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Abstract

Equipping machine learning models with ethical and legal constraints is a serious
issue; without this, the future of machine learning is at risk. This paper takes a step
forward in this direction and focuses on ensuring machine learning models deliver
fair decisions. In legal scholarships, the notion of fairness itself is evolving and
multi-faceted. We set an overarching goal to develop a unified machine learning
framework that is able to handle any definitions of fairness, their combinations,
and also new definitions that might be stipulated in the future. To achieve our
goal, we recycle two well-established machine learning techniques, privileged
learning and distribution matching, and harmonize them for satisfying multi-faceted
fairness definitions. We consider protected characteristics such as race and gender
as privileged information that is available at training but not at test time; this
accelerates model training and delivers fairness through unawareness. Further, we
cast demographic parity, equalized odds, and equality of opportunity as a classical
two-sample problem of conditional distributions, which can be solved in a general
form by using distance measures in Hilbert Space. We show several existing
models are special cases of ours. Finally, we advocate returning the Pareto frontier
of multi-objective minimization of error and unfairness in predictions. This will
facilitate decision makers to select an operating point and to be accountable for it.

1 Introduction

Machine learning technologies have permeated everyday life and it is common nowadays that an
automated system makes decisions for/about us, such as who is going to get bank credit. As
more decisions in employment, housing, and credit become automated, there is a pressing need
for addressing ethical and legal aspects, including fairness, accountability, transparency, privacy,
and confidentiality, posed by those machine learning technologies [1, 2]. This paper focuses on
enforcing fairness in the decisions made by machine learning models. A decision is fair if [3, 4,
5]: i) it is not based on a protected characteristic [6] such as gender, marital status, or age (fair
treatment), ii) it does not disproportionately benefit or hurt individuals sharing a certain value of
their protected characteristic (fair impact), and iii) given the target outcomes, it enforces equal
discrepancies between decisions and target outcomes across groups of individuals based on their
protected characteristic (fair supervised performance).

The above three fairness definitions have been studied before, and several machine learning frame-
works for addressing each one or a combination of them are available. We first note that one could
ensure fair treatment by simply ignoring protected characteristic features, i.e. fairness through
unawareness. However this poses a risk of unfairness by proxy as there are ways of predicting
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protected characteristic features from other features [7, 8]. Existing models guard against unfairness
by proxy by enforcing fair impact or fair supervised performance constraints in addition to the fair
treatment constraint. An example of the fair impact constraint is the 80% rule (see e.g. [3, 9, 10]) in
which positive decisions must be in favour of group B individuals at least 80% as often as in favour
of group A individuals for the case of a binary protected characteristic and a binary decision. Another
example of the fair impact constraint is a demographic parity in which positive decisions of group B
individuals must be at the same rate as positive decisions of group A individuals (see e.g. [11] and
earlier works [12, 13, 14]).

In contrast to the fair impact that only concerns about decisions of an automated system, the
fair supervised performance takes into account, when enforcing fairness, the discrepancy between
decisions (predictions) and target outcomes, which is compatible to the standard supervised learning
setting. Kleinberg et al. [15] show that fair impact and fair supervised performance are indeed
mutually exclusive measures of fairness. Examples of the fair supervised performance constraint
are equality of opportunity [4] in which the true positive rates (false negative rates) across groups
must match, and equalized odds [4] in which both the true positive rates and false positive rates must
match. Hardt et al. [4] enforce equality of opportunity or equalized odds by post-processing the
soft-outputs of an unfair classifier. The post-processing step consists of learning a different threshold
for a different group of individuals. The utilization of an unfair classifier as a building block of the
model is deliberate as the main goal of supervised machine learning models is to perform prediction
tasks for future data as accurately as possible. Suppose the target outcome is correlated with the
protected characteristic, Hardt et al.’s model will be able to learn the ideal predictor, which is not
unfair as it represents the target outcome [4]. However, Hardt et al.’s model needs to access the
value of the protected characteristic for future data. Situations where the protected characteristic
is unavailable due to confidentiality or is prohibited to be accessed due to the fair treatment law
requirement will make the model futile [5]. Recent work of Zafar et al. [5] propose de-correlation
constraints between supervised performance, e.g. true positive rate, and protected characteristics as a
way to achieve fair supervised performance. Zafar et al.’s model, however, will not be able to learn
the ideal predictor when the target outcome is indeed correlated with a protected characteristic.

