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Abstract

We propose and analyze a new estimator of the covariance matrix that admits strong
theoretical guarantees under weak assumptions on the underlying distribution,
such as existence of moments of only low order. While estimation of covariance
matrices corresponding to sub-Gaussian distributions is well-understood, much
less in known in the case of heavy-tailed data. As K. Balasubramanian and M.
Yuan write 1, “data from real-world experiments oftentimes tend to be corrupted
with outliers and/or exhibit heavy tails. In such cases, it is not clear that those
covariance matrix estimators .. remain optimal” and “..what are the other possible
strategies to deal with heavy tailed distributions warrant further studies.” We make
a step towards answering this question and prove tight deviation inequalities for the
proposed estimator that depend only on the parameters controlling the “intrinsic
dimension” associated to the covariance matrix (as opposed to the dimension of
the ambient space); in particular, our results are applicable in the case of high-
dimensional observations.

1 Introduction

Estimation of the covariance matrix is one of the fundamental problems in data analysis: many
important statistical tools, such as Principal Component Analysis (PCA, Hotelling, 1933) and
regression analysis, involve covariance estimation as a crucial step. For instance, PCA has immediate
applications to nonlinear dimension reduction and manifold learning techniques (Allard et al., 2012),
genetics (Novembre et al., 2008), computational biology (Alter et al., 2000), among many others.

However, assumptions underlying the theoretical analysis of most existing estimators, such as various
modifications of the sample covariance matrix, are often restrictive and do not hold for real-world
scenarios. Usually, such estimators rely on heuristic (and often bias-producing) data preprocessing,
such as outlier removal. To eliminate such preprocessing step from the equation, one has to develop a
class of new statistical estimators that admit strong performance guarantees, such as exponentially
tight concentration around the unknown parameter of interest, under weak assumptions on the
underlying distribution, such as existence of moments of only low order. In particular, such heavy-
tailed distributions serve as a viable model for data corrupted with outliers – an almost inevitable
scenario for applications.

We make a step towards solving this problem: using tools from the random matrix theory, we will
develop a class of robust estimators that are numerically tractable and are supported by strong
theoretical evidence under much weaker conditions than currently available analogues. The term
“robustness” refers to the fact that our estimators admit provably good performance even when the
underlying distribution is heavy-tailed.

1Balasubramanian and Yuan (2016)

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.



1.1 Notation and organization of the paper

Given A ∈ Rd1×d2 , let AT ∈ Rd2×d1 be transpose of A. If A is symmetric, we will write λmax (A)
and λmin (A) for the largest and smallest eigenvalues of A. Next, we will introduce the matrix norms
used in the paper. Everywhere below, ‖ · ‖ stands for the operator norm ‖A‖ :=

√
λmax (ATA). If

d1 = d2 = d, we denote by trA the trace of A. For A ∈ Rd1×d2 , the nuclear norm ‖ · ‖1 is defined
as ‖A‖1 = tr(

√
ATA), where

√
ATA is a nonnegative definite matrix such that (

√
ATA)2 = ATA.

The Frobenius (or Hilbert-Schmidt) norm is ‖A‖F =
√

tr(ATA), and the associated inner product
is 〈A1, A2〉 = tr(A∗1A2). For z ∈ Rd, ‖z‖2 stands for the usual Euclidean norm of z. Let A, B be
two self-adjoint matrices. We will write A � B (or A � B) iff A−B is nonnegative (or positive)
definite. For a, b ∈ R, we set a ∨ b := max(a, b) and a ∧ b := min(a, b). We will also use the
standard Big-O and little-o notation when necessary.

Finally, we give a definition of a matrix function. Let f be a real-valued function defined on an interval
T ⊆ R, and let A ∈ Rd×d be a symmetric matrix with the eigenvalue decomposition A = UΛU∗

such that λj(A) ∈ T, j = 1, . . . , d. We define f(A) as f(A) = Uf(Λ)U∗, where

f(Λ) = f


λ1

. . .
λd


 :=

f(λ1)
. . .

f(λd)

 .

