Process-constrained batch Bayesian Optimisation

Pratibha Vellanki', Santu Rana', Sunil Gupta', David Rubin?
Alessandra Sutti2, Thomas DorinZ?, Murray Height?,Paul Sandars®, Svetha Venkatesh!
!Centre for Pattern Recognition and Data Analytics

Deakin University, Geelong, Australia

[pratibha.vellanki, santu.rana, sunil.gupta, svetha.venkatesh@deakin.edu.au]

Institute for Frontier Materials, GTP Research
Deakin University, Geelong, Australia
[d.rubindec:elisleal7 alessandra.sutti, thomas.dorin, murray.height@deakin.edu.au]
3Materials Science and Engineering, Michigan Technological University, USA
[sanders@mtu.edu]

Abstract

Prevailing batch Bayesian optimisation methods allow all control variables to be
freely altered at each iteration. Real-world experiments, however, often have phys-
ical limitations making it time-consuming to alter all settings for each recommend-
ation in a batch. This gives rise to a unique problem in BO: in a recommended
batch, a set of variables that are expensive to experimentally change need to be
fixed, while the remaining control variables can be varied. We formulate this
as a process-constrained batch Bayesian optimisation problem. We propose two
algorithms, pc-BO(basic) and pc-BO(nested). pc-BO(basic) is simpler but lacks
convergence guarantee. In contrast pc-BO(nested) is slightly more complex, but
admits convergence analysis. We show that the regret of pc-BO(nested) is sublin-
ear. We demonstrate the performance of both pc-BO(basic) and pc-BO(nested) by
optimising benchmark test functions, tuning hyper-parameters of the SVM clas-
sifier, optimising the heat-treatment process for an Al-Sc alloy to achieve target
hardness, and optimising the short polymer fibre production process.

1 Introduction

Experimental optimisation is used to design almost all products and processes, scientific and indus-
trial, around us. Experimental optimisation involves optimising input control variables in order to
achieve a target output. Design of experiments (DOE) [[L6] is the conventional laboratory and indus-
trial standard methodology used to efficiently plan experiments. The method is rigid - not adaptive
based on the completed experiments so far. This is where Bayesian optimisation offers an effective
alternative.

Bayesian optimisation [13} [17] is a powerful probabilistic framework for efficient, global optim-
isation of expensive, black box functions. The field is undergoing a recent resurgence, spurred by
new theory and problems and is impacting computer science broadly - tuning complex algorithms
[3L 1221118 21]], combinatorial optimisation [24}12], reinforcement learning [4]. Usually, a prior be-
lief in the form of Gaussian process is maintained over the possible set of objective functions and the
posterior is the refined belief after updating the model with experimental data. The updated model
is used to seek the most promising location of function extrema by using a variety of criteria, e.g.
expected improvement (EI), and upper confidence bound (UCB). The maximiser of such a criteria
function is then recommended for the function evaluation. Iteratively the model is updated and re-
commendations are made till the target outcome is achieved. When concurrent function evaluations
are possible, Bayesian optimisation returns multiple suggestions, and this is termed as the batch
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Figure 1: Examples of real-world applications requiring process constraints.

setting. Bayesian optimisation with batch setting has been investigated by [10, (S| |6} 9] [1]] wherein
different strategies are used to recommend multiple settings at each iteration. In all these methods,
all the control variables are free to be altered at each iteration. However, in some situations needing
to change all the variables for a single batch may not be efficient and this leads to the motivation of
our process-constrained Bayesian optimisation.

This work has been directly influenced from the way experiments are conducted in many real-world
scenarios with a typical limitation on resources. For example, in our work with metallurgists, we
were given a task to find the optimal heat-treatment schedule of an alloy which maximises the
strength. Heat-treatment involves taking the alloy through a series of exposures to different temper-
atures for a variable amount of durations as shown in Figure[Ta] Typically, a heat treatment schedule
can last for multiple days, so doing one experiment at a time is not efficient. Fortunately, a furnace
is big enough to hold multiple samples at the same time. If we have to perform multiple experiments
in one batch yet using only one furnace, then we must design our Bayesian optimisation recom-
mendations in such a way that the temperatures across a batch remain the same, whilst still allowing
the durations to vary. Samples would be put in the same oven, but would be taken out after dif-
ferent elapsed time for each step of the heat treatment. Similar examples abound in other domains
of process and product design. For short polymer fibre production a polymer is injected axially
within another flow of a solvent in a particular geometric manifold [20]. A representation of the
experimental setup marked with the parameters involved is shown in Figure [Tb] When optimising
for the yield it is generally easy to change the flow parameters (pump speed setting) than changing
the device geometry (opening up the enclosure and modifying the physical configuration). Hence in
this case as well, it is beneficial to recommend a batch of suggested experiments at a fixed geometry
but allowing flow parameters to vary. Many such examples where the batch recommendations are
constrained by the processes involved have been encountered by the authors in realising the potential
of Bayesian optimisation for real-world applications.

