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Abstract

Stein variational gradient descent (SVGD) is a deterministic sampling algorithm
that iteratively transports a set of particles to approximate given distributions, based
on a gradient-based update that guarantees to optimally decrease the KL divergence
within a function space. This paper develops the first theoretical analysis on SVGD.
We establish that the empirical measures of the SVGD samples weakly converge
to the target distribution, and show that the asymptotic behavior of SVGD is
characterized by a nonlinear Fokker-Planck equation known as Vlasov equation
in physics. We develop a geometric perspective that views SVGD as a gradient
flow of the KL divergence functional under a new metric structure on the space of
distributions induced by Stein operator.

1 Introduction

Stein variational gradient descent (SVGD) [1] is a particle-based algorithm for approximating complex
distributions. Unlike typical Monte Carlo algorithms that rely on randomness for approximation,
SVGD constructs a set of points (or particles) by iteratively applying deterministic updates that
is constructed to optimally decrease the KL divergence to the target distribution at each iteration.
SVGD has a simple form that efficient leverages the gradient information of the distribution, and
can be readily applied to complex models with massive datasets for which typical gradient descent
has been found efficient. A nice property of SVGD is that it strictly reduces to the typical gradient
ascent for maximum a posteriori (MAP) when using only a single particle (n = 1), while turns into a
full sampling method with more particles. Because MAP often provides reasonably good results in
practice, SVGD is found more particle-efficient than typical Monte Carlo methods which require
much larger numbers of particles to achieve good results.

SVGD can be viewed as a variational inference algorithm [e.g., 2], but is significantly different from
the typical parametric variational inference algorithms that use parametric sets to approximate given
distributions and have the disadvantage of introducing deterministic biases and (often) requiring
non-convex optimization. The non-parametric nature of SVGD allows it to provide consistent
estimation for generic distributions like Monte Carlo does. There are also particle algorithms based
on optimization, or variational principles, with theoretical guarantees [e.g., 3–5], but they often do
not use the gradient information effectively and do not scale well in high dimensions.

However, SVGD is difficult to analyze theoretically because it involves a system of particles that
interact with each other in a complex way. In this work, we take an initial step towards analyzing
SVGD. We characterize the SVGD dynamics using an evolutionary process of the empirical measures
of the particles that is known as Vlasov process in physics, and establish that empirical measures of
the particles weakly converge to the given target distribution. We develop a geometric interpretation
of SVGD that views SVGD as a gradient flow of KL divergence, defined on a new Riemannian-like
metric structure imposed on the space of density functions.
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2 Stein Variational Gradient Descent (SVGD)

We start with a brief overview of SVGD [1]. Let νp be a probability measure of interest with a
positive, (weakly) differentiable density p(x) on an open set X ⊆ Rd. We want to approximate νp
with a set of particles {xi}ni=1 whose empirical measure µ̂n(dx) =

∑n
i=1 δ(x − xi)/ndx weakly

converges to νp as n → ∞ (denoted by µ̂n ⇒ νp), in the sense that we have Eµ̂n [h] → Eνp [h] as
n→∞ for all bounded, continuous test functions h.

To achieve this, we initialize the particles with some simple distribution µ, and update them via map

T (x) = x+ εφ(x),

where ε is a small step size, and φ(x) is a perturbation direction, or velocity field, which should
be chosen to maximally decrease the KL divergence of the particle distribution with the target
distribution; this is framed by [1] as solving the following functional optimization,

max
φ∈H

{
− d

dε
KL(Tµ || νp)

∣∣
ε=0

s.t. ||φ||H ≤ 1

}
. (1)

where µ denotes the (empirical) measure of the current particles, and Tµ is the measure of the
updated particles x′ = T (x) with x ∼ µ, or the pushforward measure of µ through map T , andH is
a normed function space chosen to optimize over.