Few comments about organization of the material in the rest of the paper: section 1.2 provides an
overview of the related work. Section 2 contains the mains results of the paper. The proofs are
outlined in section 4; longer technical arguments can be found in the supplementary material.

1.2 Problem formulation and overview of the existing work

Let X ∈ Rd be a random vector with mean EX = µ0, covariance matrix Σ0 =
E
[
(X − µ0)(X − µ0)T

]
, and assume E‖X − µ0‖42 < ∞. Let X1, . . . , Xm be i.i.d. copies of

X . Our goal is to estimate the covariance matrix Σ from Xj , j ≤ m. This problem and its variations
have previously received significant attention by the research community: excellent expository papers
by Cai et al. (2016) and Fan et al. (2016) discuss the topic in detail. However, strong guarantees
for the best known estimators hold (with few exceptions mentioned below) under the restrictive
assumption that X is either bounded with probability 1 or has sub-Gaussian distribution, meaning
that there exists σ > 0 such that for any v ∈ Rd of unit Euclidean norm,

Pr (|〈v,X − µ0〉| ≥ t) ≤ 2e−
t2σ2

2 .

In the discussion accompanying the paper by Cai et al. (2016), Balasubramanian and Yuan (2016)
write that “data from real-world experiments oftentimes tend to be corrupted with outliers and/or
exhibit heavy tails. In such cases, it is not clear that those covariance matrix estimators described
in this article remain optimal” and “..what are the other possible strategies to deal with heavy tailed
distributions warrant further studies.” This motivates our main goal: develop new estimators of the
covariance matrix that (i) are computationally tractable and perform well when applied to heavy-tailed
data and (ii) admit strong theoretical guarantees (such as exponentially tight concentration around
the unknown covariance matrix) under weak assumptions on the underlying distribution. Note that,
unlike the majority of existing literature, we do not impose any further conditions on the moments of
X , or on the “shape” of its distribution, such as elliptical symmetry.

Robust estimators of covariance and scatter have been studied extensively during the past few decades.
However, majority of rigorous theoretical results were obtained for the class of elliptically symmetric
distributions which is a natural generalization of the Gaussian distribution; we mention just a small
subsample among the thousands of published works. Notable examples include the Minimum
Covariance Determinant estimator and the Minimum Volume Ellipsoid estimator which are discussed
in (Hubert et al., 2008), as well Tyler’s (Tyler, 1987) M-estimator of scatter. Works by Fan et al.
(2016); Wegkamp et al. (2016); Han and Liu (2017) exploit the connection between Kendall’s tau
and Pearson’s correlation coefficient (Fang et al., 1990) in the context of elliptical distributions to
obtain robust estimators of correlation matrices. Interesting results for shrinkage-type estimators
have been obtained by Ledoit and Wolf (2004); Ledoit et al. (2012). In a recent work, Chen et al.
(2015) study Huber’s ε-contamination model which assumes that the data is generated from the
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distribution of the form (1− ε)F + εQ, where Q is an arbitrary distribution of “outliers” and F is
an elliptical distribution of “inliers”, and propose novel estimator based on the notion of “matrix
depth” which is related to Tukey’s depth function (Tukey, 1975); a related class of problems has
been studies by Diakonikolas et al. (2016). The main difference of the approach investigated in this
paper is the ability to handle a much wider class of distributions that are not elliptically symmetric
and only satisfy weak moment assumptions. Recent papers by Catoni (2016), Giulini (2015), Fan
et al. (2016, 2017); Fan and Kim (2017) and Minsker (2016) are closest in spirit to this direction.
For instance, Catoni (2016) constructs a robust estimator of the Gram matrix of a random vector
Z ∈ Rd (as well as its covariance matrix) via estimating the quadratic form E 〈Z, u〉2 uniformly over
all ‖u‖2 = 1. However, the bounds are obtained under conditions more stringent than those required
by our framework, and resulting estimators are difficult to evaluate in applications even for data of
moderate dimension. Fan et al. (2016) obtain bounds in norms other than the operator norm which
the focus of the present paper (however, we plan to address optimality guarantees with respect to
other norms in the future). Minsker (2016) and Fan et al. (2016) use adaptive truncation arguments to
construct robust estimators of the covariance matrix. However, their results are only applicable to the
situation when the data is centered (that is, µ0 = 0). In the robust estimation framework, rigorous
extension of the arguments to the case of non-centered high-dimensional observations is non-trivial
and requires new tools, especially if one wants to avoid statistically inefficient procedures such as
sample splitting. We formulate and prove such extensions in this paper.