This paper combines the benefits of Hardt et al.’s model [4] in its ability to learn the ideal predictor
and of Zafar et al.’s model [5] in not requiring the availability of protected characteristic for future
data at prediction time. To achieve this, we will be building upon recent advances in the use of
privileged information for training machine learning models [16, 17, 18, 19]. Privileged information
refers to features that can be used at training time but will not be available for future data at prediction
time. We propose to consider protected characteristics such as race, gender, or marital status as
privileged information. The privileged learning framework is remarkably suitable for incorporating
fairness, as it learns the ideal predictor and does not require protected characteristics for future data.
Therefore, this paper recycles the overlooked privileged learning framework, which is designed for
accelerating learning and improving prediction performance, for building a fair classification model.

Enforcing fairness using the privileged learning framework alone, however, might increase the risk
of unfairness by proxy. Our proposed model guards against this by explicitly adding fair impact
and/or fair supervised performance constraints into the privileged learning model. We recycle a
distribution matching measure for fairness. This measure can be instantiated for both fair impact
(e.g. demographic parity) and fair supervised performance (e.g. equalized odds and equality of
opportunity) constraints. Matching a distribution between function outputs (decisions) across different
groups will deliver fair impact, and matching a distribution between errors (discrepancies between
decisions and target outcomes) across different groups will deliver fair supervised performance. We
further show several existing methods are special cases of ours.

2 Related Work

There is much work on the topic of fairness in the machine learning context in addition to those that
have been embedded in the introduction. One line of research can be described in terms of learning
fair models by modifying feature representations of the data (e.g. [20, 10, 21]), class label annotations
([22]), or even the data itself ([23]). Another line of research is to develop classifier regularizers that
penalize unfairness (e.g. [13, 14, 24, 11, 5]). Our method falls into this second line of research. It
has also been emphasized that fair models could enforce group fairness definitions (covered in the
introduction) as well as individual fairness definitions. Dwork et al. and Joseph et al. [25, 26] define
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an individual fairness as a non-preferential treatment towards an individual A if this individual is not
as qualified as another individual B; this is a continuous analog of fairness through unawareness [23].

On privileged learning Vapnik et al. [16] introduce privileged learning in the context of Support
Vector Machines (SVM) and use the privileged features to predict values of the slack variables. It
was shown that this procedure can provably reduce the amount of data needed for learning an optimal
hyperplane [16, 27, 19]. Additional features for training a classifier that will not necessarily be
available at prediction time, privileged information, are widespread. As an example, features from 3D
cameras and laser scanners are slow to acquire and expensive to store but have the potential to boost
the predictive capability of a trained 2D system. Many variants of privileged learning methods and
settings have been proposed such as, structured prediction [28], margin transfer [17], and Bayesian
privileged learning [18, 29]. Privileged learning has also been shown [30] to be intimately related
to Hinton et al.’s knowledge distillation [31] and Bucila et al.’s [32] model compression in which a
complex model is learnt and is then replicated by a simpler model.

On distribution matching Distribution matching has been explored in the context of domain adap-
tation (e.g. [33, 34]), transduction learning (e.g. [35]), and recently in privileged learning [36],
among others. The empirical Maximum Mean Discrepancy (MMD) [37] is commonly used as the
nonparametric metric that captures discrepancy between two distributions. In the domain adaptation
setting, Pan et al. [38] use the MMD metric to project data from target and related source domain into
a common subspace such that the difference between the distributions of source and target domain
data is reduced. A similar idea has been explored in the context of deep neural networks by Zhang
et al. [34], where they use the MMD metric to match both the distribution of the features and the
distribution of the labels given features in the source and target domains. In the transduction setting,
Quadrianto et al. [35] propose to minimize the mismatch between the distribution of function outputs
on the training data and on the target test data. Recently, Sharmanska et al. [36] devise a cross-dataset
transfer learning method by matching the distribution of classifier errors across datasets.