A key observation is that the objective in (1) is a linear functional of φ that draws connections to
ideas in the Stein’s method [6] used for proving limit theorems or probabilistic bounds in theoretical
statistics. Liu and Wang [1] showed that

− d

dε
KL(Tµ || νp)

∣∣
ε=0

= Eµ[Spφ], with Spφ(x) := ∇ log p(x)>φ(x) +∇ · φ(x), (2)

where ∇ · φ :=
∑d
k=1 ∂xkφk(x), and Sp is a linear operator that maps a vector-valued function φ to

a scalar-valued function Spφ, and Sp is called the Stein operator in connection with the so-called
Stein’s identity, which shows that the RHS of (2) equals zero if µ = νp,

Ep[Spφ] = Ep[∇ log p>φ+∇ · φ] =

∫
∇ · (pφ)dx = 0; (3)

it is the result of integration by parts, assuming proper zero boundary conditions. Therefore, the
optimization (1) reduces to

D(µ || νp) := max
φ∈H

{
Eµ[Spφ], s.t. ||φ||H ≤ 1

}
, (4)

where D(µ || νp) is called Stein discrepancy, which provides a discrepancy measure between µ and
νp, since D(µ || νp) = 0 if µ = νp and D(µ || νp) > 0 if µ 6= νp givenH is sufficiently large.

Because (4) induces an infinite dimensional functional optimization, it is critical to select a nice space
H that is both sufficiently rich and also ensures computational tractability in practice. Kernelized
Stein discrepancy (KSD) provides one way to achieve this by takingH to be a reproducing kernel
Hilbert space (RKHS), for which the optimization yields a closed form solution [7–10].

To be specific, letH0 be a RKHS of scalar-valued functions with a positive definite kernel k(x, x′),
andH = H0 × · · · × H0 the corresponding d× 1 vector-valued RKHS. Then it can be shown that
the optimal solution of (4) is

φ∗µ,p(·) ∝ Ex∼µ[Sp ⊗ k(x, ·)], with Sp ⊗ k(x, ·) := ∇ log p(x)k(x, ·) +∇xk(x, ·), (5)

where Sp⊗ is an outer product variant of Stein operator which maps a scalar-valued function to a
vector-valued one. Further, it has been shown in [e.g., 7] that

D(µ || νp) = ||φ∗µ,p||H =
√
Ex,x′∼µ[κp(x, x′)], with κp(x, x

′) := SxpSx
′

p ⊗ k(x, x′), (6)

where κp(x, x′) is a “Steinalized” positive definite kernel obtained by applying Stein operator twice;
Sxp and Sx′

p are the Stein operators w.r.t. variable x and x′, respectively. The key advantage of KSD
is its computational tractability: it can be empirically evaluated with samples drawn from µ and the
gradient∇ log p, which is independent of the normalization constant in p [see 7, 8].
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Algorithm 1 Stein Variational Gradient Descent [1]
Input: The score function∇x log p(x).
Goal: A set of particles {xi}ni=1 that approximates p(x).
Initialize a set of particles {xi0}ni=1; pick a positive definite kernel k(x, x′) and step-size {ε`}.
For iteration ` do

xi`+1 ← xi` + εφ∗µ̂n` ,p(x
i
`), ∀i = 1, . . . , n,

where φ∗µ̂n` ,p(x) =
1

n

n∑
j=1

[
∇ log p(xj`)k(xj` , x) +∇xj`k(xj` , x)

]
,

(8)

An important theoretic issue related to KSD is to characterize when H is rich enough to ensure
D(µ || νp) = 0 iff µ = νp; this has been studied by Liu et al. [7], Chwialkowski et al. [8], Oates
et al. [11]. More recently, Gorham and Mackey [10] (Theorem 8) established a stronger result that
Stein discrepancy implies weak convergence on X = Rd: let {µ`}∞`=1 be a sequence of probability
measures, then

D(µ` || νp)→ 0 ⇐⇒ µ` ⇒ νp as `→∞, (7)

for νp that are distantly dissipative (Definition 4 of Gorham and Mackey [10]) and a class of inverse
multi-quadric kernels. Since the focus of this work is on SVGD, we will assume (7) holds without
further examination.

In SVGD algorithm, we iteratively update a set of particles using the optimal transform just derived,
starting from certain initialization. Let {xi`}ni=1 be the particles at the `-th iteration. In this case, the
exact distributions of {xi`}ni=1 are unknown or difficult to keep track of, but can be best approximated
by their empirical measure µ̂n` (dx) =

∑
i δ(x − xi`)dx/n. Therefore, it is natural to think that

φ∗µ̂n` ,p, with µ in (5) replaced by µ̂n` , provides the best update direction for moving the particles (and
equivalently µ̂n` ) “closer to” νp. Implementing this update (8) iteratively, we get the main SVGD
algorithm in Algorithm 1.