2 Main results

Definition of our estimator has its roots in the technique proposed by Catoni (2012). Let

ψ(x) = (|x| ∧ 1) sign(x) (1)

be the usual truncation function. As before, let X1, . . . , Xm be i.i.d. copies of X , and assume that µ̂
is a suitable estimator of the mean µ0 from these samples, to be specified later. We define Σ̂ as

Σ̂ :=
1

mθ

m∑
i=1

ψ
(
θ(Xi − µ̂)(Xi − µ̂)T

)
, (2)

where θ ' m−1/2 is small (the exact value will be given later). It easily follows from the definition
of the matrix function that

Σ̂ =
1

mθ

m∑
i=1

(Xi − µ̂)(Xi − µ̂)T

‖Xi − µ̂‖22
ψ
(
θ ‖Xi − µ̂‖22

)
,

hence it is easily computable. Note that ψ(x) = x in the neighborhood of 0; it implies that whenever
all random variables θ ‖Xi − µ̂‖22 , 1 ≤ i ≤ m are “small” (say, bounded above by 1) and µ̂ is the
sample mean, Σ̂ is close to the usual sample covariance estimator. On the other hand, ψ “truncates”
‖Xi − µ̂‖22 on level '

√
m, thus limiting the effect of outliers. Our results (formally stated below,

see Theorem 2.1) imply that for an appropriate choice of θ = θ(t,m, σ),∥∥∥Σ̂− Σ0

∥∥∥ ≤ C0σ0

√
β

m

with probability ≥ 1− de−β for some positive constant C0, where

σ2
0 :=

∥∥∥E ‖X − µ0‖22 (X − µ0)(X − µ0)T
∥∥∥

is the "matrix variance".

2.1 Robust mean estimation

There are several ways to construct a suitable estimator of the mean µ0. We present the one obtained
via the “median-of-means” approach. Let x1, . . . , xk ∈ Rd. Recall that the geometric median of
x1, . . . , xk is defined as

med (x1, . . . , xk) := argmin
z∈Rd

k∑
j=1

‖z − xj‖2 .
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Let 1 < β <∞ be the confidence parameter, and set k =
⌊
3.5β

⌋
+ 1; we will assume that k ≤ m

2 .

Divide the sample X1, . . . , Xm into k disjoint groups G1, . . . , Gk of size
⌊
m
k

⌋
each, and define

µ̂j :=
1

|Gj |
∑
i∈Gj

Xi, j = 1 . . . k,

µ̂ := med (µ̂1, . . . , µ̂k) . (3)

It then follows from Corollary 4.1 in (Minsker, 2015) that

Pr
(
‖µ̂− µ‖2 ≥ 11

√
tr(Σ0)(β + 1)

m

)
≤ e−β . (4)

2.2 Robust covariance estimation

Let Σ̂ be the estimator defined in (2) with µ̂ being the “median-of-means” estimator (3). Then Σ̂
admits the following performance guarantees:

Lemma 2.1. Assume that σ ≥ σ0, and set θ = 1
σ

√
β
m . Moreover, let d := σ2

0/‖Σ0‖2, and suppose

that m ≥ Cdβ, where C > 0 is an absolute constant. Then∥∥∥Σ̂− Σ0

∥∥∥ ≤ 3σ

√
β

m
(5)

with probability at least 1− 5de−β .
Remark 2.1. The quantity d̄ is a measure of “intrinsic dimension” akin to the “effective rank”
r = tr(Σ0)

‖Σ0‖ ; see Lemma 2.3 below for more details. Moreover, note that the claim of Lemma 2.1
holds for any σ ≥ σ0, rather than just for σ = σ0; this “degree of freedom” allows construction of
adaptive estimators, as it is shown below.

