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Abstract

We introduce a new formulation of the Hidden Parameter Markov Decision Pro-
cess (HiP-MDP), a framework for modeling families of related tasks using low-
dimensional latent embeddings. Our new framework correctly models the joint
uncertainty in the latent parameters and the state space. We also replace the original
Gaussian Process-based model with a Bayesian Neural Network, enabling more
scalable inference. Thus, we expand the scope of the HiP-MDP to applications
with higher dimensions and more complex dynamics.

1 Introduction

The world is filled with families of tasks with similar, but not identical, dynamics. For example,
consider the task of training a robot to swing a bat with unknown length l and mass m. The task is a
member of a family of bat-swinging tasks. If a robot has already learned to swing several bats with
various lengths and masses {(li,mi)}Ni=1, then the robot should learn to swing a new bat with length
l′ and mass m′ more efficiently than learning from scratch. That is, it is grossly inefficient to develop
a control policy from scratch each time a unique task is encountered.

The Hidden Parameter Markov Decision Process (HiP-MDP) [14] was developed to address this
type of transfer learning, where optimal policies are adapted to subtle variations within tasks in an
efficient and robust manner. Specifically, the HiP-MDP paradigm introduced a low-dimensional latent
task parameterization wb that, combined with a state and action, completely describes the system’s
dynamics T (s′|s, a, wb). However, the original formulation did not account for nonlinear interactions
between the latent parameterization and the state space when approximating these dynamics, which
required all states to be visited during training. In addition, the original framework scaled poorly
because it used Gaussian Processes (GPs) as basis functions for approximating the task’s dynamics.

We present a new HiP-MDP formulation that models interactions between the latent parameters
wb and the state s when transitioning to state s′ after taking action a. We do so by including the
latent parameters wb, the state s, and the action a as input to a Bayesian Neural Network (BNN).
The BNN both learns the common transition dynamics for a family of tasks and models how the
unique variations of a particular instance impact the instance’s overall dynamics. Embedding the
latent parameters in this way allows for more accurate uncertainty estimation and more robust transfer
when learning a control policy for a new and possibly unique task instance. Our formulation also
inherits several desirable properties of BNNs: it can model multimodal and heteroskedastic transition
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functions, inference scales to data large in both dimension and number of samples, and all output
dimensions are jointly modeled, which reduces computation and increases predictive accuracy [11].
Herein, a BNN can capture complex dynamical systems with highly non-linear interactions between
state dimensions. Furthermore, model uncertainty is easily quantified through the BNN’s output
variance. Thus, we can scale to larger domains than previously possible.

We use the improved HiP-MDP formulation to develop control policies for acting in a simple two-
dimensional navigation domain, playing acrobot [42], and designing treatment plans for simulated
patients with HIV [15]. The HiP-MDP rapidly determines the dynamics of new instances, enabling
us to quickly find near-optimal instance-specific control policies.

2 Background

Model-based reinforcement learning We consider reinforcement learning (RL) problems in
which an agent acts in a continuous state space S ⊆ RD and a discrete action space A. We
assume that the environment has some true transition dynamics T (s′|s, a), unknown to the agent,
and we are given a reward function R(s, a) : S ×A→ R that provides the utility of taking action a
from state s. In the model-based reinforcement learning setting, our goal is to learn an approximate
transition function T̂ (s′|s, a) based on observed transitions (s, a, s′) and then use T̂ (s′|s, a) to learn a
policy a = π(s) that maximizes long-term expected rewards E[

∑
t γ

trt], where γ ∈ (0, 1] governs
the relative importance of immediate and future rewards.

HiP-MDPs A HiP-MDP [14] describes a family of Markov Decision Processes (MDPs) and is
defined by the tuple {S,A,W, T,R, γ, PW }, where S is the set of states s, A is the set of actions a,
and R is the reward function. The transition dynamics T (s′|s, a, wb) for each task instance b depend
on the value of the hidden parameters wb ∈W ; for each instance, the parameters wb are drawn from
prior PW . The HiP-MDP framework assumes that a finite-dimensional array of hidden parameters wb
can fully specify variations among the true task dynamics. It also assumes the system dynamics are
invariant during a task and the agent is signaled when one task ends and another begins.

