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Abstract

Due to their simplicity and excellent performance, parallel asynchronous variants
of stochastic gradient descent have become popular methods to solve a wide range
of large-scale optimization problems on multi-core architectures. Yet, despite their
practical success, support for nonsmooth objectives is still lacking, making them
unsuitable for many problems of interest in machine learning, such as the Lasso,
group Lasso or empirical risk minimization with convex constraints. In this work,
we propose and analyze PROXASAGA, a fully asynchronous sparse method in-
spired by SAGA, a variance reduced incremental gradient algorithm. The proposed
method is easy to implement and significantly outperforms the state of the art on
several nonsmooth, large-scale problems. We prove that our method achieves a
theoretical linear speedup with respect to the sequential version under assump-
tions on the sparsity of gradients and block-separability of the proximal term.
Empirical benchmarks on a multi-core architecture illustrate practical speedups of
up to 12x on a 20-core machine.

1 Introduction

The widespread availability of multi-core computers motivates the development of parallel methods
adapted for these architectures. One of the most popular approaches is HOGWILD (Niu et al., 2011),
an asynchronous variant of stochastic gradient descent (SGD). In this algorithm, multiple threads run
the update rule of SGD asynchronously in parallel. As SGD, it only requires visiting a small batch
of random examples per iteration, which makes it ideally suited for large scale machine learning
problems. Due to its simplicity and excellent performance, this parallelization approach has recently
been extended to other variants of SGD with better convergence properties, such as SVRG (Johnson
& Zhang, 2013) and SAGA (Defazio et al., 2014).

Despite their practical success, existing parallel asynchronous variants of SGD are limited to smooth
objectives, making them inapplicable to many problems in machine learning and signal processing.
In this work, we develop a sparse variant of the SAGA algorithm and consider its parallel asyn-
chronous variants for general composite optimization problems of the form:

argmin f(z) + h(z) , with f(z) =137, fi(z) (OPT)

xERP

where each f; is convex with L-Lipschitz gradient, the average function f is u-strongly convex and
h is convex but potentially nonsmooth. We further assume that h is “simple” in the sense that we
have access to its proximal operator, and that it is block-separable, that is, it can be decomposed
block coordinate-wise as h(x) = > z-zhp([x]|p), where B is a partition of the coefficients into
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subsets which will call blocks and hp only depends on coordinates in block B. Note that there is
no loss of generality in this last assumption as a unique block covering all coordinates is a valid
partition, though in this case, our sparse variant of the SAGA algorithm reduces to the original SAGA
algorithm and no gain from sparsity is obtained.

This template models a broad range of problems arising in machine learning and signal processing:
the finite-sum structure of f includes the least squares or logistic loss functions; the proximal term
h includes penalties such as the ¢; or group lasso penalty. Furthermore, this term can be extended-
valued, thus allowing for convex constraints through the indicator function.

Contributions. This work presents two main contributions. First, in §2 we describe Sparse Proxi-
mal SAGA, a novel variant of the SAGA algorithm which features a reduced cost per iteration in the
presence of sparse gradients and a block-separable penalty. Like other variance reduced methods, it
enjoys a linear convergence rate under strong convexity. Second, in §3 we present PROXASAGA, a
lock-free asynchronous parallel version of the aforementioned algorithm that does not require con-
sistent reads. Our main results states that PROXASAGA obtains (under assumptions) a theoretical
linear speedup with respect to its sequential version. Empirical benchmarks reported in §4 show that
this method dramatically outperforms state-of-the-art alternatives on large sparse datasets, while the
empirical speedup analysis illustrates the practical gains as well as its limitations.

1.1 Related work

Asynchronous coordinate-descent. For composite objective functions of the form (OPT), most of
the existing literature on asynchronous optimization has focused on variants of coordinate descent.
Liu & Wright (2015) proposed an asynchronous variant of (proximal) coordinate descent and proved
a near-linear speedup in the number of cores used, given a suitable step size. This approach has been
recently extended to general block-coordinate schemes by Peng et al. (2016), to greedy coordinate-
descent schemes by You et al. (2016) and to non-convex problems by Davis et al. (2016). However,
as illustrated by our experiments, in the large sample regime coordinate descent compares poorly
against incremental gradient methods like SAGA.