The statement above suggests that one has to know the value of (or a tight upper bound on) the
“matrix variance” σ2

0 in order to obtain a good estimator Σ̂. More often than not, such information is
unavailable. To make the estimator completely data-dependent, we will use Lepski’s method (Lepski,
1992). To this end, assume that σmin , σmax are “crude” preliminary bounds such that

σmin ≤ σ0 ≤ σmax .

Usually, σmin and σmax do not need to be precise, and can potentially differ from σ0 by several
orders of magnitude. Set

σj := σmin 2j and J = {j ∈ Z : σmin ≤ σj < 2σmax } .
Note that the cardinality of J satisfies card(J ) ≤ 1 + log2(σmax /σmin ). For each j ∈ J , define

θj := θ(j, β) = 1
σj

√
β
m . Define

Σ̂m,j =
1

mθj

m∑
i=1

ψ
(
θj(Xi − µ̂)(Xi − µ̂)T

)
.

Finally, set

j∗ := min

{
j ∈ J : ∀k > j s.t. k ∈ J ,

∥∥∥Σ̂m,k − Σ̂m,j

∥∥∥ ≤ 6σk

√
β

m

}
(6)

and Σ̂∗ := Σ̂m,j∗ . Note that the estimator Σ̂∗ depends only on X1, . . . , Xm, as well as σmin , σmax .
Our main result is the following statement regarding the performance of the data-dependent estimator
Σ̂∗:
Theorem 2.1. Suppose m ≥ Cdβ, then, the following inequality holds with probability at least
1− 5d log2

(
2σmax
σmin

)
e−β: ∥∥∥Σ̂∗ − Σ0

∥∥∥ ≤ 18σ0

√
β

m
.
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An immediate corollary of Theorem 2.1 is the quantitative result for the performance of PCA based
on the estimator Σ̂∗. Let Projk be the orthogonal projector on a subspace corresponding to the k
largest positive eigenvalues λ1, . . . , λk of Σ0 (here, we assume for simplicity that all the eigenvalues
are distinct), and P̂rojk – the orthogonal projector of the same rank as Projk corresponding to the k
largest eigenvalues of Σ̂∗. The following bound follows from the Davis-Kahan perturbation theorem
(Davis and Kahan, 1970), more specifically, its version due to Zwald and Blanchard (2006, Theorem
3 ).

Corollary 2.1. Let ∆k = λk − λk+1, and assume that ∆k ≥ 72σ0

√
β
m . Then

∥∥P̂rojk − Projk
∥∥ ≤ 36

∆k
σ0

√
β

m

with probability ≥ 1− 5d log2

(
2σmax
σmin

)
e−β .

It is worth comparing the bound of Lemma 2.1 and Theorem 2.1 above to results of the paper by
Fan et al. (2016), which constructs a covariance estimator Σ̂′m under the assumption that the random
vector X is centered, and supv∈Rd:‖v‖2≤1 E

[
|〈v, X〉|4

]
= B <∞. More specifically, Σ̂′m satisfies

the inequality

P

(∥∥∥Σ̂′m − Σ0

∥∥∥ ≥√C1βBd

m

)
≤ de−β , (7)

where C1 > 0 is an absolute constant. The main difference between (7) and the bounds of Lemma
2.1 and Theorem 2.1 is that the latter are expressed in terms of σ2

0 , while the former is in terms of B.
The following lemma demonstrates that our bounds are at least as good:
Lemma 2.2. Suppose that EX = 0 and supv∈Rd:‖v‖2≤1 E

[
|〈v, X〉|4

]
= B <∞. Then Bd ≥ σ2

0 .