Bayesian Neural Networks A Bayesian Neural Network (BNN) is a neural network, f(·, ·;W), in
which the parametersW are random variables with some prior P (W) [27]. We place independent
Gaussian priors on each parameter P (W) =

∏
w∈W N (w;µ, σ2). Exact Bayesian inference for the

posterior over parameters P (W|{(s′, s, a)}) is intractable, but several recent techniques have been
developed to scale inference in BNNs [4, 17, 22, 33]. As probabilistic models, BNNs reduce the
tendency of neural networks to overfit in the presence of low amounts of data—just as GPs do.
In general, training a BNN is more computationally efficient than a GP [22], while still providing
coherent uncertainty measurements. Specifically, predictive distributions can be calculated by taking
averages over samples ofW from an approximated posterior distribution over the parameters. As
such, BNNs are being adopted in the estimation of stochastic dynamical systems [11, 18].

3 A HiP-MDP with Joint-Uncertainty

The original HiP-MDP transition function models variation across task instances as:3

s′d ≈
K∑
k=1

wbkT̂
(GP)
kad (s) + ε

wbk ∼ N (µwk
, σ2
w)

ε ∼ N (0, σ2
ad), (1)

where sd is the dth dimension of s. Each basis transition function T̂kad (indexed by the kth latent
parameter, the action a, and the dimension d) is a GP using only s as input, linearly combined with
instance-specific weights wbk. Inference involves learning the parameters for the GP basis functions
and the weights for each instance. GPs can robustly approximate stochastic state transitions in

3We present a simplified version that omits their filtering variables zkad ∈ {0, 1} to make the parallels
between our formulation and the original more explicit; our simplification does not change any key properties.
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continuous dynamical systems in model-based reinforcement learning [9, 35, 36]. GPs have also
been widely used in transfer learning outside of RL (e.g. [5]).

While this formulation is expressive, it has limitations. The primary limitation is that the uncertainty
in the latent parameters wkb is modeled independently of the agent’s state uncertainty. Hence, the
model does not account for interactions between the latent parameterization wb and the state s. As a
result, Doshi-Velez and Konidaris [14] required that each task instance b performed the same set of
state-action combinations (s, a) during training. While such training may sometimes be possible—e.g.
robots that can be driven to identical positions—it is onerous at best and impossible for other systems
such as human patients. The secondary limitation is that each output dimension sd is modeled
separately as a collection of GP basis functions {T̂kad}Kk=1. The basis functions for output dimension
sd are independent of the basis functions for output dimension sd′ , for d 6= d′. Hence, the model
does not account for correlation between output dimensions. Modeling such correlations typically
requires knowledge of how dimensions interact in the approximated dynamical system [2, 19]. We
choose not to constrain the HiP-MDP with such a priori knowledge since the aim is to provide basis
functions that can ascertain these relationships through observed transitions.

To overcome these limitations, we include the instance-specific weights wb as input to the transition
function and model all dimensions of the output jointly:

s′ ≈ T̂ (BNN)(s, a, wb) + ε

wb ∼ N (µw,Σb)

ε ∼ N
(
0, σ2

n

)
. (2)

This critical modeling change eliminates all of the above limitations: we can learn directly from
data as observed—which is abundant in many industrial and health domains—and no longer require
highly constrained training procedure. We can also capture the correlations in the outputs of these
domains, which occur in many natural processes.

Finally, the computational demands of using GPs as the transition function limited the application
of the original HiP-MDP formulation to relatively small domains. In the following, we use a BNN
rather than a GP to model this transition function. The computational requirements needed to learn a
GP-based transition function makes a direct comparison to our new BNN-based formulation infeasible
within our experiments (Section 5). We demonstrate, in Appendix A, that the BNN-based transition
model far exceeds the GP-based transition model in both computational and predictive performance.
In addition, BNNs naturally produce multi-dimensional outputs s′ without requiring prior knowledge
of the relationships between dimensions. This allows us to directly model output correlations between
the D state dimensions, leading to a more unified and coherent transition model. Inference in a larger
input space s, a, wb with a large number of samples is tractable using efficient approaches that let
us—given a distribution P (W) and input-output tuples (s, a, s′)—estimate a distribution over the
latent embedding P (wb). This enables more robust, scalable transfer.