Intuitively, the update in (8) pushes the particles towards the high probability regions of the target
probability via the gradient term ∇ log p, while maintaining a degree of diversity via the second
term ∇k(x, xi). In addition, (8) reduces to the typical gradient descent for maximizing log p if we
use only a single particle (n = 1) and the kernel stratifies ∇k(x, x′) = 0 for x = x′; this allows
SVGD to provide a spectrum of approximation that smooths between maximum a posterior (MAP)
optimization to a full sampling approximation by using different particle sizes, enabling efficient
trade-off between accuracy and computation cost.

Despite the similarity to gradient descent, we should point out that the SVGD update in (8) does
not correspond to minimizing any objective function F ({xi`}) in terms of the particle location {xi`},
because one would find ∂xi∂xjF 6= ∂xj∂xiF if this is true. Instead, it is best to view SVGD as a type
of (particle-based) numerical approximation of an evolutionary partial differential equation (PDE)
of densities or measures, which corresponds to a special type of gradient flow of the KL divergence
functional whose equilibrium state equals the given target distribution νp, as we discuss in the sequel.

3 Density Evolution of SVGD Dynamics

This section collects our main results. We characterize the evolutionary process of the empirical
measures µ̂n` of the SVGD particles and their large sample limit as n→∞ (Section 3.1) and large
time limit as `→∞ (Section 3.2), which together establish the weak convergence of µ̂n` to the target
measure νp. Further, we show that the large sample limit of the SVGD dynamics is characterized
by a Vlasov process, which monotonically decreases the KL divergence to target distributions with
a decreasing rate that equals the square of Stein discrepancy (Section 3.2-3.3). We also establish a
geometric intuition that interpret SVGD as a gradient flow of KL divergence under a new Riemannian
metric structure induced by Stein operator (Section 3.4). Section 3.5 provides a brief discussion on
the connection to Langevin dynamics.
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3.1 Large Sample Asymptotic of SVGD

Consider the optimal transform T µ,p(x) = x + εφ∗µ,p(x) with φ∗µ,p defined in (5). We define its
related map Φp : µ 7→ T µ,pµ, where T µ,pµ denotes the pushforward measure of µ through transform
T µ,p. This map fully characterizes the SVGD dynamics in the sense that the empirical measure µ̂n`
can be obtained by recursively applying Φp starting from the initial measure µ̂n0 .

µ̂n`+1 = Φp(µ̂
n
` ), ∀` ∈ N. (9)

Note that Φp is a nonlinear map because the transform T µ,p depends on the input map µ. If µ has a
density q and ε is small enough so that T µ,p is invertible, the density q′ of µ′ = Φp(µ) is given by
the change of variables formula:

q′(z) = q(T−1µ,p(z)) · | det(∇T−1µ,p(z))|. (10)

When µ is an empirical measure and q is a Dirac delta function, this equation still holds formally in
the sense of distribution (generalized functions).

Critically, Φp also fully characterizes the large sample limit property of SVGD. Assume the initial
empirical measure µ̂n0 at the 0-th iteration weakly converges to a measure µ∞0 as n→∞, which can
be achieved, for example, by drawing {xi0} i.i.d. from µ∞0 , or using MCMC or Quasi Monte Carlo
methods. Starting from the limit initial measure µ∞0 and applying Φp recursively, we get

µ∞`+1 = Φp(µ
∞
` ), ∀` ∈ N. (11)

Assuming µ̂n0 ⇒ µ∞0 by initialization, we may expect that µ̂n` ⇒ µ∞` for all the finite iterations ` if
Φp satisfies certain Lipschitz condition. This is naturally captured by the bounded Lipschitz metric.

For two measures µ and ν, their bounded Lipschitz (BL) metric is defined to be their difference of
means on the set of bounded, Lipschitz test functions:

BL(µ, ν) = sup
f

{
Eµf − Eνf s.t. ||f ||BL ≤ 1

}
, where ||f ||BL = max{||f ||∞, ||f ||Lip},

where ||f ||∞ = supx |f(x)| and ||f ||Lip = supx 6=y
|f(x)−f(y)|
||x−y||2 . For a vector-valued bounded

Lipschitz function f = [f1, . . . , fd]
>, we define its norm by ||f ||2BL =

∑d
i=1 ||fi||2BL. It is known

that the BL metric metricizes weak convergence, that is, BL(µn, ν)→ 0 if and only if µn ⇒ ν.