It follows from the above lemma that d = σ2
0/‖Σ0‖2 . d. Hence, By Theorem 2.1, the error rate of

estimator Σ̂∗ is bounded above by O(
√
d/m) if m & d. It has been shown (for example, Lounici,

2014) that the minimax lower bound of covariance estimation is of order Ω(
√
d/m). Hence, the

bounds of Fan et al. (2016) as well as our results imply correct order of the error. That being said, the
“intrinsic dimension” d̄ reflects the structure of the covariance matrix and can potentially be much
smaller than d, as it is shown in the next section.

2.3 Bounds in terms of intrinsic dimension

In this section, we show that under a slightly stronger assumption on the fourth moment of the random
vector X , the bound O(

√
d/m) is suboptimal, while our estimator can achieve a much better rate

in terms of the “intrinsic dimension” associated to the covariance matrix. This makes our estimator
useful in applications involving high-dimensional covariance estimation, such as PCA. Assume the
following uniform bound on the kurtosis:

max
k=1,2,...,d

√
E
(
X(k) − µ(k)

0

)4

E
(
X(k) − µ(k)

0

)2 = R <∞, (8)

where X(k), µ(k)
0 denotes the k-th entry of X and µ0 respectively. The intrinsic dimension of the

covariance matrix Σ0 can be measured by the effective rank defined as

r(Σ0) =
tr(Σ0)

‖Σ0‖
.

Note that we always have r(Σ0) ≤ rank(Σ0) ≤ d, and it some situations r(Σ0) � rank(Σ0), for
instance if the covariance matrix is “approximately low-rank”, meaning that it has many small
eigenvalues. The constant σ2

0 is closely related to the effective rank as is shown in the following
lemma (the proof of which is included in the supplementary material):
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Lemma 2.3. Suppose that (8) holds. Then,

r(Σ0)‖Σ0‖2 ≤ σ2
0 ≤ R2r(Σ0)‖Σ0‖2.

As a result, we have r(Σ0) ≤ d ≤ R2r(Σ0). The following corollary immediately follows from
Theorem 2.1 and Lemma 2.3:
Corollary 2.2. Suppose that m ≥ Cβr(Σ0) for an absolute constant C > 0 and that (8) holds.
Then ∥∥∥Σ̂∗ − Σ0

∥∥∥ ≤ 18R‖Σ0‖
√

r(Σ0)β

m

with probability at least 1− 5d log2

(
2σmax
σmin

)
e−β .

3 Applications: low-rank covariance estimation

In many data sets encountered in modern applications (for instance, gene expression profiles (Saal
et al., 2007)), dimension of the observations, hence the corresponding covariance matrix, is larger
than the available sample size. However, it is often possible, and natural, to assume that the unknown
matrix possesses special structure, such as low rank, thus reducing the “effective dimension” of the
problem. The goal of this section is to present an estimator of the covariance matrix that is “adaptive”
to the possible low-rank structure; such estimators are well-known and have been previously studied
for the bounded and sub-Gaussian observations (Lounici, 2014). We extend these results to the case
of heavy-tailed observations; in particular, we show that the estimator obtained via soft-thresholding
applied to the eigenvalues of Σ̂∗ admits optimal guarantees in the Frobenius (as well as operator)
norm.

Let Σ̂∗ be the estimator defined in the previous section, see equation (6), and set

Σ̂τ∗ = argmin
A∈Rd×d

[∥∥∥A− Σ̂∗

∥∥∥2

F
+ τ ‖A‖1

]
, (9)

where τ > 0 controls the amount of penalty. It is well-known (e.g., see the proof of Theorem 1 in
Lounici (2014)) that Σ̂τ2n can be written explicitly as

Σ̂τ∗ =

d∑
i=1

max
(
λi

(
Σ̂∗

)
− τ/2, 0

)
vi(Σ̂∗)vi(Σ̂∗)

T ,

where λi(Σ̂∗) and vi(Σ̂∗) are the eigenvalues and corresponding eigenvectors of Σ̂∗. We are ready to
state the main result of this section.