Demonstration We present a toy domain (Figure 1) where an agent is tasked with navigating
to a goal region. The state space is continuous (s ∈ (−2, 2)2), and action space is discrete (a ∈
{N,E, S,W}). Task instances vary the following the domain aspects: the location of a wall that
blocks access to the goal region (either to the left of or below the goal region), the orientation of the
cardinal directions (i.e. whether taking action North moves the agent up or down), and the direction
of a nonlinear wind effect that increases as the agent moves away from the start region. Ignoring the
wall and grid boundaries, the transition dynamics are:

∆x = (−1)θbc
(
ax − (1− θb)β

√
(x+ 1.5)2 + (y + 1.5)2

)
∆y = (−1)θbc

(
ay − θbβ

√
(x+ 1.5)2 + (y + 1.5)2

)
ax =

{
1 a ∈ {E,W}
0 otherwise

ay =

{
1 a ∈ {N,S}
0 otherwise,

where c is the step-size (without wind), θb ∈ {0, 1} indicates which of the two classes the instance
belongs to and β ∈ (0, 1) controls the influence of the wind and is fixed for all instances. The agent
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Figure 1: A demonstration of the HiPMDP modeling the joint uncertainty between the latent
parameters wb and the state space. On the left, blue and red dots show the exploration during the red
(θb = 0) and blue (θb = 1) instances. The latent parameters learned from the red instance are used
predict transitions for taking action E from an area of the state space either unexplored (top right) or
explored (bottom right) during the red instance. The prediction variance provides an estimate of the
joint uncertainty between the latent parameters wb and the state.

is penalized for trying to cross a wall, and each step incurs a small cost until the agent reaches the
goal region, encouraging the agent to discover the goal region with the shortest route possible. An
episode terminates once the agent enters the goal region or after 100 time steps.

A linear function of the state s and latent parameters wb would struggle to model both classes of
instances (θb = 0 and θb = 1) in this domain because the state transition resulting from taking an
action a is a nonlinear function with interactions between the state and hidden parameter θb.

By contrast, our new HiP-MDP model allows nonlinear interactions between state and the latent
parameters wb, as well as jointly models their uncertainty. In Figure 1, this produces measurable
differences in transition uncertainty in regions where there are few related observed transitions, even
if there are many observations from unrelated instances. Here, the HiP-MDP is trained on two
instances from distinct classes (shown in blue (θb = 1) and red (θb = 0) on the left). We display the
uncertainty of the transition function, T̂ , using the latent parameters wred inferred for a red instance in
two regions of the domain: 1) an area explored during red instances and 2) an area not explored under
red instances, but explored with blue instances. The transition uncertainty T̂ is three times larger in
the region where red instances have not been—even if many blue instances have been there—than in
regions where red instances have commonly explored, demonstrating that the latent parameters can
have different effects on the transition uncertainty in different states.

4 Inference

Algorithm 1 summarizes the inference procedure for learning a policy for a new task instance b,
facilitated by a pre-trained BNN for that task, and is similar in structure to prior work [9, 18]. The
procedure involves several parts. Specifically, at the start of a new instance b, we have a global replay
buffer D of all observed transitions (s, a, r, s′) and a posterior over the weights W for our BNN
transition function T̂ learned with data from D. The first objective is to quickly determine the latent
embedding, wb, of the current instance’s specific dynamical variation as transitions (s, a, s′) are
observed from the current instance. Transitions from instance b are stored in both the global replay
buffer D and an instance-specific replay buffer Db. The second objective is to develop an optimal
control policy using the transition model T̂ and learned latent parameters wb. The transition model T̂
and latent embedding wb are separately updated via mini-batch stochastic gradient descent (SGD)
using Adam [26]. Using T̂ for planning increases our sample efficiency as we reduce interactions
with the environment. We describe each of these parts in more detail below.