Variance reduced incremental gradient and their asynchronous variants. Initially proposed in
the context of smooth optimization by Le Roux et al. (2012), variance reduced incremental gradient
methods have since been extended to minimize composite problems of the form (OPT) (see table
below). Smooth variants of these methods have also recently been extended to the asynchronous set-
ting, where multiple threads run the update rule asynchronously and in parallel. Interestingly, none
of these methods achieve both simultaneously, i.e. asynchronous optimization of composite prob-
lems. Since variance reduced incremental gradient methods have shown state of the art performance
in both settings, this generalization is of key practical interest.

Objective Sequential Algorithm Asynchronous Algorithm
SVRG (Johnson & Zhang, 2013) SVRG (Reddi et al., 2015)
Smooth SDCA (Shalev-Shwartz & Zhang, 2013) PASSCODE (Hsieh et al., 2015, SDCA variant)
SAGA (Defazio et al., 2014) ASAGA (Leblond et al., 2017, SAGA variant)
PROXSDCA (Shalev-Shwartz et al., 2012)
Composite | SAGA (Defazio et al., 2014) This work: PROXASAGA
ProxSVRG (Xiao & Zhang, 2014)

On the difficulty of a composite extension. Two key issues explain the paucity in the develop-
ment of asynchronous incremental gradient methods for composite optimization. The first issue
is related to the design of such algorithms. Asynchronous variants of SGD are most competitive
when the updates are sparse and have a small overlap, that is, when each update modifies a small
and different subset of the coefficients. This is typically achieved by updating only coefficients for
which the partial gradient at a given iteration is nonzero,? but existing schemes such as the lagged
updates technique (Schmidt et al., 2016) are not applicable in the asynchronous setting. The second

2 Although some regularizers are sparsity inducing, large scale datasets are often extremely sparse and lever-
aging this property is crucial for the efficiency of the method.
ging property y



difficulty is related to the analysis of such algorithms. All convergence proofs crucially use the Lip-
schitz condition on the gradient to bound the noise terms derived from asynchrony. However, in the
composite case, the gradient mapping term (Beck & Teboulle, 2009), which replaces the gradient
in proximal-gradient methods, does not have a bounded Lipschitz constant. Hence, the traditional
proof technique breaks down in this scenario.

Other approaches. Recently, Meng et al. (2017); Gu et al. (2016) independently proposed a dou-
bly stochastic method to solve the problem at hand. Following Meng et al. (2017) we refer to it
as Async-PROXSVRCD. This method performs coordinate descent-like updates in which the true
gradient is replaced by its SVRG approximation. It hence features a doubly-stochastic loop: at each
iteration we select a random coordinate and a random sample. Because the selected coordinate block
is uncorrelated with the chosen sample, the algorithm can be orders of magnitude slower than SAGA
in the presence of sparse gradients. Appendix F contains a comparison of these methods.

1.2 Definitions and notations

By convention, we denote vectors and vector-valued functions in lowercase boldface (e.g. ) and
matrices in uppercase boldface (e.g. D). The proximal operator of a convex lower semicontinuous
function h is defined as prox;, (x) := arg min_ g, {h(2) + ||z — z||*}. A function f is said to be
L-smooth if it is differentiable and its gradient is L-Lipschitz continuous. A function f is said to be
p-strongly convex if f — £]| - ||? is convex. We use the notation  := L/ to denote the condition

number for an L-smooth and y-strongly convex function.?

I, denotes the p-dimensional identity matrix, 1{cond} the characteristic function, which is 1 if cond
evaluates to true and 0 otherwise. The average of a vector or matrix is denoted & := £ 3" | a;.
We use || - || for the Euclidean norm. For a positive semi-definite matrix D, we define its associated
distance as |z||3, := (xz, Dx). We denote by [ ], the b-th coordinate in . This notation is
overloaded so that for a collection of blocks T = { By, Ba, ...}, [x]r denotes the vector x restricted
to the coordinates in the blocks of T". For convenience, when 7" consists of a single block B we use
[x] 5 as a shortcut of [x](py. Finally, we distinguish E, the full expectation taken with respect to all
the randomness in the system, from E, the conditional expectation of a random ¢4 (the random index
sampled at each iteration by SGD-like algorithms) conditioned on all the “past”, which the context
will clarify.