Theorem 3.1. For any τ ≥ 36σ0

√
β
m ,∥∥∥Σ̂τ∗ − Σ0

∥∥∥2

F
≤ inf
A∈Rd×d

[
‖A− Σ0‖2F +

(1 +
√

2)2

8
τ2rank(A)

]
. (10)

with probability ≥ 1− 5d log2

(
2σmax
σmin

)
e−β .

In particular, if rank(Σ0) = r and τ = 36σ0

√
β
m , we obtain that∥∥∥Σ̂τ∗ − Σ0

∥∥∥2

F
≤ 162σ2

0

(
1 +
√

2
)2 βr

m

with probability ≥ 1− 5d log2

(
2σmax
σmin

)
e−β .

4 Proofs

4.1 Proof of Lemma 2.1

The result is a simple corollary of the following statement.
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Lemma 4.1. Set θ = 1
σ

√
β
m , where σ ≥ σ0 and m ≥ β. Let d := σ2

0/‖Σ0‖2. Then, with probability

at least 1− 5de−β ,∥∥∥Σ̂− Σ0

∥∥∥ ≤ 2σ

√
β

m

+C ′‖Σ0‖

√ dσ

‖Σ0‖

(
β

m

) 3
4

+

√
dσ

‖Σ0‖
β

m
+

√
dσ

‖Σ0‖

(
β

m

) 5
4

+ d

(
β

m

) 3
2

+
dβ2

m2
+ d

5
4

(
β

m

) 9
4

 ,

where C ′ > 1 is an absolute constant.

Now, by Corollary ?? in the supplement, it follows that d = σ2
0/‖Σ0‖2 ≥ tr(Σ0)/‖Σ0‖ ≥ 1. Thus,

assuming that the sample size satisfies m ≥ (6C ′)4dβ, then, dβ/m ≤ 1/(6C ′)4 < 1, and by some
algebraic manipulations we have that∥∥∥Σ̂− Σ0

∥∥∥ ≤ 2σ

√
β

m
+ σ

√
β

m
= 3σ

√
β

m
. (11)

For completeness, a detailed computation is given in the supplement. This finishes the proof.

4.2 Proof of Lemma 4.1

Let Bβ = 11
√

2tr(Σ0)β/m be the error bound of the robust mean estimator µ̂ defined in (3). Let
Zi = Xi − µ0, Σµ = E

[
(Zi − µ)(Zi − µ)T

]
, ∀i = 1, 2, · · · , d, and

Σ̂µ =
1

mθ

m∑
i=1

(Xi − µ)(Xi − µ)T

‖Xi − µ‖22
ψ
(
θ ‖Xi − µ‖22

)
,

for any ‖µ‖2 ≤ Bβ . We begin by noting that the error can be bounded by the supremum of an
empirical process indexed by µ, i.e.∥∥∥Σ̂− Σ0

∥∥∥ ≤ sup
‖µ‖2≤Bβ

∥∥∥Σ̂µ − Σ0

∥∥∥ ≤ sup
‖µ‖2≤Bβ

∥∥∥Σ̂µ − Σµ

∥∥∥+ ‖Σµ − Σ0‖ (12)

with probability at least 1− e−β . We first estimate the second term ‖Σµ − Σ0‖. For any ‖µ‖2 ≤ Bβ ,

‖Σµ − Σ0‖ =
∥∥E[(Zi − µ)(Zi − µ)T − ZiZTi

]∥∥ = sup
v∈Rd:‖v‖2≤1

∣∣∣E[〈Zi − µ,v〉2 − 〈Zi,v〉2]∣∣∣
= (µTv)2 ≤ ‖µ‖22 ≤ B2

β = 242
tr(Σ0)β

m
,

with probability at least 1− e−β . It follows from Corollary ?? in the supplement that with the same
probability