To construct a more familiar application we use the hyper-parameter tuning problem for Support
Vector Machines (SVM). When we use parallel tuning using batch Bayesian optimisation, it may be
useful if all the parallel training runs finished at the same time. This would require fixing the cost
parameter, while allowing the the other hyper-parameters to vary. Whist this may or may not be a
real concern depending on the use cases, we use it here as a case study.

We formulate this unique problem as process-constrained batch Bayesian optimisation. The recom-
mendation schedule needs to constrain a set of variables corresponding to control variables that are
experimentally expensive (time, cost, difficulty) to change (constrained set) and varies all the re-
maining control variables (unconstrained set). Our approach involves incorporating constraints on
stipulated control parameters and allowing the others to change in an unconstrained manner. The
mathematical formulation of our optimisation problem is as follows.

z" = argmax, ¢ o f(x)
and we want a batch Bayesian optimisation sequence
{{x1.0, o1, w1} =y such that Ve and ;= [2}52f ],
oy = a8k, K €0, K — 1]

Where z¢, is the k™ constrained variable in ¢ batch and similarly 2% is the k™ unconstrained
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variable in the t™ batch. T is the total number of iterations and K is the batch-size.



We propose two approaches to the solve this problem: basic process-constrained Bayesian optimisa-
tion (pc-BO(basic)) and nested process-constrained batch Bayesian optimisation (pc-BO(nested)).
pc-BO(basic) is an intuitive modification motivated by the work of [5]] and pc-BO(nested) is based
on a nested Bayesian optimisation method we will describe in section [3] We formulate the al-
gorithms pc-BO(basic) and pc-BO(nested), and for pc-BO(nested) we present the theoretic analysis
to show that the average regret vanishes superlinearly with iterations. We demonstrate the perform-
ance of pc-BO(basic) and pc-BO(nested) on both benchmark test functions and real world problems
that involve hyper-parameter tuning for SVM classification for two datasets: breast cancer and bio-
degradable waste, the industrial problem of heat treatment process for an Aluminium-Scandium
(Al-Sc) alloy, and another industrial problem of short polymer fibre production process.

2 Related background

2.1 Bayesian optimisation

Bayesian optimisation is a sequential method of global optimisation of an expensive and unknown
black-box function f whose domain is X, to find its maxima z* = argmax f(z) (or minima). It is

TE
especially powerful when the function is expensive to evaluate and it does not have a closed-form
expression, but it is possible to generate noisy observations from experiments.

The Gaussian process (GP) is commonly used as a flexible way to place a prior over the unknown
function [14]. It is are completely described by the mean function m(z) and the covariance function
k(z,z’) and they imply our belief and uncertainties about the objective function. Noisy observations
from the experiments are sequentially appended into the model, that in turn updates our belief about
the objective function.

The acquisition function is a surrogate utility function that takes a known tractable closed form and
allows us to choose the next query point. It is maximised in the place of the unknown objective
function and constructed such that it balances between exploring regions of high value (mean) and
exploiting regions of high uncertainties (variances) across the objective function.

Gaussian process based Upper Confidence Bound (GP-UCB) proposed by [19] is one of the ac-
quisition functions which is shown to achieve sublinear growth in cumulative regret. It is define at

thiteration as
az;Pfuc*B(f) = pe—1(x) + V Brot—1(x) M

where, v = 1 and 3, = 2log(t%/?+272/36) is the confidence parameter, wherein ¢ denotes the
iteration number, d represents the dimensionality of the data and 6 € (0,1). We are motivated by
GP-UCB based methods. Although our approach can be intuitively extended to other acquisition
function, we do not explore this in the current work.