2 Sparse Proximal SAGA

Original SAGA algorithm. The original SAGA algorithm (Defazio et al., 2014) maintains two
moving quantities: the current iterate « and a table (memory) of historical gradients (o) ;. At

every iteration, it samples an index ¢ € {1,...,n} uniformly at random, and computes the next
iterate (7, a™) according to the following recursion:
u; =Vfi(r) —a; +a; xt = proxwh(m — fyui); o =Vii(z). (1

On each iteration, this update rule requires to visit all coefficients even if the partial gradients V f; are
sparse. Sparse partial gradients arise in a variety of practical scenarios: for example, in generalized
linear models the partial gradients inherit the sparsity pattern of the dataset. Given that large-scale
datasets are often sparse,* leveraging this sparsity is crucial for the success of the optimizer.

Sparse Proximal SAGA algorithm. We will now describe an algorithm that leverages sparsity
in the partial gradients by only updating those blocks that intersect with the support of the partial
gradients. Since in this update scheme some blocks might appear more frequently than others, we
will need to counterbalance this undersirable effect with a well-chosen block-wise reweighting of
the average gradient and the proximal term.

In order to make precise this block-wise reweighting, we define the following quantities. We denote
by T; the extended support of V f;, which is the set of blocks that intersect the support of V f;,

3Since we have assumed that each individual f; is L-smooth, f itself is L-smooth — but it could have a
smaller smoothness constant. Our rates are in terms of this bigger L/, as is standard in the SAGA literature.

“For example, in the LibSVM datasets suite, 8 out of the 11 datasets (as of May 2017) with more than a
million samples have a density between 10~* and 1076,



formally defined as T; := {B : supp(Vf;) N B # @&, B € B}. For totally separable penalties such
as the /1 norm, the blocks are individual coordinates and so the extended support covers the same
coordinates as the support. Let dg := n/np, where ng := ), 1{B € T;} is the number of times
that B € T;. For simplicity we assume np > 0, as otherwise the problem can be reformulated
without block B. The update rule in (1) requires computing the proximal operator of h, which
involves a full pass on the coordinates. In our proposed algorithm, we replace h in (1) with the
function ¢;(x) = > g dphp(x), whose form is justified by the following three properties.
First, this function is zero outside 7}, allowing for sparse updates. Second, because of the block-wise
reweighting d g, the function ¢; is an unbiased estimator of & (i.e., E ¢; = h), property which will
be crucial to prove the convergence of the method. Third, ¢; inherits the block-wise structure of h
and its proximal operator can be computed from that of / as [prox.,,, ()]s = [ProX 4, 1)n, (Z)]5
if B € T; and [prox.,,. (z)]p = [z]p otherwise. Following Leblond et al. (2017), we will also
replace the dense gradient estimate u; by the sparse estimate v; := V f;(x) — a; + D;&, where
D; is the diagonal matrix defined block-wise as [D;|p,p = dp1{B € T;}1 p|. Itis easy to verify
that the vector D;cx is a weighted projection onto the support of T; and E D;& = &, making v; an
unbiased estimate of the gradient.

We now have all necessary elements to describe the Sparse Proximal SAGA algorithm. As the
original SAGA algorithm, it maintains two moving quantities: the current iterate * € RP and a
table of historical gradients (a;)"_;, o; € RP. At each iteration, the algorithm samples an index
i € {1,...,n} and computes the next iterate (z+, a™) as:

v; =Vfi(x) —a;, + Dia; " = prox,,. (a: — 'yvi) s af =Vfi(z), (SPS)

where in a practical implementation the vector @ is updated incrementally at each iteration.

The above algorithm is sparse in the sense that it only requires to visit and update blocks in the
extended support: if B ¢ T;, by the sparsity of v; and prox,,,, we have [x*]p = [x]p. Hence,
when the extended support 7 is sparse, this algorithm can be orders of magnitude faster than the
naive SAGA algorithm. The extended support is sparse for example when the partial gradients are
sparse and the penalty is separable, as is the case of the #; norm or the indicator function over a
hypercube, or when the the penalty is block-separable in a way such that only a small subset of the
blocks overlap with the support of the partial gradients. Initialization of variables and a reduced
storage scheme for the memory are discussed in the implementation details section of Appendix E.