Lemma 3.1. Assuming g(x, y) := Sxp ⊗ k(x, y) is bounded Lipschitz jointly on (x, y) with norm
||g||BL <∞, then for any two probability measures µ and µ′, we have

BL(Φp(µ), Φp(µ
′)) ≤ (1 + 2ε||g||BL) BL(µ, µ′).

Theorem 3.2. Let µ̂n` be the empirical measure of {xi`}ni=1 at the `-th iteration of SVGD. Assuming

lim
n→∞

BL(µ̂n0 , µ
∞
0 )→ 0,

then for µ∞` defined in (11), at any finite iteration `, we have

lim
n→∞

BL(µ̂n` , µ
∞
` )→ 0.

Proof. It is a direct result of Lemma 3.1.

Since BL(µ, ν) metricizes weak convergence, our result suggests µ̂n` ⇒ µ̂∞` for ∀`, if µ̂n0 ⇒ µ̂∞0 by
initialization. The bound of BL metric in Lemma 3.1 increases by a factor of (1 + 2ε||g||BL) at each
iteration. We can prevent the explosion of the BL bound by decaying step size sufficiently fast. It may
be possible to obtain tighter bounds, however, it is fundamentally impossible to get a factor smaller
than one without further assumptions: suppose we can get BL(Φp(µ), Φp(µ

′)) ≤ αBL(µ, µ′) for
some constant α ∈ [0, 1), then starting from any initial µ̂n0 , with any fixed particle size n (e.g., n = 1),
we would have BL(µ̂n` , νp) = O(α`) → 0 as ` → 0, which is impossible because we can not get
arbitrarily accurate approximate of νp with finite n. It turns out that we need to look at KL divergence
in order to establish convergence towards νp as `→∞, as we discuss in Section 3.2-3.3.
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Remark Because g(x, y) = ∇x log p(x)k(x, y)+∇xk(x, y), and∇x log p(x) is often unbounded
if the domain X is not unbounded. Therefore, the condition that g(x, y) must be bounded in
Lemma 3.1 suggests that it can only be used when X is compact. It is an open question to establish
results that can work for more general domain X .

3.2 Large Time Asymptotic of SVGD

Theorem 3.2 ensures that we only need to consider the update (11) starting from the limit initial µ∞0 ,
which we can assume to have nice density functions and have finite KL divergence with the target νp.
We show that update (11) monotonically decreases the KL divergence between µ∞` and νp and hence
allows us to establish the convergence µ∞` ⇒ νp.

Theorem 3.3. 1. Assuming p is a density that satisfies Stein’s identity (3) for ∀φ ∈ H, then the
measure νp of p is a fixed point of map Φp in (11).

2. Assume R = supx{ 12 ||∇ log p||Lipk(x, x) + 2∇xx′k(x, x)} < ∞, where ∇xx′k(x, x) =∑
i ∂xi∂x′

i
k(x, x′)

∣∣
x=x′ , and the step size ε` at the `-th iteration is no larger than ε∗` :=

(2 supx ρ(∇φ∗µ`,p + ∇φ∗>µ`,p))
−1, where ρ(A) denotes the spectrum norm of a matrix A. If

KL(µ∞0 || νp) <∞ by initialization, then

1

ε`

[
KL(µ∞`+1 || νp)−KL(µ∞` || νp)

]
≤ −(1− ε`R) D(µ∞` || νp)2, (12)

that is, the population SVGD dynamics always deceases the KL divergence when using sufficiently
small step sizes, with a decreasing rate upper bounded by the squared Stein discrepancy. Further, if
we set the step size ε` to be ε` ∝ D(µ∞` || νp)β for any β > 0, then (12) implies that D(µ∞` || νp)→ 0
as `→∞.

Remark Assuming D(µ∞` || νp) → 0 implies µ∞` ⇒ νp (see (7)), then Theorem 3.3(2) implies
µ∞` ⇒ νp. Further, together with Theorem 3.2, we can establish the weak convergence of the
empirical measures of the SVGD particles: µ̂n` ⇒ νp, as `→∞, n→∞.

Remark Theorem 3.3 can not be directly applied on the empirical measures µ̂n` with finite sample
size n, since it would give KL(µ̂n` || νp) =∞ in the beginning. It is necessary to use BL metric and
KL divergence to establish the convergence w.r.t. sample size n and iteration `, respectively.