3 The Fairness Model

In this section, we will formalize the setup of a supervised binary classification task subject to fairness
constraints. Assume that we are given a set of N training examples, represented by feature vectors
X = {x1, . . . ,xN} ⊂ X = Rd, their label annotation, Y = {y1, . . . , yN} ∈ Y = {+1,−1}, and
protected characteristic information also in the form of feature vectors, Z = {z1, . . . , zN} ⊂ Z ,
where zn encodes the protected characteristics of sample xn. The task of interest is to infer a predictor
f for the label ynew of an un-seen instance xnew, given Y , X and Z. However, f cannot use the
protected characteristic Z at decision (prediction) time, as it will constitute an unfair treatment.
The availability of protected characteristic at training time can be used to enforce fair impact
and/or fair supervised performance constraints. We first describe how to deliver fair treatment via
privileged learning. We then detail distribution matching viewpoint of fair impact and fair supervised
performance. Frameworks of privileged learning and distribution matching are suitable for protected
characteristics with binary/multi-class/continuous values. In this paper, however, we focus on a single
protected characteristic admitting binary values as in existing work (e.g. [20, 4, 5]).

3.1 Fairness through Unawareness: Privileged Learning

In the privileged learning setting [16], we are given training triplets (x1,x
?
1, y1), . . . , (xN ,x

?
N , yN )

where (xn, yn) ⊂ X × Y is the standard training input-output pair and x?n ∈ X ? is additional
information about a training instance xn. This additional (privileged) information is only available
during training. In our earlier illustrative example in the related work, xn is for example a colour
feature from a 2D image while x?n is a feature from 3D cameras and laser scanners. There is no direct
limitation on the form of privileged information, i.e. it could be yet another feature representation
like shape features from the 2D image, or a completely different modality like 3D cameras in addition
to the 2D image, that is specific for each training instance. The goal of privileged learning is to use
x?n to accelerate the learning process of inferring an optimal (ideal) predictor in the data space X ,
i.e. f : X → Y . The difference between accelerated and non-accelerated methods is in the rate of
convergence to the optimal predictor, e.g. 1/N cf.1/√N for margin-based classifiers [16, 19].

From the description above, it is apparent that both privileged learning model and fairness model aim
to use data, privileged feature x?n and protected characteristic zn respectively, that are available at
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training time only. We propose to recycle privileged learning model for achieving fairness through
unawareness by taking protected characteristics as privileged information. For a single binary
protected characteristic zn, x?n is formed by concatenating xn and zn. This is because privileged
information has to be instance specific and richer than xn alone, and this is not the case when only a
single binary protected characteristic is used. By using privileged learning framework, the predictor
f is unaware of protected characteristic zn as this information is not used as an input to the predictor.
Instead, zn, together with xn, is used to distinguish between easy-to-classify and difficult-to-classify
data instances and subsequently to use this knowledge to accelerate the learning process of a predictor
f [16, 17]. Easiness and hardness can be defined, for example, based on the distance of data instance
to the decision boundary (margin) [16, 17, 19] or based on the steepness of the logistic likelihood
function [18]. Our specific choice of easiness and hardness definition is detailed in Section 3.3.

A direct advantage of approaching fairness from the privileged lens is the learning acceleration can
be used to limit the performance degradation of the fair model as it now has to trade-off two goals:
good prediction performance and respecting fairness constraints. An obvious disadvantage is an
increased risk of unfairness by proxy as knowledge of easy-to-classify and difficult-to-classify data
instances is based on protected characteristics. The next section describes a way to alleviate this
based on a distribution matching principle.