Relationship with existing methods. This algorithm can be seen as a generalization of both the
Standard SAGA algorithm and the Sparse SAGA algorithm of Leblond et al. (2017). When the
proximal term is not block-separable, then dg = 1 (for a unique block B) and the algorithm defaults
to the Standard (dense) SAGA algorithm. In the smooth case (i.e., h = 0), the algorithm defaults to
the Sparse SAGA method. Hence we note that the sparse gradient estimate v; in our algorithm is the
same as the one proposed in Leblond et al. (2017). However, we emphasize that a straightforward
combination of this sparse update rule with the proximal update from the Standard SAGA algorithm
results in a nonconvergent algorithm: the block-wise reweighting of h is a surprisingly simple but
crucial change. We now give the convergence guarantees for this algorithm.

Theorem 1. Let v = 7 for any a < 1 and f be p-strongly convex (1 > 0). Then Sparse Proximal
SAGA converges geometrically in expectation with a rate factor of at least p = % min{%, a%}. That

is, for x; obtained after t updates, we have the following bound:

Elz, —2"|* < (1 - p)'Co, with Co = [lzo — 2"||* + 572 21, lle) — Vi)

5L2

Remark. For the step size v = /51, the convergence rate is (1 — /5 min{!/n, 1/x}). We can thus
identify two regimes: the “big data” regime, n > «, in which the rate factor is bounded by 1/5n, and
the “ill-conditioned” regime, x > n, in which the rate factor is bounded by /5. This rate roughly
matches the rate obtained by Defazio et al. (2014). While the step size bound of /5L is slightly
smaller than the 1/3L one obtained in that work, this can be explained by their stronger assumptions:
each f; is strongly convex whereas they are strongly convex only on average in this work. All proofs
for this section can be found in Appendix B.



Algorithm 1 PROXASAGA (analyzed) Algorithm 2 PROXASAGA (implemented)

: Initialize shared variables « and (c;)}_, 1: Initialize shared variables x, (o)™, @

2. keep doing in parallel 2: keep doing in parallel

3: & = inconsistent read of x 3: Sample i uniformly in {1,...,n}

4: & = inconsistent read of « 4: S; := support of V f;

5:  Sample i uniformly in {1, ...,n} 5.  T; := extended support of V f; in B

6: S; := support of V f; 6:  [@]r, = inconsistent read of « on T;

7. T; := extended support of Vf;in B 7 v; = inconsistent read of «;

8 [a]r, =1n Z Lég ] 8: [@]r, = inconsistent read of & on T;

9: [dc ]S = [v.f1( )]S - [dz]Si 9: [6c] P T [vfz(ﬁj)] [dl]Si
10 [0]r, = [da]|r, + [Dicd]r, 10:  [?]1, = 5a]Ti+[Dla]T A
1: [oz]r, = [prox,, (& —y0)|r, — [&lr, 11 [62]r, = [prox,, (& —y0)ln, — [#]n,
12:  for B inT, do ' 12:  for B inT; do
13: for b € B do 13: for b in B do

14: (2] « []p + [0 ], > atomic 14: [x]p < [z ]+ [0z ], > atomic
15: if b € S; then 15: if b € S; then

16: [y < [V fi(2)]s 16: [a]y «+ [a]p + Y/n[da], ©>atomic
17: end if 17: end if
18: end for 18: end for
19:  end for 19:  end for
20:  // (‘< denotes shared memory update.) 20:  «; < Vfi(Z) (scalar update) > atomic
21: end parallel loop 21: end parallel loop

3 Asynchronous Sparse Proximal SAGA

We introduce PROXASAGA — the asynchronous parallel variant of Sparse Proximal SAGA. In this
algorithm, multiple cores update a central parameter vector using the Sparse Proximal SAGA intro-
duced in the previous section, and updates are performed asynchronously. The algorithm parameters
are read and written without vector locks, i.e., the vector content of the shared memory can poten-
tially change while a core is reading or writing to main memory coordinate by coordinate. These
operations are typically called inconsistent (at the vector level).

The full algorithm is described in Algorithm 1 for its theoretical version (on which our analysis
is built) and in Algorithm 2 for its practical implementation. The practical implementation differs
from the analyzed agorithm in three points. First, in the implemented algorithm, index 7 is sampled
before reading the coefficients to minimize memory access since only the extended support needs to
be read. Second, since our implementation targets generalized linear models, the memory o; can be
compressed into a single scalar in L20 (see Appendix E). Third, & is stored in memory and updated
incrementally instead of recomputed at each iteration.

The rest of the section is structured as follows: we start by describing our framework of analysis; we
then derive essential properties of PROXASAGA along with a classical delay assumption. Finally,
we state our main convergence and speedup result.