2.2 Batch Bayesian optimisation methods

The GP exhibits an interesting characteristic that its predictive variance is dependent on only the
input attributes while updating its mean requires knowledge about the outcome of the experiment.
This leads us to a direction of strategies for multiple recommendations. There are several batch
Bayesian optimisation algorithms for an unconstrained case. GP-BUCB by [6]] recommends mul-
tiple batch points using the UCB strategy and the aforementioned characteristic. To fill up a batch, it
updates the variances with the available attribute information and appends the outcomes temporarily
by substituting them with most recently computed posterior mean. A similar strategy is used in
the GP-UCB-PE by [5]] that optimises the unknown function by incorporating some batch elements
where uncertainty is high. GP-UCB-PE computes the first batch element by using the UCB strategy
and recommends the rest of the points by relying on only the predictive variance, and not the mean.
It has been shown that for these GP-UCB based algorithms the regret can be bounded tighter than
the single recommendation methods. To the best of our knowledge these existing batch Bayesian
optimisation techniques do not address the process-constrained problem presented in this work. The
algorithms proposed in this paper are inspired by the previous approaches but address it in context
of a process-constrained setting.



2.3 Constrained-batch vs. constrained-space optimisation

We refer to the parameters that are not allowed to change (eg. temperatures for heat treatment,
or device geometry for fibre production) as constrained set and the other parameters (heat treatment
durations or flow parameters) as unconstrained set. We emphasise that our usage of constraint differs
from the problem settings presented in literature, for example in [12, [11} [7, 18], where the parameters
values are constrained or the function evaluations are constrained by inequalities. In the problem
setting that we present, all the parameters exist in unconstrained space; for each individual batch,
the constrained variables should have the same value.

3 Proposed method

We recall the maximisation problem from Section [I] as * = argmax, ., f(z). In our case X =
X"e U X, where X° is the constrained subspace and X is the unconstrained subspace.

Algorithm 1 pc-BO(basic): Basic process-constrained pure exploration batch Bayesian optimisation
algorithm.

while (¢t < MazxIter)
Tt = [xt“f)m?,o} = argmaxleXaGP_UCB (zt,0 | D)
fork=1,..,. K -1

k' <k
uc __ uc c uc
T} = argmax yucg yuco ($t7k | D, af o, {5} )

end
K—1

D = DU {[ztiaia], f ([285284]) }sy
end

Algorithm 2 pc-BO(nested): Nested process-constrained batch Bayesian optimisation algorithm.
while (¢t < MazxIter)
zf = argmax, . peal’ VY (2§ | Do)

TG = argmax e yucaGe V9P (2p® | Dy, af)
fork=1,.. K-1
TS = argmax juc ¢ yue Ouc (a;’t‘c | D1, x5, {x;‘jc,}kkk)
end
Do = Do U {zf, f ([(ﬂ“‘)* z])}
Dr = Dru{[aiaf] f ([afiaf]) 1,0,
end

A naive approach to solving the process is to employ any standard batch Bayesian optimisation
algorithm where the first member is generated and then subsequent members are filled up by setting
the constraint variables to that of the first member. We describe this approach as the basic process-
constrained pure exploration batch Bayesian optimisation (pc-BO(basic)) algorithm as detailed in
algorithm [1} where a“*~Y¢B (g | D) is the acquisition function as defined in Equation [I| We note
that pc-BO(basic) is an improvisation over the work of [5]. During each iteration, the first batch
element is recommended using the UCB strategy. The remaining batch elements, as in GP-UCB-
PE, are generated by updating the posterior variance of the GP, after the constrained set attributes
are fixed to those of the first batch element.

We provide an alternate formulation via a nested optimisation problem called nested process-
constrained batch Bayesian optimisation (pc-BO(nested)) with two stages. For each batch, in the
outer stage optimisation is performed to find the optimal values of the constrained variables and
in the inner stage optimisation is performed to find optimal values of the unconstrained variables.

The algorithm is detailed in algorithm [2] where oS~V (z | D) is the acquisition function for the

outer stage, and oS ~V“P (x| D) is the acquisition function for the inner stage as defined in Equa-

tion|l| and (z)* =  argmax  f ([z}¥x¢]), is the unconstrained batch parameter that yields the

apeefops Y
t tkf p—o

best target goal for the given constrained parameter z°. We are able to analyse the convergence of



pc-BO(nested). It can be expected that in some cases the performance of the pc-BO(basic) and pc-
BO(nested) are close. The pc-BO(basic) method maybe considered simpler, but it lacks guaranteed
convergence.

