex Statistics. Expressive output spaces require explicit inference procedures to
obtain posterior statistics. We use an inference network inspired by message-passing schemes in non-parametric
graphical models. (a) An RNN iteratively computes outgoing messages from incoming messages and the local
potential. (b) Unrolled inference network illustrating the computation of bµ2!4 in the graph shown in Figure 1b.

Inspired by recent results in imitation learning [37] and inference machines for classification [17, 38],
we take an alternate route and use an RNN to model the exchange of information between non-
parametric nodes. In particular, we introduce an RNN node bµi!j for each message and connect them
in time according to Eq. (16), i.e., each node has incoming connections from its local potential e✓ij ,
predicted by the DNN, and the nodes {bµk!i : k 2 neG(i)\j}, which correspond to the incoming
messages. The message computation itself is approximated through an FC+ReLU layer with weights
���i!j

I . An approximate message bµi!j from Yi to Yj can thus be written as

bµi!j = ReLU(FC���i!j
I

(Stacking(e✓ij , {bµk!i : k 2 neG(i)\j}))), (17)

where neG(·) returns the neighbors of a node in G. The final beliefs bbi = bµ·!i · bµi!j can be
implemented analogously. Similar to (loopy) belief updates in traditional message-passing, we run
the RNN for a fixed number of iterations, at each step passing all neural messages. Furthermore, using
the techniques discussed in Section 3.3, we can ensure that the messages are valid non-parametric
distributions. All layers in this recurrent inference network are differentiable, so that we can propagate
a decomposable inference loss LI =

Pn
i=1 L(i)

I end-to-end back to the inputs. In practice, we find that
generic loss functions work well (see Section 5) and that canonic loss functions can often be obtained
directly from the statistic. The DNN weights ���M are thus updated so as to do both predict the right
posterior density and, together with the RIN weights ���I , perform correct inference in it (Figure 2).

5 Experiments

We validate non-parametric structured output networks at both the model (DNN+NGM) and the
inference level (RIN). Model validation consists of a comparison to baselines along two binary
axes, structuredness and non-parametricity. Inference validation compares our RIN unit to the
two predominant groups of approaches for inference in structured non-parametric densities, i.e.,
sampling-based and variational inference (Section 1.1.2).

5.1 Dataset

We test our approach on simple natural pixel statistics from Microsoft COCO [11] by sampling stripes
y = (yi)n

i=1 2 [0, 255]n of n = 10 pixels. Each pixel yi is corrupted by a linear noise model, leading
to the observable output xi = � · yi + ✏, with ✏ ⇠ N (255 · ��,�1,�2) and � ⇠ Ber( ), where the
target space of the Bernoulli trial is {�1, +1}. For our experiments, we set �2 = 100 and  = 0.5.
Using this noise process, we generate training and test sets of sizes 100,000 and 1,000, respectively.

5.2 Model Validation

The distributional gradients (Eq. (9)) comprise three types of parameters: Kernel locations, kernel
weights, and kernel bandwidth matrices. Default values for the latter two exist in the form of uniform
weights and plug-in bandwidth estimates [33], respectively, so we can turn optimization of those
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Gaussian 7 7 �0.90 +2.54 �0.88 +2.90
GGM [39] 7 X �0.85 +1.55 �0.93 +1.53
Mixture Density [40] X 7 +9.22 +6.87 +11.18 +11.51
NGM-100 (ours) X X +15.26 +15.30 +16.00 +16.46

(a) Model Validation

Inference Particles Performance Runtime
(marg. log-lik.) (sec)

BB-VI [23] 400 +2.30 660.65
800 +3.03 1198.08

P-BP [30]

50 +2.91 0.49
100 +6.13 2.11
200 +7.01 6.43
400 +8.85 21.13

RIN-100 (ours) � +16.62 0.04

(b) Inference Validation

Table 2: Quantitative Evaluation. (a) We report the expected log-likelihood of the test set under the predicted
posterior p✓✓✓(x)(y), showing the need for a structured and non-parametric approach to model rich posteriors.
(b) Inference using our RIN architecture is much faster than sampling-based or variational inference while
still leading to accurate marginals. [(N/G)GM: Non-parametric/Gaussian Graphical Model; RIN-x: Recurrent
Inference Network with x kernels; P-BP: Particle Belief Propagation; BB-VI: Black Box Variational Inference]

parameter groups on/off as desired.3 In addition to those variations, non-parametric structured output
networks with a Gaussian kernel  = N (· | ~0, I) comprise a number of popular baselines as special
cases, including neural networks predicting a Gaussian posterior (n = 1, N = 1), mixture density
networks (n = 1, N > 1; [40]), and Gaussian graphical models (n > 1, N = 1; [39]). For the sake
of completeness, we also report the performance of two basic posteriors without preceding neural
network, namely a pure Gaussian and traditional kernel density estimation (KDE). We compare our
approach to those baselines in terms of the expected log-likelihood on the test set, which is a relative
measure for the KL-divergence to the true posterior.