3.1 Analysis framework

As in most of the recent asynchronous optimization literature, we build on the hardware model in-
troduced by Niu et al. (2011), with multiple cores reading and writing to a shared memory parameter
vector. These operations are asynchronous (lock-free) and inconsistent:> &;, the local copy of the
parameters of a given core, does not necessarily correspond to a consistent iterate in memory.

“Perturbed” iterates. To handle this additional difficulty, contrary to most contributions in this
field, we choose the “perturbed iterate framework™ proposed by Mania et al. (2017) and refined
by Leblond et al. (2017). This framework can analyze variants of SGD which obey the update rule:

Tiy1 =y — y0(T4,0), Where v verifies the unbiasedness condition Ev(x, ;) = V f(x)

>This is an extension of the framework of Niu et al. (2011), where consistent updates were assumed.



and the expectation is computed with respect to ¢;. In the asynchronous parallel setting, cores are
reading inconsistent iterates from memory, which we denote &;. As these inconsistent iterates are
affected by various delays induced by asynchrony, they cannot easily be written as a function of
their previous iterates. To alleviate this issue, Mania et al. (2017) choose to introduce an additional
quantity for the purpose of the analysis:

i1 = @y — YU(&y,0¢), the “virtual iterate” — which is never actually computed . 2)

Note that this equation is the definition of this new quantity a;. This virtual iterate is useful for the
convergence analysis and makes for much easier proofs than in the related literature.

“After read” labeling. How we choose to define the iteration counter ¢ to label an iterate x;
matters in the analysis. In this paper, we follow the “after read” labeling proposed in Leblond
et al. (2017), in which we update our iterate counter, ¢, as each core finishes reading its copy of
the parameters (in the specific case of PROXASAGA, this includes both &, and &"). This means
that &; is the (¢ + 1)*" fully completed read. One key advantage of this approach compared to the
classical choice of Niu et al. (2011) — where ¢ is increasing after each successful update — is that
it guarantees both that the ; are uniformly distributed and that ¢; and &; are independent. This
property is not verified when using the “after write” labeling of Niu et al. (2011), although it is still
implicitly assumed in the papers using this approach, see Leblond et al. (2017, Section 3.2) for a
discussion of issues related to the different labeling schemes.

Generalization to composite optimization. Although the perturbed iterate framework was de-
signed for gradient-based updates, we can extend it to proximal methods by remarking that in the
sequential setting, proximal stochastic gradient descent and its variants can be characterized by the
following similar update rule:

Ti11 =y —yg(xt, v4,,4), with g(a,v,i) = %(a) — prox.,. (x — 'y'v)) , 3)
where as before v verifies the unbiasedness condition Ev = V f(x). The Proximal Sparse SAGA
iteration can be easily written within this template by using ; and v; as defined in §2. Using this
definition of g, we can define PROXASAGA virtual iterates as:

Tyy1 =2 — vg(&4, 0, ,0),  with ol =Vfi (2) — &), + D& 4)

where as in the sequential case, the memory terms are updated as dft = Vi, (2+). Our theoretical
analysis of PROXASAGA will be based on this definition of the virtual iterate .

3.2 Properties and assumptions

Now that we have introduced the “after read” labeling for proximal methods in Eq. (4), we can
leverage the framework of Leblond et al. (2017, Section 3.3) to derive essential properties for the
analysis of PROXASAGA. We describe below three useful properties arising from the definition
of Algorithm 1, and then state a central (but standard) assumption that the delays induced by the
asynchrony are uniformly bounded.

Independence: Due to the “after read” global ordering, i, is independent of &; for all » > ¢t. We
enforce the independence for r = ¢ by having the cores read all the shared parameters before their
iterations.

Unbiasedness: The term @ft is an unbiased estimator of the gradient of f at ;. This property is a
consequence of the independence between ¢; and &.

Atomicity: The shared parameter coordinate update of [x], on Line 14 is atomic. This means that
there are no overwrites for a single coordinate even if several cores compete for the same resources.
Most modern processors have support for atomic operations with minimal overhead.

Bounded overlap assumption. We assume that there exists a uniform bound, 7, on the maximum
number of overlapping iterations. This means that every coordinate update from iteration ¢ is suc-
cessfully written to memory before iteration ¢ 4+ 7 4- 1 starts. Our result will give us conditions on 7
to obtain linear speedups.