3.1 Convergence analysis for pc-BO(nested)

We now present the analysis of the convergence of pc-BO(nested) as described in Algorithm[2] The
outer stage optimisation problem for z¢ and observation D, is expressed as follows.

()" = argmax ecyeg(z©),
where, g(z°) 2 max I ([z"°z])
:L»UC E uc

12

max f([z"z°]) = f([(xuc)+mci)’

pucg xuc

1>

uc T c c
where, X {{ze,0, 261, .., xe,k—1}}e=1 suchthat, zf , = x°,

{ar, 7 ([0 o))}

And the inner stage optimisation problem for z*“ and observation D; is expressed as follows.

Do

()" = argmaxuecpuch ("),

where, h(z") £ f([ﬂvucxci)

\T
{{[otiat). £ ([otiai) 15}

t=1

[I>

Dy

This is solved using a Bayesian optimisation routine. Here,(z"“)" is the unconstrained batch para-
meter that yields the best target goal for the given constrained parameter z°. Unfortunately as g(z°)
is not easily measurable, we use f([(z“¢)Tz¢]) as an approximation to it. To address this we use
a provable batch Bayesian optimisation such as GP-UCB-PE [3] in the inner stage. The loops are
performed together where in each iteration ¢, the outer loop ﬁrst recommends a single recommend-
ation of «{ and then the inner loop suggests a batch, {z5},_ . Combining them we get process-
constrained set of recommendations. We show that together these two Bayesian optimisation loops
converge to the optimal solution.

Let us denote (z¢)" = AGMAT o ¢ { e} K f([z"°z¢]). Following that we can write g(z°) as,
k

k=1
9(@) = £ ([@t)" @5]) = 1 ([@i) a2 ]) + £ (@) a5]) = 1 ([@i) 2k ])
= 1 ([@iyFat]) +ric @
where r{'° is the regret of the inner loop.
The observational model is given as
v = g(@) +e=f ([@) a5 ]) +ri e where e~ N(0,0%) 3)

Lemma 1. For regret of the inner loop, 31, (rf ) < BICT T + T

Proof. As we use GP-UCB- PE for unconstrained parameter optimisation we can say that the regret
K = min rF Vk =0,.. — 1 (Lemma 1, [3]). Hence, ri* < 7 < 2v/Bioy. Now, even though
every batch recommendation for x¢ will always be run for one iteration only, the o{ (z;) is computed
from the updated GP. Hence the sum of (¢})* can be upper bounded by 7. Thus,

2

S (Y < ot + n

t=1

Here, (i =2log(1"/*"?7%/36) is the confidence parameter;  C) = 8/log(1+ o 2);

= ma‘ﬁl I(ya: fa) assuming y = f + ¢, where ¢ ~ N(0,0%/2) is the maximum
eXe,|A|I=T
information gain after 7" rounds. (Please see supplementary material [5|for derivation) O

Lemma 2. For the variance of ri* has the order of a7, ~ O(C1“Bi“vi + C5°)



Proof. We use PE algorithm [5] to compute K-recommendation, hence the variance of the regret
r4¢ can be bounded above by

t t
uc 1 2 : uc 1 § : . uc
U?#c S ]E((Tt )2) S E (t (’I“t/ )2> =K <t P &l}l}(’/‘tlk)2>

t/'=0

The second inequality holds since on an average the gap ri*¢ = g(x°) — f([(x#¢) T z°]) decreases with
iteration ¢, Va® € X°. From equation[3] equation[d]and using the Lemma 4 and 5 of [5]] we can write

t
1 . uc 1 uc Quc_ uc uc
E <t t/z_:ol?g}l((rt'kf) ~ O(gcl 1+ CYF) (5)
for some C;'“C3° € R. ~; is the maximum information gain over ¢ samples. This concludes the
proof. O

The following lemma guarantees an existence of a finite 7, after which the noise variance coming
from the inner optimisation loop becomes smaller than the noise in the observation model.