Setup and Results. For the two basic models, we learn a joint density p(y,x) by maximum like-
lihood (Gaussian) and plug-in bandwidth estimation (KDE) and condition on the inputs x to infer
the labels y. We train the other 4 models for 40 epochs using a Gaussian kernel and a diagonal
bandwidth matrix for the non-parametric models. The DNN consists of 2 fully-connected layers with
256 units and the kernel weights are constrained to lie on a simplex with a softmax layer. The NGM
uses a chain-structured graph that connects each pixel to its immediate neighbors. Table 2a shows our
results. Ablation study: unsurprisingly, a purely Gaussian posterior cannot represent the true posterior
appropriately. A multimodal kernel density works better than a neural network with parametric poste-
rior but cannot compete with the two non-parametric models attached to the neural network. Among
the methods with a neural network, optimization of kernel locations only (first column) generally
performs worst. However, the �W +B setting (second column) gets sometimes trapped in local min-
ima, especially in case of global mixture densities. If we decide to estimate a second parameter group,
weights (+W ) should therefore be preferred over bandwidths (+B). Best results are obtained when
estimation is turned on for all three parameter groups. Baselines: the two non-parametric methods
consistently perform better than the parametric approaches, confirming our claim that non-parametric
densities are a powerful alternative to a parametric posterior. Furthermore, a comparison of the
last two rows shows a substantial improvement due to our factored representation, demonstrating
the importance of incorporating structure into high-dimensional, continuous estimation problems.

Learned Graph Structures. While the output variables in our experiments with one-dimensional
pixel stripes have a canonical dependence structure, the optimal connectivity of the NGM in tasks with
complex or no spatial semantics might be less obvious. As an example, we consider the case of two-
dimensional image patches of size 10⇥ 10, which we extract and corrupt following the same protocol
and noise process as above. Instead of specifying the graph by hand, we use a mutual information cri-
terion [41] to learn the optimal arborescence from the training labels. With estimation of all parameter
groups turned on (+W + B), we obtain results that are fully in line with those above: the expected
test log-likelihood of NSONs (+153.03) is again superior to a global mixture density (+76.34),
which in turn outperforms the two parametric approaches (GGM: +18.60; Gaussian: �19.03). A full
ablation study as well as a visualization of the inferred graph structure are shown in Appendix A.3.

3Since plug-in estimators depend on the kernel locations, the gradient w.r.t. the kernel locations needs to take
these dependencies into account by backpropagating through the estimator and computing the total derivative.
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5.3 Inference Validation

Section 4 motivated the use of a recurrent inference network (RIN) to infer rich statistics from
structured, non-parametric densities. We compare this choice to the other two groups of approaches,
i.e., variational and sampling-based inference (Section 1.1.2), in a marginal inference task. To this
end, we pick one popular member from each group as baselines for our RIN architecture.

Particle Belief Propagation (P-BP; [30]). Sum-product particle belief propagation approximates
a BP-message (Eq. (16); op :=

R
) with a set of particles {y(s)

j }S
s=1 per node Yj by computing

bµi!j(y
(k)
j ) =

SX

s=1

�(y(s)
i , y(k)

j ) · bµ·!i(y
(s)
i )

S⇢(y(s)
i )

, (18)

where the particles are sampled from a proposal distribution ⇢ that approximates the true marginal by
running MCMC on the beliefs bµ·!i(yi) · bµi!j(yi). Similar versions exist for other operators [42].

Black Box Variational Inference (BB-VI; [23]). Black box variational inference maximizes the
ELBO LV I [q���] with respect to a variational distribution q��� by approximating its gradient through a
set of samples {y(s)}S

s=1 ⇠ q��� and performing stochastic gradient ascent,

r��� LV I [q���] = r��� Eq���(y)


log

p✓✓✓(y)

q���(y)

�
⇡ S�1

SX

s=1

r��� log q���(y(s)) log
p✓✓✓(y(s))

q���(y(s))
. (19)

A statistic t (Eq. (5)) can then be estimated from the tractable variational distribution q���(y) instead
of the complex target distribution p✓✓✓(y). We use an isotropic Gaussian kernel  = N (· | ~0, I)
together with the traditional factorization q���(y) =

Qn
i=1 q�i(yi), in which case variational sampling

is straighforward and the (now unconditional) gradients are given directly by Section 3.3.

5.3.1 Setup and Results.

We train our RIN architecture with a negative log-likelihood loss attached to each belief node,
L(i)

I = � log p✓i(yi), and compare its performance to the results obtained from P-BP and BB-VI by
calculating the sum of marginal log-likelihoods. For the baselines, we consider different numbers
of particles, which affects both performance and speed. Additionally, for BB-VI we track the
performance across 1024 optimization steps and report the best results. Table 2b summarizes our
findings. Among the baselines, P-BP performs better than BB-VI once a required particle threshold is
exceeded. We believe this is a manifestation of the special requirements associated with inference in
non-parametric densities: while BB-VI needs to fit a high number of parameters, which poses the risk
of getting trapped in local minima, P-BP relies solely on the evaluation of potentials. However, both
methods are outperformed by a significant margin by our RIN, which we attribute to its end-to-end
training in accordance with DNN+NGM and its ability to propagate and update full distributions
instead of their mere value at a discrete set of points. In addition to pure performance, a key advantage
of RIN inference over more traditional inference methods is its speed: our RIN approach is over 50⇥
faster than P-BP with 100 particles and orders of magnitude faster than BB-VI. This is significant,
even when taking dependencies on hardware and implementation into account, and allows the use of
expressive non-parametric posteriors in time-critical applications.

6 Conclusion

We proposed non-parametric structured output networks, a highly expressive framework consisting of
a deep neural network predicting a non-parametric graphical model and a recurrent inference network
computing statistics in this structured output space. We showed how all three components can be
learned end-to-end by backpropagating non-parametric gradients through directed graphs and neural
messages. Our experiments showed that non-parametric structured output networks are necessary
for both effective learning of multimodal posteriors and efficient inference of complex statistics in
them. We believe that NSONs are suitable for a variety of other structured tasks and can be used
to obtain accurate approximations to many intractable statistics of non-parametric densities beyond
(max-)marginals.
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