Bounding &; — x;. The delay assumption of the previous paragraph allows to express the difference
between real and virtual iterate using the gradient mapping g,, := g(Z., ¥ ,i,) as:

Ti—xy =y Zi;l(t—7)+ G! g, ,where G!, are p x p diagonal matrices with terms in {0, +1}. (5)



0 represents instances where both &, and x, have received the corresponding updates. +1, on
the contrary, represents instances where &,, has not yet received an update that is already in x,, by
definition. This bound will prove essential to our analysis.

3.3 Analysis

In this section, we state our convergence and speedup results for PROXASAGA. The full details
of the analysis can be found in Appendix C. Following Niu et al. (2011), we introduce a sparsity
measure (generalized to the composite setting) that will appear in our results.

Definition 1. Let A := maxpep |{i : T; > B}|/n. This is the normalized maximum number of
times that a block appears in the extended support. For example, if a block is present in all T}, then
A = 1. If no two T; share the same block, then A = 1/n. We always have 1/n < A < 1.

Theorem 2 (Convergence guarantee of PROXASAGA). Suppose 7 < ﬁ. For any step size

v = ¢ witha < a*(1) = % min{1, 67’“}, the inconsistent read iterates of Algorithm 1 converge
. . . . 1 1 1 . o 9
in expectation at a geometric rate factor of at least: p(a) = $ min {1, a+}, ie El&, —x*|? <

(1—p)t Co, where Cy is a constant independent of t (~ =5 Co with Cy as defined in Theorem ??).

This last result is similar to the original SAGA convergence result and our own Theorem ??, with
both an extra condition on 7 and on the maximum allowable step size. In the best sparsity case,
A = 1/n and we get the condition 7 < v»/10. We now compare the geometric rate above to the one
of Sparse Proximal SAGA to derive the necessary conditions under which PROXASAGA is linearly
faster.

Corollary 1 (Speedup). Suppose T < ﬁ. Ifk > n, then using the step size v = 1/36L, PROXAS-
AGA converges geometrically with rate factor Q(%) If k < n, then using the step size v = 1/36npu,
1
n
is the same as Sparse Proximal SAGA. Thus PROXASAGA is linearly faster than its sequential
counterpart up to a constant factor. Note that in both cases the step size does not depend on 7.

PROXASAGA converges geometrically with rate factor Q(-==). In both cases, the convergence rate

Furthermore, if T < 6k, we can use a universal step size of ©(1/L) to get a similar rate for PROX-
ASAGA than Sparse Proximal SAGA, thus making it adaptive to local strong convexity since the
knowledge of k is not required.

These speedup regimes are comparable with the best ones obtained in the smooth case, including Niu
et al. (2011); Reddi et al. (2015), even though unlike these papers, we support inconsistent reads
and nonsmooth objective functions. The one exception is Leblond et al. (2017), where the authors
prove that their algorithm, ASAGA, can obtain a linear speedup even without sparsity in the well-
conditioned regime. In contrast, PROXASAGA always requires some sparsity. Whether this property
for smooth objective functions could be extended to the composite case remains an open problem.

Relative to ASYSPCD, in the best case scenario (where the components of the gradient are uncorre-
lated, a somewhat unrealistic setting), ASYSPCD can get a near-linear speedup for 7 as big as /p.
Our result states that 7 = O(1/vA) is necessary for a linear speedup. This means in case A < 1/
our bound is better than the one obtained for ASYSPCD. Recalling that 1/» < A < 1, it appears
that PROXASAGA is favored when n is bigger than ,/p whereas ASYSPCD may have a better bound
otherwise, though this comparison should be taken with a grain of salt given the assumptions we
had to make to arrive at comparable quantities. An extended comparison with the related work can
be found in Appendix D.

4 Experiments

In this section, we compare PROXASAGA with related methods on different datasets. Although
PROXASAGA can be applied more broadly, we focus on ¢; + ¢»-regularized logistic regression, a
model of particular practical importance. The objective function takes the form

1 n
= log (1+ exp(~bial@)) + 3@l + Aellel: . ©

i=1
where a; € R? and b; € {—1,+41} are the data samples. Following Defazio et al. (2014), we set
A1 = 1/n. The amount of ¢; regularization (\2) is selected to give an approximate 1/10 nonzero



Table 1: Description of datasets.