Remark The requirement that ε` ≤ ε∗` is needed to guarantee that the transform T µ`,p(x) =
x+ εφ∗µ`,p(x) has a non-singular Jacobean matrix everywhere. From the bound in Equation A.6 of
the Appendix, we can derive an upper bound of the spectrum radius:

sup
x
ρ(∇φ∗µ`,p +∇φ∗>µ`,p) ≤ 2 sup

x
||∇φ∗µ`,p||F ≤ 2 sup

x

√
∇xx′k(x, x) D(µ` || νp).

This suggest that the step size should be upper bounded by the inverse of Stein discrepancy, i.e.,
ε∗` ∝ D(µ` || νp)−1 = ||φ∗µ`,p||

−1
H , where D(µ` || νp) can be estimated using (6) (see [7]).

3.3 Continuous Time Limit and Vlasov Process

Many properties can be understood more easily as we take the continuous time limit (ε→ 0), reducing
our system to a partial differential equation (PDE) of the particle densities (or measures), under which
we show that the negative gradient of KL divergence exactly equals the square Stein discrepancy (the
limit of (12) as ε→ 0).

To be specific, we define a continuous time t = ε`, and take infinitesimal step size ε → 0, the
evolution of the density q in (10) then formally reduces to the following nonlinear Fokker-Planck
equation (see Appendix A.3 for the derivation):

∂

∂t
qt(x) = −∇ · (φ∗qt,p(x)qt(x)). (13)

This PDE is a type of deterministic Fokker-Planck equation that characterizes the movement of
particles under deterministic forces, but it is nonlinear in that the velocity field φ∗qt,p(x) depends on
the current particle density qt through the drift term φ∗qt,p(x) = Ex′∼qt [Sx

′

p ⊗ k(x, x′)].
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It is not surprising to establish the following continuous version of Theorem 3.3(2), which is of
central importance to our gradient flow perspective in Section 3.4:

Theorem 3.4. Assuming {µt} are the probability measures whose densities {qt} satisfy the PDE in
(13), and KL(µ0 || νp) <∞, then

d

dt
KL(µt || νp) = −D(µt || νp)2. (14)

Remark This result suggests a path integration formula, KL(µ0 || νp) =
∫∞
0

D(µt || νp)2dt,
which can be potentially useful for estimating KL divergence or the normalization constant.

PDE (13) only works for differentiable densities qt. Similar to the case of Φp as a map between
(empirical) measures, one can extend (13) to a measure-value PDE that incorporates empirical
measures as weak solutions. Take a differentiable test function h and integrate the both sides of (13):∫

∂

∂t
h(x)qt(x)dx = −

∫
h(x)∇ · (φ∗qt,p(x)qt(x))dx,

Using integration by parts on the right side to “shift” the derivative operator from φ∗qt,pqt to h, we get

d

dt
Eµt [h] = Eµt [∇h>φ

∗
µt,p], (15)

which depends on µt only through the expectation operator and hence works for empirical measures
as well,. A set of measures {µt} is called the weak solution of (13) if it satisfies (15).

Using results in Fokker-Planck equation, the measure process (13)-(15) can be translated to an
ordinary differential equation on random particles {xt} whose distribution is µt:

dxt = φ∗µt,p(xt)dt, µt is the distribution of random variable xt, (16)

initialized from random variable x0 with distribution µ0. Here the nonlinearity is reflected in the fact
that the velocity field depends on the distribution µt of the particle at the current time.

In particular, if we initialize (15) using an empirical measure µ̂n0 of a set of finite particles {xi0}ni=1,
(16) reduces to the following continuous time limit of n-particle SVGD dynamics:

dxit = φ∗µ̂nt ,p(x
i
t)dt, ∀i = 1, . . . , n, with µ̂nt (dx) =

1

n

n∑
i=1

δ(x− xit)dx, (17)

where {µ̂nt } can be shown to be a weak solution of (13)-(15), parallel to (9) in the discrete time case.
(16) can be viewed as the large sample limit (n→∞) of (17).

The process (13)-(17) is a type of Vlasov processes [12, 13], which are (deterministic) interacting
particle processes of the particles interacting with each other though the dependency on their “mean
field” µt (or µ̂nt ), and have found important applications in physics, biology and many other areas.
There is a vast literature on theories and applications of interacting particles systems in general, and
we only refer to Spohn [14], Del Moral [15] and references therein as examples. Our particular
form of Vlasov process, constructed based on Stein operator in order to approximate arbitrary given
distributions, seems to be new to the best of our knowledge.