Lemma 3. 3Ty < oo for which o7ue < 0.
0

Proof. In Lemma 1,C7“C%¢ and 6““ are fixed constant and ~;% is sublinear in ¢. Therefore, any
quantity of the form M; x }C{“B1“v;*“ + C5° also decreases sublinearly with ¢ for VM, € R. Hence
the lemma is proved. O

Let us denote the instantaneous regret for the outer Bayesian optimisation loop as r§ = g((z°)*) —
g(z7), we can write the average regret after T iterations as,

T
_ 1l o 1 o (2f) 4 L
Br = f;o”ﬁfz(z Pro@) + )
EDCRCHINES o5}
< o RN 4 ©

using the Lemma 5.8 of [19] and Cauchy-Schwartz inequality.
Lemma 4. For the outer Bayesian optimisation hm Rr —0

— 00

Proof. From the equation [6]

B < 2\/ﬂ%zf_1<afl<mf>>2+1i1

T T

= 2 @?(Z«amwg»u > (a;1<wg>>2)+;2;

t=1 t=Top+1
c 11
< 2/ (A +Br)+ ) )

We then show that Ar, is upper bounded by a constant irrespective of 7" as long as 7' > T and Br is
T
sublinear with T'. 8% is sublinear in 7" and hm Z = Hence the right hand side vanishes as

T — oo. The details of the proof is presented in the supplementary material. O

However, in reality using regret as the upper bound on r;* is not necessary, as a tighter upper bound
may exist when we know the maximum value of the functionﬂ and we can safely alter the upper

bound as,
i < min(f7 — f([(21) <)), 2¢/Broi (@) ®)

The above results holds since Lemma 2 still holds.

le.g. for hyper-parameter tuning we know that maximum value of accuracy is 1.
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Figure 2: Synthetic test function optimisation using pc-BO(nested), pc-BO(basic) and s-BO. The
zoomed area on the respective scale is shown for Branin and Goldstein-Price.

4 Experiments

We conducted a set of experiments using both synthetic data and real data to demonstrate the per-
formance of pc-BO(basic) and pc-BO(nested). To the best of our knowledge, there are no other
methods that can selectively constrain parameters in each batch during Bayesian optimisation. Fur-
ther, we also show the results for the test function optimisation using sequential BO (s-BO) using
GP-UCB.

The code is implemented in MATLAB and all the experiments are run on an Intel CPU E5-2640 v3
@2.60GHz machine. We use the squared exponential distance kernel. To show the performance,
we plot the results as the best outcome so far against the number of iterations performed. The
uncertainty bars in the figures pertain to 10 runs of BO algorithms with different initialisations for a
batch of 3 recommendations. The errors bars show the standard error and the graph shows the mean
best outcome until the respective iteration.

4.1 Benchmark test function optimisation

In this section, we use benchmark test functions and demonstrate the performance of pc-BO(basic)
and pc-BO(nested). We apply the test functions by constraining the second parameter and finding
the best configuration across the first parameter (unconstrained). The Branin, Ackley, Goldstein-
Price and the Egg-holder functions were optimised using pc-BO(basic) and pc-BO(nested), and the
results are shown in Figure[2| From the results, we note that the pc-BO(nested) is marginally better
or similar in performance when compared with pc-BO(basic). It also shows that batch Bayesian
optimisation is more efficient in terms of number of iterations than a purely sequential approach for
the problem at hand.

4.2 Hyper-parameter tuning for SVM

Support vector machines with RBF kernel require hyper-parameter tuning for Cost (C') and Gamma
(7). Out of these parameters, the cost is a critical parameter that trades off error for generalisation.
Consider tuning SVM’s in parallel. The cost parameter strongly affects the time required for training
SVM. It would be inconvenient if one training process took much longer than the other. Thus
constraining the cost parameter for a single batch maybe a good idea. We use our algorithms to tune



both the hyper-parameters C and ~, at each batch only varying ~, but not C. This is demonstrated on
the classification using SVM problem using two datasets downloaded from UCI machine learning
repository: Breast cancer dataset (BCW) and Bio-degradation dataset (QSAR).

BCW has 683 instances with 9 attributes each of the data, where the instances are labelled as be-
nign or malign tumour as per the diagnosis. The QSAR dataset categorises 1055 chemicals with
42 attributes as ready or not ready biodegradable waste. The results are plotted as best accuracy
obtained across number of iterations. We observe from the results in Figure [3| that pc-BO(nested)
again performs marginally better than pc-BO(basic) for the BCW dataset. For the QSAR dataset,
pc-BO(nested) higher accuracy with lesser iterations than what pc-BO(basic) requires.