Dataset n P density L A
KDD 2010 (Yu et al., 2010) 19,264,097 1,163,024 106 28.12 0.15
KDD 2012 (Juan et al., 2016) 149,639,105 54,686,452 2 x 10~ 7 1.25 0.85
Criteo (Juan et al., 2016) 45,840,617 1,000,000 4 x 107° 1.25 0.89
£ KDD10 dataset KDD12 dataset 100 Criteo dataset
g 100 B
g - 5
£ 0o 10 10°¢
g 9 1079 109
.g 107
81072 1012 10772
20 40 60 80 100 10 20 30 40 10 20 30 40
Time (in minutes) Time (in minutes) Time (in minutes)
ProxASAGA (1 core) AsySPCD (1 core) FISTA (1 core)
ProxASAGA (10 cores) AsySPCD (10 cores) FISTA (10 cores)
20 KDD10 dataset %0 KDD12 dataset %0 Criteo dataset
18 18 18
a6 16 16
314 14 14
812 12 12
&10 10 10
g 8 8 8
E 6 6 6
4 4 4
2 2 2
2 4 6 8 10 12 14 16 18 20 2 4 6 8 1012 14 16 18 20 2 4 6 8 1012 14 16 18 20
Number of cores Number of cores Number of cores
|deal ProxASAGA AsySPCD FISTA

Figure 1: Convergence for asynchronous stochastic methods for ¢; + /,-regularized logistic
regression. Top: Suboptimality as a function of time for different asynchronous methods using 1
and 10 cores. Bottom: Running time speedup as function of the number of cores. PROXASAGA
achieves significant speedups over its sequential version while being orders of magnitude faster than
competing methods. ASYSPCD achieves the highest speedups but it also the slowest overall method.

coefficients. Implementation details are available in Appendix E. We chose the 3 datasets described
in Table 1

Results. We compare three parallel asynchronous methods on the aforementioned datasets: PROX-
ASAGA (this work),® ASYSPCD, the asynchronous proximal coordinate descent method of Liu &
Wright (2015) and the (synchronous) FISTA algorithm (Beck & Teboulle, 2009), in which the gra-
dient computation is parallelized by splitting the dataset into equal batches. We aim to benchmark
these methods in the most realistic scenario possible; to this end we use the following step size:
1/2L for PROXASAGA, 1/L. for ASYSPCD, where L. is the coordinate-wise Lipschitz constant
of the gradient, while FISTA uses backtracking line-search. The results can be seen in Figure 1
(top) with both one (thus sequential) and ten processors. Two main observations can be made from
this figure. First, PROXASAGA is significantly faster on these problems. Second, its asynchronous
version offers a significant speedup over its sequential counterpart.

In Figure 1 (bottom) we present speedup with respect to the number of cores, where speedup is
computed as the time to achieve a suboptimality of 107'? with one core divided by the time to
achieve the same suboptimality using several cores. While our theoretical speedups (with respect
to the number of iterations) are almost linear as our theory predicts (see Appendix F), we observe
a different story for our running time speedups. This can be attributed to memory access overhead,
which our model does not take into account. As predicted by our theoretical results, we observe

SA reference C++/Python implementation of is available at https:/github.com/fabianp/Prox ASAGA



a high correlation between the A dataset sparsity measure and the empirical speedup: KDD 2010
(A = 0.15) achieves a 11x speedup, while in Criteo (A = 0.89) the speedup is never above 6x.

Note that although competitor methods exhibit similar or sometimes better speedups, they remain
orders of magnitude slower than PROXASAGA in running time for large sparse problems. In fact,
our method is between 5x and 80x times faster (in time to reach 10710 suboptimality) than FISTA
and between 13x and 290x times faster than ASYSPCD (see Appendix F.3).

5 Conclusion and future work

In this work, we have described PROXASAGA, an asynchronous variance reduced algorithm with
support for composite objective functions. This method builds upon a novel sparse variant of the
(proximal) SAGA algorithm that takes advantage of sparsity in the individual gradients. We have
proven that this algorithm is linearly convergent under a condition on the step size and that it is
linearly faster than its sequential counterpart given a bound on the delay. Empirical benchmarks
show that PROXASAGA is orders of magnitude faster than existing state-of-the-art methods.

This work can be extended in several ways. First, we have focused on the SAGA method as the basic
iteration loop, but this approach can likely be extended to other proximal incremental schemes such
as SGD or ProxSVRG. Second, as mentioned in §3.3, it is an open question whether it is possible to
obtain convergence guarantees without any sparsity assumption, as was done for ASAGA.
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