4.1 Updating embedding wb and BNN parametersW

For each new instance, a new latent weighting wb is sampled from the prior PW (Alg. 1, step 2),
in preparation of estimating unobserved dynamics introduced by θb. Next, we observe transitions
(s, a, r, s′) from the task instance for an initial exploratory episode (Alg. 1, steps 7-10). Given that
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Algorithm 1 Learning a control policy w/ the HiP-MDP

Input: Global replay buffer D, BNN transition
function T̂ , initial state s0b

1: procedure LEARNPOLICY( D, T̂ , s0b)
2: Draw new wb ∼ PW
3: Randomly init. policy π̂b θ, θ−

4: Init. instance replay buffer Db
5: Init. fictional replay buffer Dfb
6: for i = 0 to Ne episodes do
7: repeat
8: Take action a← π̂b(s)
9: Store D,Db ← (s, a, r, s′, wb)

10: until episode is complete
11: if i = 0 OR T̂ is innaccurate then
12: Db,W, wb ← TUNEMODEL(Db,W, wb)
13: for j = 0 to Nf − 1 episodes do
14: Dfb , π̂b ← SIMEP(Dfb , T̂ , wb, π̂b, s

0
b)

15: Dfb , π̂b ← SIMEP(Dfb , T̂ , wb, π̂b, s
0
b)

1: function SIMEP(Dfb , T̂ , wb, π̂b, s
0
b)

2: for t = 0 to Nt time steps do
3: Take action a← π̂b(s)

4: Approx. ŝ′ ← T̂ (s, a, wb)
5: Calc. reward r̂ ← R(s, a, ŝ′)

6: Store Dfb ← (s, a, r̂, ŝ′)
7: if mod (t,Nπ) = 0 then
8: Update π̂b via θ from Dfb
9: θ− ← τθ + (1− τ)θ−

10: return Dfb , π̂b
1: function TUNEMODEL(Db,W, wb)
2: for k = 0 to Nu updates do
3: Update wb from Db
4: UpdateW from Db
5: return Db,W, wb

data, we optimize the latent parameters wb to minimize the α-divergence of the posterior predictions
of T̂ (s, a, wb|W) and the true state transitions s′ (step 3 in TuneModel) [22]. Here, the minimization
occurs by adjusting the latent embedding wb while holding the BNN parametersW fixed. After an
initial update of the wb for a newly encountered instance, the parametersW of the BNN transition
function T̂ are optimized (step 4 in TuneModel). As the BNN is trained on multiple instances of
a task, we found that the only additional data needed to refine the BNN and latent wb for some
new instance can be provided by an initial exploratory episode. Otherwise, additional data from
subsequent episodes can be used to further improve the BNN and latent estimates (Alg. 1, steps 11-14).

The mini-batches used for optimizing the latent wb and BNN network parametersW are sampled
from Db with squared error prioritization [31]. We found that switching between small updates to the
latent parameters and small updates to the BNN parameters led to the best transfer performance. If
either the BNN network or latent parameters are updated too aggressively (having a large learning
rate or excessive number of training epochs), the BNN disregards the latent parameters or state inputs
respectively. After completing an instance, the BNN parameters and the latent parameters are updated
using samples from global replay buffer D. Specific modeling details such as number of epochs,
learning rates, etc. are described in Appendix C.

4.2 Updating policy π̂b

We construct an ε-greedy policy to select actions based on an approximate action-value function
Q̂(s, a). We model the action value function Q̂(s, a) with a Double Deep Q Network (DDQN) [21, 29].
The DDQN involves training two networks (parametrized by θ and θ− respectively), a primary Q-
network, which informs the policy, and a target Q-network, which is a slowly annealed copy of the
primary network (step 9 of SimEp) providing greater stability when updating the policy π̂b .