3.2 Demographic Parity, Equalized Odds, Equality of opportunity, and Beyond: Matching
Conditional Distributions

We have the following definitions for several fairness criteria [25, 4, 5]:

Definition A Demographic parity (fair impact): A binary decision model is fair if its decision
{+1,−1} are independent of the protected characteristic z ∈ {0, 1}. A decision f̂ satisfies this
definition if

P (sign(f̂(x)) = +1|z = 0) = P (sign(f̂(x)) = +1|z = 1).

Definition B Equalized odds (fair supervised performance): A binary decision model is fair if its
decisions {+1,−1} are conditionally independent of the protected characteristic z ∈ {0, 1} given
the target outcome y. A decision f̂ satisfies this definition if

P (sign(f̂(x)) = +1|z = 0, y) = P (sign(f̂(x)) = +1|z = 1, y), for y ∈ {+1,−1}.
For the target outcome y = +1, the definition above requires that f̂ has equal true positive rates
across two different values of protected characteristic. It requires f̂ to have equal false positive rates
for the target outcome y = −1.

Definition C Equality of opportunity (fair supervised performance): A binary decision model is fair
if its decisions {+1,−1} are conditionally independent of the protected characteristic z ∈ {0, 1}
given the positive target outcome y. A decision f̂ satisfies this definition if

P (sign(f̂(x)) = +1|z = 0, y = +1) = P (sign(f̂(x)) = +1|z = 1, y = +1).

Equality of opportunity only constrains equal true positive rates across the two demographics.

All three fairness criteria rely on the definition that data across the two demographics should exhibit
similar behaviour, i.e. matching positive predictions, matching true positive rates, and matching false
positive rates. A natural pathway to inject these into any learning model is to use a distribution
matching framework. This matching assumption is well founded if we assume that both data
Xz=0 = {xz=0

1 , . . . ,xz=0
Nz=0
} ⊂ X and another data Xz=1 = {xz=1

1 , . . . ,xz=1
Nz=1
} ⊂ X are drawn

independently and identically distributed from the same distribution p(x) on a domain X . It therefore
follows that for any function (or set of functions) f the distribution of f(x) where x ∼ p(x) should
also behave in the same way across the two demographics. We know that this is not automatically
true if we get to choose f after seeing Xz=0 and Xz=1. In order to allow us to draw on a rich body
of literature for comparing distributions, we cast the goal of enforcing distributional similarity across
two demographics as a two-sample problem.

3.2.1 Distribution matching

First, we denote the applications of our predictor f̂ : X → R to data having protected
characteristic value zero by f̂(XZ=0) := {f̂(xz=0

1 ), . . . , f̂(xz=0
Nz=0

)}, likewise by f̂(XZ=1) :=
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{f̂(xz=1
1 ), . . . , f̂(xz=1

Nz=1
)} for value one. For enforcing the demographic parity criterion, we can

enforce the closeness between the distributions of f̂(x). We can achieve this by minimizing:

D(f̂(XZ=0), f̂(XZ=1)), the distance between the two distributions f̂(XZ=0) and f̂(XZ=1). (1)

For enforcing the equalized odds criterion, we need to minimize both

D(I[Y = +1]f̂(XZ=0), I[Y = +1]f̂(XZ=1)) and D(I[Y = −1]f̂(XZ=0), I[Y = −1]f̂(XZ=1)).
(2)

We make use of Iverson’s bracket notation: I[P ] = 1 when condition P is true and 0 otherwise.
The first will match true positive rates (and also false negative rates) across the two demographics
and the latter will match false positive rates (and also true negative rates). For enforcing equality of
opportunity, we just need to minimize

D(I[Y = +1]f̂(XZ=0), I[Y = +1]f̂(XZ=1)). (3)

To go beyond true positive rates and false positive rates, Zafar et al. [5] raise the potential of removing
unfairness by enforcing equal misclassification rates, false discovery rates, and false omission rates
across two demographics. False discovery and false omission rates, however, with their fairness
model are difficult to encode. In the distribution matching sense, those can be easily enforced by
minimizing

D(1− Y f̂(XZ=0), 1− Y f̂(XZ=1)), (4)

D(I[Y = +1] max(0,−f̂(XZ=0)), I[Y = +1] max(0,−f̂(XZ=1))), and (5)

D(I[Y = −1] max(0, f̂(XZ=0)), I[Y = −1] max(0, f̂(XZ=1))) (6)

for misclassification, false omission, and false discovery rates, respectively.