3.4 Gradient Flow, Optimal Transport, Geometry

We develop a geometric view for the Vlasov process in Section 3.3, interpreting it as a gradient flow
for minimizing the KL divergence functional, defined on a new type of optimal transport metric on
the space of density functions induced by Stein operator.

We focus on the set of “nice” densities q paired with a well defined Stein operator Sq, acting on a
Hilbert space H. To develop the intuition, consider a density q and its nearby density q′ obtained
by applying transform T (x) = x+ φ(x)dt on x ∼ q with infinitesimal dt and φ ∈ H, then we can
show that (See Appendix A.3)

log q′(x) = log q(x)− Sqφ(x)dt, q′(x) = q(x)− q(x)Sqφ(x)dt, (18)
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Because one can show that Sqφ = ∇·(φq)
q from (2), we define operator qSq by qSqφ(x) =

q(x)Sqφ(x) = ∇ · (φ(x)q(x)). Eq (18) suggests that the Stein operator Sq (resp. qSq) serves
to translate a φ-perturbation on the random variable x to the corresponding change on the log-density
(resp. density). This fact plays a central role in our development.

Denote byHq (resp. qHq) the space of functions of form Sqφ (resp. qSqφ) with φ ∈ H, that is,
Hq = {Sqφ : φ ∈ H}, qHq = {qSqφ : φ ∈ H}.

Equivalently, qHq is the space of functions of form qf where f ∈ Hq . This allows us to consider the
inverse of Stein operator for functions inHq. For each f ∈ Hq, we can identify an unique function
ψf ∈ H that has minimum || · ||H norm in the set of ψ that satisfy Sqψ = f , that is,

ψq,f = arg min
ψ∈H

{
||ψ||H s.t. Sqψ = f

}
,

where Sqψ = f is known as the Stein equation. This allows us to define inner products onHq and
qHq using the inner product onH:

〈f1 f2〉Hq := 〈qf1, qf2〉qHq := 〈ψq,f1 , ψq,f2〉H. (19)
Based on standard results in RKHS [e.g., 16], one can show that if H is a RKHS with kernel
k(x, x′), then Hq and qHq are both RKHS; the reproducing kernel of Hq is κp(x, x′) in (6), and
correspondingly, the kernel of qHq is q(x)κp(x, x

′)q(x′).

Now consider q and a nearby q′ = q+qfdt, ∀f ∈ Hq , obtained by an infinitesimal perturbation on the
density function using functions in spaceHq . Then theψq,f can be viewed as the “optimal” transform,
in the sense of having minimum || · ||H norm, that transports q to q′ via T (x) = x+ψq,f (x)dt. It is
therefore natural to define a notion of distance between q and q′ = q + qfdt via,

WH(q, q′) := ||ψq,f ||Hdt.

From (18) and (19), this is equivalent to
WH(q, q′) = ||q − q′||qHqdt = || log q′ − log q||Hqdt.

Under this definition, we can see that the infinitesimal neighborhood {q′ : WH(q, q′) ≤ dt} of q,
consists of densities (resp. log-densities) of form

q′ = q + gdt, ∀g ∈ qHq, ||g||qHq ≤ 1,

log q′ = log q + fdt, ∀f ∈ Hq, ||f ||Hq ≤ 1.

Geometrically, this means that qHq (resp. Hq) can be viewed as the tangent space around density
q (resp. log-density log q). Therefore, the related inner product 〈·, ·〉qHq (resp. 〈·, ·〉Hq ) forms a
Riemannian metric structure that corresponds to WH(q, q′).

This also induces a geodesic distance that corresponds to a general, H-dependent form of optimal
transport metric between distributions. Consider two densities p and q that can be transformed from
one to the other with functions inH, in the sense that there exists a curve of velocity fields {φt : φt ∈
H, t ∈ [0, 1]} inH, that transforms random variable x0 ∼ q to x1 ∼ p via dxt = φt(x)dt. This is
equivalent to say that there exists a curve of densities {ρt : t ∈ [0, 1]} such that

∂tρt = −∇ · (φtρt), and ρ0 = q, ρ1 = p.