With the updated transition function, T̂ , we approximate the environment when developing a control
policy (SimEp). We simulate batches of entire episodes of length Nt using the approximate dynamical
model T̂ , storing each transition in a fictional experience replay buffer Dfb (steps 2-6 in SimEp). The
primary network parameters θ are updated via SGD every Nπ time steps (step 8 in SimEp) to minimize
the temporal-difference error between the primary network’s and the target network’s Q-values. The
mini-batches used in the update are sampled from the fictional experience replay buffer Dfb , using
TD-error-based prioritization [38].
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5 Experiments and Results

Now, we demonstrate the performance of the HiP-MDP with embedded latent parameters in transfer-
ring learning across various instances of the same task. We revisit the 2D demonstration problem
from Section 3, as well as describe results on both the acrobot [42] and a more complex healthcare
domain: prescribing effective HIV treatments [15] to patients with varying physiologies.4

For each of these domains, we compare our formulation of the HiP-MDP with embedded latent
parameters (equation 2) with four baselines (one model-free and three model-based) to demonstrate
the efficiency of learning a policy for a new instance b using the HiP-MDP. These comparisons
are made across the first handful of episodes encountered in a new task instance to highlight the
advantage provided by transferring information through the HiP-MDP. The ‘linear’ baseline uses
a BNN to learn a set of basis functions that are linearly combined with the parameters wb (used to
approximate the approach of Doshi-Velez and Konidaris [14], equation 1), which does not allow
interactions between states and weights. The ‘model-based from scratch’ baseline considers each task
instance b as unique; requiring the BNN transition function to be trained only on observations made
from the current task instance. The ‘average’ model baseline is constructed under the assumption that
a single transition function can be used for every instance of the task; T̂ is trained from observations
of all task instances together. For all model-based approaches, we replicated the HiP-MDP procedure
as closely as possible. The BNN was trained on observations from a single episode before being used
to generate a large batch of approximate transition data, from which a policy is learned. Finally, the
model-free baseline learns a DDQN-policy directly from observations of the current instance.

For more information on the experimental specifications and long-run policy learning see Appendix C
and D, respectively.

5.1 Revisiting the 2D demonstration

(a) (b)

Figure 2: (a) a demonstration of a model-free control policy, (b) a comparison of learning a policy at
the outset of a new task instance b using the HiP-MDP versus four benchmarks. The HiP-MDP with
embedded wb outperforms all four benchmarks.

The HiP-MDP and the average model were supplied a transition model T̂ trained on two previous
instances, one from each class, before being updated according to the procedure outlined in Sec. 4
for a newly encountered instance. After the first exploratory episode, the HiP-MDP has sufficiently
determined the latent embedding, evidenced in Figure 2b where the developed policy clearly outper-
forms all four benchmarks. This implies that the transition model T̂ adequately provides the accuracy
needed to develop an optimal policy, aided by the learned latent parametrization.

The HiP-MDP with linear wb also quickly adapts to the new instance and learns a good policy.
However, the HiP-MDP with linear wb is unable to model the nonlinear interaction between the latent
parameters and the state. Therefore the model is less accurate and learns a less consistent policy than
the HiP-MDP with embedded wb. (See Figure 2a in Appendix A.2)

4Example code for training and evaluating a HiP-MDP, including the simulators used in this section, can be
found at http://github.com/dtak/hip-mdp-public.
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(a) (b)

Figure 3: (a) the acrobot domain, (b) a comparison of learning a policy for a new task instance b
using the HiP-MDP versus four benchmarks.

With single episode of data, the model trained from scratch on the current instance is not accurate
enough to learn a good policy. Training a BNN from scratch requires more observations of the true
dynamics than are necessary for the HiP-MDP to learn the latent parameterization and achieve a
high level of accuracy. The model-free approach eventually learns an optimal policy, but requires
significantly more observations to do so, as represented in Figure 2a. The model-free approach has no
improvement in the first 10 episodes. The poor performance of the average model approach indicates
that a single model cannot adequately represent the dynamics of the different task instances. Hence,
learning a latent representation of the dynamics specific to each instance is crucial.