Maximum mean discrepancy To avoid a parametric assumption on the distance estimate between
distributions, we use the Maximum Mean Discrepancy (MMD) criterion [37], a non-parametric
distance estimate. Denote byH a Reproducing Kernel Hilbert Space with kernel k defined on X . In
this case one can show [37] that whenever k is characteristic (or universal), the map

µ :p→ µ[p] := Ex∼p(x)[k(f̂(x), ·)] with associated distance MMD2(p, p′) := ‖µ[p]− µ[p′]‖2

characterizes a distribution uniquely. Examples of characteristic kernels [39] are Gaus-
sian RBF, Laplacian and B2n+1-splines. With a this choice of kernel functions, the
MMD criterion matches infinitely many moments in the Reproducing Kernel Hilbert Space
(RKHS). We use an unbiased linear-time estimate of MMD as follows [37, Lemma 14]:
M̂MD2 = 1

N

∑N
i k(f̂(x2i−1

z=0 ), f̂(x2i
z=0)) − k(f̂(x2i−1

z=0 ), f̂(x2i
z=1)) − k(f̂(x2i

z=0), f̂(x2i−1
z=1 )) +

k(f̂(x2i−1
z=1 ), f̂(x2i

z=1)), with N := bmin(Nz=1, Nz=0)c.

3.2.2 Special cases

Before discussing a specific composition of privileged learning and distribution matching to achieve
fairness, we consider a number of special cases of matching constraint to show that many of existing
methods use this basic idea.

Mean matching for demographic parity Zemel et al. [20] balance the mapping from data to
one of C latent prototypes across the two demographics by imposing the following constraint:

1
Nz=0

∑Nz=0

n=1 f̂(xz=0
n ; c) = 1

Nz=1

∑Nz=1

n=1 f̂(xz=1
n ; c); ∀c = 1, . . . , C, where f̂(xz=0

n ) is a softmax
function with C prototypes. Assuming a linear kernel k on this constraint is equivalent to requiring
that for each c

µ[f̂(xz=0
n ; c)] =

1

Nz=0

Nz=0∑
n=1

〈
f̂(xz=0

n ; c), ·
〉

=
1

Nz=1

Nz=1∑
n=1

〈
f̂(xz=1

n ; c), ·
〉

= µ[f̂(xz=1
n ; c)].

Mean matching for equalized odds and equality of opportunity To ensure equal false positive
rates across the two demographics, Zafar et al. [5] add the following constraint to the training objective
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of a linear classifier f̂(x) = 〈w,x〉:
∑Nz=0

n=1 min(0, I[yn = −1]f̂(xz=0
n )) =

∑Nz=1

n=1 min(0, I[yn =

−1]f̂(xz=1
n )). Again, assuming a linear kernel k on this constraint is equivalent to requiring that

µ[min(0, I[yn = −1]f̂(xz=0
n ))] =

1

Nz=0

Nz=0∑
n=1

〈
min(0, I[yn = −1]f̂(xz=0

n )), ·
〉

=
1

Nz=1

Nz=1∑
n=1

〈
min(0, I[yn = −1]f̂(xz=1

n )), ·
〉

= µ[min(0, I[yn = −1]f̂(xz=1
n ))].

The min(·) function ensures that we only match false positive rates as without it both false positive
and true negative rates will be matched. Relying on means for matching both false positive and true
negative is not sufficient as the underlying distributions are multi-modal; it motivates the need for
distribution matching.