4.3 Heat treatment for an Al-Sc alloy

Alloy casting involves heat treatment process - exposing the cast to different temperatures for select
times, that ensures target hardness of the alloy. This process is repeated in steps. The underlying
physics of heat-treatment of an alloy is based on nucleation and growth. During the nucleation pro-
cess, “new phases” or precipitates are formed when clusters of atom self organise. This is a difficult
stochastic process that happens at lower temperatures. These precipitates then diffuse together to
achieve the requisite target alloy characteristics in the growth step. KWN [[15} 23] is the industrial
standard precipitation model for the kinetics of nucleation and growth steps. As a preliminary study
we use this simulator to demonstrate the strength of our algorithm.

As explained in the introduction, it is cost efficient to test heat treatment in the real world by varying
the time and keeping the temperature constrained in each batch. This will allow us to test multiple
samples at one go in a single oven. We use the same constrains for our simulator driven study. We
consider a two stage heat treatment process. The input to first stage is the alloy composition, the
temperature and time. The nucleation output of this stage is input to the the second stage along
with the temperature and time for the second stage. The final output is hardness of the material
(strength in kPa). To optimise this two stage heat treatment process our inputs are [T4, 7%, t1,t2],
where [T}, T»] represent temperatures in Celsius, [t1, t2] represent the time in minutes for each stage.
Figure 4] shows the results of the heat-treatment process optimisation.

4.4 Short polymer fibre polymer production

Short polymer fibre production is a set of experiments we conducted in collaboration with material
scientists at Deakin University. For production of short polymer fibres, a polymer rich fluid is
injected coaxially into the flow of another solvent in a particular geometric manifold. The parameters
included in this experiment are device position in mm, constriction angle in degrees, channel width
in mm, polymer flow in ml/hr, and coagulant speed in cm/s. The final output, the combined utility is
the distance of the length and diameter of the polymer from target polymer. The goal is to optimise
the input parameters to obtain a polymer fibre of a desired length and diameter. As explained in the
introduction, it is efficient to test multiple combinations of polymer flow and coagulant speed for a
fixed geometric setup than in a single batch.

SVM with BCW

SVM with QSAR
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—*—— pc-BO(nested)

0.9

4
0
a

0.95r

accuracy
o
©

accuracy

0.9 [

I
3
a

—*——pc-BO(nested)

——*——pc-BO(basic) —*— pc-BO(basic)
0.85 . . . . \ \ \ 0.7 . . . . . . .
0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
number of iterations number of iterations

Figure 3: Hyper-parameter tuning for SVM based classification on Breast Cancer Data (BCW) and
bio-degradable waste data (QSAR) using pc-BO(nested) and pc-BO(basic)
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Figure 4: Results for heat-treatment and short polymer fibre production processes. (a) Experimental
result for Al-Sc heat treatment profile for a two stage heat-treatment process using pc-BO(nested)
and pc-BO(basic). (b) Optimisation for short polymer fibre production with position, constriction
angle and channel width constrained for each batch. Polymer flow and coagulant speed are uncon-
strained. The optimisation is shown for pc-BO(nested) and pc-BO(basic) algorithms.

The parameters in this experiments are discrete, where every parameter takes 3 discrete values,
except the constriction angle which takes 2 discrete values. Coagulant speed and polymer flow are
unconstrained parameters and channel width, constriction angle and position are the constrained
parameters. We conducted the experiment in batches of 3. The Figure [ shows the optimisation
results for this experiment over 53 iterations.

5 Conclusion

We have identified a new problem in batch Bayesian optimisation, motivated from physical limita-
tions in real world experiments while conducting batch experiments. It is not feasible and resource-
friendly to change all available settings in scientific and industrial experiments for a batch. We
propose process-constrained batch Bayesian optimisation for such applications, where it is prefer-
able to fix the values of some variables in a batch. We propose two approaches to solve the problem
of process-constrained batches pc-BO(basic) and pc-BO(nested). We present analytical proof for
convergence of pc-BO(nested). Synthetic functions, and real world experiments: hyper-parameter
tuning for SVM, alloy heat treatment process, and short polymer fiber production process were op-
timised using the proposed algorithms. We found that pc-BO(nested) in each of these scenarios is
either more efficient or equally well performing compared with pc-BO(basic).
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