5.2 Acrobot

First introduced by Sutton and Barto [42], acrobot is a canonical RL and control problem. The most
common objective of this domain is for the agent to swing up a two-link pendulum by applying a
positive, neutral, or negative torque on the joint between the two links (see Figure 3a). These actions
must be performed in sequence such that the tip of the bottom link reaches a predetermined height
above the top of the pendulum. The state space consists of the angles θ1, θ2 and angular velocities
θ̇1, θ̇2, with hidden parameters corresponding to the masses (m1, m2) and lengths (l1, l2), of the two
links.5 See Appendix B.2 for details on how these hidden parameters were varied to create different
task instances. A policy learned on one setting of the acrobot will generally perform poorly on
other settings of the system, as noted in [3]. Thus, subtle changes in the physical parameters require
separate policies to adequately control the varied dynamical behavior introduced. This provides
a perfect opportunity to apply the HiP-MDP to transfer between separate acrobot instances when
learning a control policy π̂b for the current instance.

Figure 3b shows that the HiP-MDP learns an optimal policy after a single episode, whereas all other
model-based benchmarks required an additional episode of training. As in the toy example, the
model-free approach eventually learns an optimal policy, but requires more time.

5.3 HIV treatment

Determining effective treatment protocols for patients with HIV was introduced as an RL problem by
mathematically representing a patient’s physiological response to separate classes of treatments [1, 15].
In this model, the state of a patient’s health is recorded via 6 separate markers measured with a
blood test.6 Patients are given one of four treatments on a regular schedule. Either they are given
treatment from one of two classes of drugs, a mixture of the two treatments, or provided no treatment
(effectively a rest period). There are 22 hidden parameters in this system that control a patient’s
specific physiology and dictate rates of virulence, cell birth, infection, and death. (See Appendix B.3

5The centers of mass and moments of inertia can also be varied. For our purposes we left them unperturbed.
6These markers are: the viral load (V ), the number of healthy and infected CD4+ T-lymphocytes (T1, T

∗
1 ,

respectively), the number of healthy and infected macrophages (T2, T
∗
2 , respectively), and the number of

HIV-specific cytotoxic T-cells (E).
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(a) (b)

Figure 4: (a) a visual representation of a patient with HIV transitioning from an unhealthy steady
state to a healthy steady state using a proper treatment schedule, (b) a comparison of learning a policy
for a new task instance b using the HiP-MDP versus four benchmarks.

for more details.) The objective is to develop a treatment sequence that transitions the patient from an
unhealthy steady state to a healthy steady state (Figure 4a, see Adams et al. [1] for a more thorough
explanation). Small changes made to these parameters can greatly effect the behavior of the system
and therefore introduce separate steady state regions that require unique policies to transition between
them.

Figure 4b shows that the HiP-MDP develops an optimal control policy after a single episode, learning
an unmatched optimal policy in the shortest time. The HIV simulator is the most complex of our
three domains, and the separation between each benchmark is more pronounced. Modeling a HIV
dynamical system from scratch from a single episode of observations proved to be infeasible. The
average model, which has been trained off a large batch of observations from related dynamical
systems, learns a better policy. The HiP-MDP with linear wb is able to transfer knowledge from
previous task instances and quickly learn the latent parameterization for this new instance, leading
to an even better policy. However, the dynamical system contains nonlinear interactions between
the latent parameters and the state space. Unlike the HiP-MDP with embedded wb, the HiP-MDP
with linear wb is unable to model those interactions. This demonstrates the superiority of the HiP-
MDP with embedded wb for efficiently transferring knowledge between instances in highly complex
domains.

6 Related Work

There has been a large body of work on solving single POMDP models efficiently [6, 16, 24, 37, 45].
In contrast, transfer learning approaches leverage training done on one task to perform related tasks.
Strategies for transfer learning include: latent variable models, reusing pre-trained model parameters,
and learning a mapping between separate tasks (see review in [43]).

