Table 1: VAE network specifications.

. . . Action decoder No. of No. of
Environment LSTM size latent size sizes channels WaveNet Layers
Jaco 500 30 (400, 300, 200) 32 10
Walker 200 20 (200, 200) 32 6
Humanoid 500 30 (400, 300, 200) 32 14

A Details of the experiments

A1 Jaco

We trained the random reaching policies with deep deterministic policy gradients (DDPG, [34, 18])
to reach to random positions in the workspace. Simulations were ran for 2.5 secs or 50 steps. For
more details on the hyper-parameters and network configuration, please refer to Table 1.

A.2 Walker

The demonstration policies were trained to reach different speeds. Target speeds were chosen from
a set of four different speeds (m/s) -1, 0, 1, 3. For each target speed in {—1,0, 1, 3}, we trained 12
policies. Another 12 policies are each trained to achieve three target speeds -1, 0, and 1 depending
on a context label. Finally 12 policies are each trained to achieve three target speeds -1, 0, and 3
depending on a context label. For each target speed group, a grid search over two parameters are
performed: the initial log sigma for the policy and random seeds. We use 4 initial log sigma values:
0, -1, -2, -3 and three seeds.

For more details on the hyper-parameters and network configurations used see Tables 1 3, and 4.

A.3 Humanoid

The model of the humanoid body was generated from subject 8 from the CMU database, also used in
[20]. It has 56 actuated joint-angles and a freely translating and rotating root. The actions specified
for the body correspond to torques of the joint angles.

We generate training trajectories from six different neural network controllers trained to imitate six
different movement styles (simple walk, cat style, chicken style, drunk style, and old style). Policies
were produced which demonstrate robust, generalized behavior in the style of a simple walk or single
motion capture clip from various styles [20]. For evaluation we use a second set of five different
policies that had been independently trained on a partially overlapping set of movement styles (drunk
style, normal style, old style, sexy-swagger style, strong style).

For more details on the hyper-parameters and network configurations used see Tables 1 3, and 4. To
assist the training of the discriminator, we only use a subset of features as inputs to our discriminator
following [20]. This subset includes mostly features pertaining to end-effector positions.

Table 2: CMU database motion capture clips per behavior style.

Type Subject  clips
simple walk 8 1-11
cat 137 4
chicken 137 8
drunk 137 16
graceful 137 24
normal 137 29
old 137 33
sexy swagger 137 38
strong 137 42
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Table 3: Fine tuning phase network specifications.

Environment Policy sizes  Discriminator sizes  Critic Network sizes
Walker (200, 100) (100, 64) (200, 100)
Humanoid (300, 200, 100) (300, 200) (300, 200, 100)

Table 4: Fine tuning phase hyper-parameter specifications.

. Batch sizes . . Discriminator  No. of discriminator
Environment ) . Initial policy std. .
per iteration learning rate update steps
Walker 30000 exp(—1) le-4 10
Humanoid 100000 0.1 le-4 10

B Data efficiency and hyper-parameter sensitivity

In the case of the 2D walker, we can use the difference in walking speed between the demonstration
and the imitation trajectories as a rough measure of performance. Using this measure, we evaluate
the data efficiency as well as hyper-parameter sensitivity of the proposed method.

A core idea of our approach is the conditioning of the discriminator on the VAE embeddings of
demonstration trajectories. To evaluate gain in data efficiency, we compare our method to that
proposed in [20] where the authors condition the discriminator on annotated class labels to achieve
diverse behaviors. For the remainder of the section, we refer to this method as label-conditioned
GAIL.

We also conduct grid searches over the hyper-parameters pertaining to the training of the discriminator
to evaluate hyper-parameter sensitivity. We fix the rest of the hyper-parameters to our standard TRPO
hyper-parameter settings. To promote fair comparisons, we do not make use of the policies acquired
through behavioral cloning (the VAE policies) since label-conditioned GAIL cannot use the same
VAE policies without using embeddings. Instead, in all comparison presented in this section, we train
policies from scratch. That is we structure our policies to be like:

mo(- |z, 2) = N (- |po(w, 2), 00 (, 2)) -

First, we try to imitate 10 and 60 demonstration trajectories (each from a different policy) using both
approaches. The results are summarized in Figure 6 and 7. Our proposed method is not only relatively
insensitive to hyper-parameters but also more sample-efficient compared to label-conditioned GAIL.

Interestingly, label-conditioned GAIL is more competitive when imitating 60 behaviors than 10.
One possible explanation for this behavior is that imitating more demonstration behaviors promotes
sharing between behaviors, therefore enhancing the average performance.

Given the previous observation, the astute reader may wonder how our approach fairs against
label-conditioned GAIL when imitating a large number of behaviors. To answer this question, we
try to imitate all 1200 walker trajectories. Although these behaviors are generated by 60 distinct
policies, many of the policies contain multiple sub-behaviors. Therefore, instead of conditioning
label-conditioned GAIL on the indices of policies, we condition it on the indices of the individual
trajectories. This choice is far from arbitrary especially when demonstrations are provided by
humans in which case it is often difficult to cluster demonstrations into distinct polices. The result is
summarized in Figure 8.

When imitating 1200 trajectories, our proposed method performs not dissimilarly when compared to
imitating 60 demonstrations. Label-conditioned GAIL, however, fails to learn in 1000 iterations of
TRPO updates.
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Figure 6: Comparison between our approach and label-conditioned GAIL over 10 demonstration
trajectories. The title of each subplot describes the hyper-parameters used. In order, the hyper-
parameters are layer sizes, learning rate, and the number of updates of the discriminator per-iteration.
Our proposed method is not only relatively insensitive to hyper-parameters but also more sample-

efficient compared to label-conditioned GAIL.
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Figure 7: Comparison between our approach and label-conditioned GAIL over 60 demonstration
trajectories. The title of each subplot describes the hyper-parameters used. In order, the hyper-
parameters are layer sizes, learning rate, and the number of updates of the discriminator per-iteration.
Our proposed method is not only relatively insensitive to hyper-parameters but also more sample-

efficient compared to label-conditioned GAIL.
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Figure 8: Comparison between our approach and label-conditioned GAIL over 1200 demonstration
trajectories. The title of each subplot describes the hyper-parameters used. In order, the hyper-
parameters are layer sizes, learning rate, and the number of updates of the discriminator per-iteration.
Our proposed method is not only relatively insensitive to hyper-parameters but also more sample-
efficient compared to label-conditioned GAIL. Label-conditioned GAIL in this case, fails to learn.
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