‖Σµ − Σ0‖ ≤ 242
σ2

0β

‖Σ0‖m
≤ 242

σ2β

‖Σ0‖m
= 242‖Σ0‖

dβ

m
. (13)

Our main task is then to bound the first term in (12). To this end, we rewrite it as a double supremum
of an empirical process:

sup
‖µ‖2≤Bβ

∥∥∥Σ̂µ − Σµ

∥∥∥ = sup
‖µ‖2≤Bβ ,‖v‖2≤1

∣∣∣vT (Σ̂µ − Σµ

)
v
∣∣∣

It remains to estimate the supremum above.

Lemma 4.2. Set θ = 1
σ

√
β
m , where σ ≥ σ0 and m ≥ β. Let d := σ2

0/‖Σ0‖2. Then, with probability

at least 1− 4de−β ,

sup
‖µ‖2≤Bβ ,‖v‖2≤1

∣∣∣vT (Σ̂µ − Σµ

)
v
∣∣∣ ≤ 2σ

√
β

m

+C ′′‖Σ0‖

√ dσ

‖Σ0‖

(
β

m

) 3
4

+

√
dσ

‖Σ0‖
β

m
+

√
dσ

‖Σ0‖

(
β

m

) 5
4

+ d

(
β

m

) 3
2

+
dβ2

m2
+ d

5
4

(
β

m

) 9
4

 ,

where C ′′ > 1 is an absolute constant.
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Note that σ ≥ σ0 by defnition, thus, d ≤ σ2/‖Σ0‖2. Combining the above lemma with (12) and (13)
finishes the proof.

4.3 Proof of Theorem 2.1

Define j̄ := min {j ∈ J : σj ≥ σ0}, and note that σj̄ ≤ 2σ0. We will demonstrate that j∗ ≤ j̄ with
high probability. Observe that

Pr (j∗ > j̄) ≤ Pr

 ⋃
k∈J :k>j̄

{∥∥∥Σ̂m,k − Σm,j̄

∥∥∥ > 6σk

√
β

n

}
≤ Pr

(∥∥∥Σ̂m,j̄ − Σ0

∥∥∥ > 3σj̄

√
β

m

)
+

∑
k∈J : k>j̄

Pr

(∥∥∥Σ̂m,k − Σ0

∥∥∥ > 3σk

√
β

m

)

≤ 5de−β + 5d log2

(
σmax
σmin

)
e−β ,

where we applied (5) to estimate each of the probabilities in the sum under the assumption that the
number of samples m ≥ Cdβ and σk ≥ σj̄ ≥ σ0. It is now easy to see that the event

B =
⋂

k∈J :k≥j̄

{∥∥∥Σ̂m,k − Σ0

∥∥∥ ≤ 3σk

√
β

m

}

of probability ≥ 1− 5d log2

(
2σmax
σmin

)
e−β is contained in E = {j∗ ≤ j̄}. Hence, on B

∥∥∥Σ̂∗ − Σ0

∥∥∥ ≤ ‖Σ̂∗ − Σ̂m,j̄‖+ ‖Σ̂m,j̄ − Σ0‖ ≤ 6σj̄

√
β

m
+ 3σj̄

√
β

m

≤ 12σ0

√
β

m
+ 6σ0

√
β

m
= 18σ0

√
β

m
,

and the claim follows.

4.4 Proof of Theorem 3.1

The proof is based on the following lemma:

Lemma 4.3. Inequality (10) holds on the event E =
{
τ ≥ 2

∥∥∥Σ̂∗ − Σ0

∥∥∥}.

To verify this statement, it is enough to repeat the steps of the proof of Theorem 1 in Lounici (2014),
replacing each occurrence of the sample covariance matrix by its “robust analogue” Σ̂∗.

It then follows from Theorem 2.1 that Pr(E) ≥ 1− 5d log2

(
2σmax
σmin

)
e−β whenever τ ≥ 36σ0

√
β
m .
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