Our work falls into the latent variable model category. Using latent representation to relate tasks has
been particularly popular in robotics where similar physical movements can be exploited across a
variety of tasks and platforms [10, 20]. In Chen et al. [8], these latent representations are encoded
as separate MDPs with an accompanying index that an agent learns while adapting to observed
variations in the environment. Bai et al. [3] take a closely related approach to our updated formulation
of the HiP-MDP by incorporating estimates of unknown or partially observed parameters of a
known environmental model and refining those estimates using model-based Bayesian RL. The
core difference between this and our work is that we learn the transition model and the observed
variations directly from the data while Bai et al. [3] assume it is given and the specific variations
of the parameters are learned. Also related are multi-task approaches that train a single model for
multiple tasks simultaneously [5, 7]. Finally, there have been many applications of reinforcement
learning (e.g. [32, 40, 44]) and transfer learning in the healthcare domain by identifying subgroups
with similar response (e.g. [23, 28, 39]).
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More broadly, BNNs are powerful probabilistic inference models that allow for the estimation of
stochastic dynamical systems [11, 18]. Core to this functionality is their ability to represent both
model uncertainty and transition stochasticity [25]. Recent work decomposes these two forms of
uncertainty to isolate the separate streams of information to improve learning. Our use of fixed latent
variables as input to a BNN helps account for model uncertainty when transferring the pretrained
BNN to a new instance of a task. Other approaches use stochastic latent variable inputs to introduce
transition stochasticity [12, 30].

We view the HiP-MDP with latent embedding as a methodology that can facilitate personalization and
do so robustly as it transfers knowledge of prior observations to the current instance. This approach
can be especially useful in extending personalized care to groups of patients with similar diagnoses,
but can also be extended to any control system where variations may be present.

7 Discussion and Conclusion

We present a new formulation for transfer learning among related tasks with similar, but not identical
dynamics, within the HiP-MDP framework. Our approach leverages a latent embedding—learned
and optimized in an online fashion—to approximate the true dynamics of a task. Our adjustment
to the HiP-MDP provides robust and efficient learning when faced with varied dynamical systems,
unique from those previously learned. It is able, by virtue of transfer learning, to rapidly determine
optimal control policies when faced with a unique instance.

The results in this work assume the presence of a large batch of already-collected data. This setting is
common in many industrial and health domains, where there may be months, sometimes years, worth
of operations data on plant function, product performance, or patient health. Even with large batches,
each new instance still requires collapsing the uncertainty around the instance-specific parameters
in order to quickly perform well on the task. In Section 5, we used a batch of transition data from
multiple instances of a task—without any artificial exploration procedure—to train the BNN and
learn the latent parameterizations. Seeded with data from diverse task instances, the BNN and latent
parameters accounted for the variation between instances.

While we were primarily interested in settings where batches of observational data exist, one might
also be interested in more traditional settings in which the first instance is completely new, the second
instance only has information from the first, etc. In our initial explorations, we found that one can
indeed learn the BNN in an online manner for simpler domains. However, even with simple domains,
the model-selection problem becomes more challenging: an overly expressive BNN can overfit to
the first few instances, and have a hard time adapting when it sees data from an instance with very
different dynamics. Model-selection approaches to allow the BNN to learn online, starting from
scratch, is an interesting future research direction.

Another interesting extension is rapidly identifying the latent wb. Exploration to identify wb would
supply the dynamical model with the data from the regions of domain with the largest uncertainty. This
could lead to a more accurate latent representation of the observed dynamics while also improving the
overall accuracy of the transition model. Also, we found training a DQN requires careful exploration
strategies. When exploration is constrained too early, the DQN quickly converges to a suboptimal,
deterministic policy––often choosing the same action at each step. Training a DQN along the BNN’s
trajectories of least certainty could lead to improved coverage of the domain and result in more robust
policies. The development of effective policies would be greatly accelerated if exploration were more
robust and stable. One could also use the hidden parameters wb to learn a policy directly.

Recognizing structure, through latent embeddings, between task variations enables a form of transfer
learning that is both robust and efficient. Our extension of the HiP-MDP demonstrates how embedding
a low-dimensional latent representation with the input of an approximate dynamical model facilitates
transfer and results in a more accurate model of a complex dynamical system, as interactions between
the input state and the latent representation are modeled naturally. We also model correlations in the
output dimensions by replacing the GP basis functions of the original HiP-MDP formulation with a
BNN. The BNN transition function scales significantly better to larger and more complex problems.
Our improvements to the HiP-MDP provide a foundation for robust and efficient transfer learning.
Future improvements to this work will contribute to a general transfer learning framework capable of
addressing the most nuanced and complex control problems.
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