It is therefore natural to define a geodesic distance between q and p via

WH(q, p) = inf
{φt, ρt}

{∫ 1

0

||φt||Hdt, s.t. ∂tρt = −∇ · (φtρt), ρ0 = p, ρ1 = q
}
. (20)

We call WH(p, q) anH-Wasserstein (or optimal transport) distance between p and q, in connection
with the typical 2-Wasserstein distance, which can be viewed as a special case of (20) by takingH
to be the L2

ρt space equipped with norm ||f ||L2
ρt

= Eρt [f2], replacing the cost with
∫
||φt||L2

ρt
dt;

the 2-Wasserstein distance is widely known to relate to Langevin dynamics as we discuss more in
Section 3.5 [e.g., 17, 18].

Now for a given functional F (q), this metric structure induced a notion of functional covariant
gradient: the covariant gradient gradHF (q) of F (q) is defined to be a functional that maps q to an
element in the tangent space qHq of q, and satisfies

F (q + fdt) = F (q) + 〈gradHF (q), fdt〉qHq , (21)
for any f in the tangent space qHq .
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Theorem 3.5. Following (21), the gradient of the KL divergence functional F (q) := KL(q || p) is
gradHKL(q || p) = ∇ · (φ∗q,pq).

Therefore, the SVGD-Valsov equation (13) is a gradient flow of KL divergence under metric WH(·, ·):
∂qt
∂t

= −gradHKL(qt || p).

In addition, ||gradHKL(q || p)||qHq = D(q || p).

Remark We can also definite the functional gradient via

gradHF (q) ∝ arg max
f : ||f ||qHq≤1

{
lim
ε→0+

F (q + εf)− F (q)

WH(q + εf, q)

}
,

which specifies the steepest ascent direction of F (q) (with unit norm). The result in Theorem (3.5) is
consistent with this definition.

3.5 Comparison with Langevin Dynamics

The theory of SVGD is parallel to that of Langevin dynamics in many perspectives, but with
importance differences. We give a brief discussion on their similarities and differences.

Langevin dynamics works by iterative updates of form
x`+1 ← x` + ε∇ log p(x`) + 2

√
εξ`, ξ` ∼ N (0, 1),

where a single particle {x`} moves along the gradient direction, perturbed with a random Gaussian
noise that plays the role of enforcing the diversity to match the variation in p (which is accounted by
the deterministic repulsive force in SVGD). Taking the continuous time limit (ε→ 0), We obtain a
Ito stochastic differential equation, dxt = −∇ log p(xt)dt+2dWt,where Wt is a standard Brownian
motion, and x0 is a random variable with initial distribution q0. Standard results show that the density
qt of random variable xt is governed by a linear Fokker-Planck equation, following which the KL
divergence to p decreases with a rate that equals Fisher divergence:

∂qt
∂t

= −∇ · (qt∇ log p) + ∆qt,
d

dt
KL(qt || p) = −F(qt, p), (22)

where F(q, p) = ||∇ log(q/p)||2L2
q
. This result is parallel to Theorem 3.4, and the role of square Stein

discrepancy (and RKHS H) is replaced by Fisher divergence (and L2
q space). Further, parallel to

Theorem 3.5, it is well known that (22) can be also treated as a gradient flow of the KL functional
KL(q || p), but under the 2-Wasserstein metric W2(q, p) [17]. The main advantage of using RKHS
over L2

q is that it allows tractable computation of the optimal transport direction; this is not case when
using L2

q and as a result Langevin dynamics requires a random diffusion term in order to form a
proper approximation.

Practically, SVGD has the advantage of being deterministic, and reduces to exact MAP optimization
when using only a single particle, while Langevin dynamics has the advantage of being a standard
MCMC method, inheriting its statistical properties, and does not require an O(n2) cost to calculate
the n-body interactions as SVGD. However, the connections between SVGD and Langevin dynamics
may allow us to develop theories and algorithms that unify the two, or combine their advantages.

4 Conclusion and Open Questions

We developed a theoretical framework for analyzing the asymptotic properties of Stein variational
gradient descent. Many components of the analysis provide new insights in both theoretical and
practical aspects. For example, our new metric structure can be useful for solving other learning
problems by leveraging its computational tractability. Many important problems remains to be open.
For example, an important open problem is to establish explicit convergence rate of SVGD, for
which the existing theoretical literature on Langevin dynamics and interacting particles systems may
provide insights. Another problem is to develop finite sample bounds for SVGD that can take the
fact that it reduces to MAP optimization when n = 1 into account. It is also an important direction
to understand the bias and variance of SVGD particles, or combine it with traditional Monte Carlo
whose bias-variance analysis is clearer (see e.g., [19]).
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