3.3 Privileged learning with fairness constraints

Here we describe the proposed model that recycles two established frameworks, privileged learning
and distribution matching, and subsequently harmonizes them for addressing fair treatment, fair
impact, fair supervised performance and beyond in a unified fashion. We use SVM∆+ [19], an
SVM-based classification method for privileged learning, as a building block. SVM∆+ modifies
the required distance of data instance to the decision boundary based on easiness/hardness of
that data instance in the privileged space X ?, a space that contains protected characteristic Z.
Easiness/hardness is reflected in the negative of the confidence, −yn(〈w?,x?n〉+ b?) where w? and
b? are some parameters; the higher this value, the harder this data instance to be classified correctly
even in the rich privileged space. Injecting the distribution matching constraint, the final Distribution
Matching+ (DM+) optimization problem is now:

minimize
w∈Rd,b∈R

w?∈Rd? ,b?∈R

1/2 ‖w‖2`2︸ ︷︷ ︸
regularisation on model without

protected characteristic

+1/2γ ‖w?‖2`2︸ ︷︷ ︸
regularisation on model with

protected characteristic

+C∆

N∑
n=1

max (0,−yn[〈w?,x?n〉+ b?])︸ ︷︷ ︸
hinge loss on model with protected characteristic

+

+ C

N∑
n=1

max (0, 1− yn[〈w?,x?n〉+ b?]− yn[〈w,xn〉+ b])︸ ︷︷ ︸
hinge loss on model without protected characteristic

but with margin dependent on protected characteristic

(7a)

subject to M̂MD2(pz=0, pz=1) ≤ ε,︸ ︷︷ ︸
constraint for removing unfairness by proxy

(7b)

whereC,∆, γ and an upper-bound ε are hyper-parameters. Terms pz=0 and pz=1 are distributions over
appropriately defined fairness variables across the two demographics, e.g. f̂(XZ=0) and f̂(XZ=1)

with f̂(·) = 〈w, ·〉 + b for demographic parity and I[Y = +1]f̂(XZ=0) and I[Y = +1]f̂(XZ=1)
for equality of opportunity. We have the following observations of the knowledge transfer from the
privileged space to the space X without protected characteristic (refer to the last term in (7a)):

• Very large positive value of the negative of the confidence in the space that includes protected
characteristic, −yn[〈w?,x?n〉+ b?] >> 0 means xn, without protected characteristic, is expected
to be a hard-to-classify instance therefore its margin distance to the decision boundary is increased.

• Very large negative value of the negative of the confidence in the space that includes protected
characteristic, −yn[〈w?,x?n〉+ b?] << 0 means xn, without protected characteristic, is expected
to be an easy-to-classify instance therefore its margin distance to the decision boundary is reduced.

The formulation in (7) is a multi-objective optimization with three competing goals: minimizing
empirical error (hinge loss), minimizing model complexity (`2 regularisation), and minimizing
prediction discrepancy across the two demographics (MMD). Each goal corresponds to a different
optimal solution and we have to accept a compromise in the goals. While solving a single-objective
optimization implies to search for a single best solution, a collection of solutions at which no goal
can be improved without damaging one of the others (Pareto frontier) [40] is sought when solving a
multi-objective optimization.
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Multi-objective optimization We first note that the MMD fairness criteria will introduce non-
convexity to our optimization problem. For a non-convex multi-objective optimization, the Pareto
frontier may have non-convex portions. However, any Pareto optimal solution of a multi-objective
optimization can be obtained by solving the constraint problem for an upper bound ε (as in (7b))
regardless of the non-convexity of the Pareto frontier [40].

Alternatively, the Convex Concave Procedure (CCP) [41], can be used to find an approximate solution
of the problem in (7) by solving a succession of convex programs. CCP has been used in several
other algorithms enforcing fair impact and fair supervised performance to deal with non-convexity of
the objective function (e.g. [24, 5]). However, it was noted in [35] that for an objective function that
has an additive structure as in our DM+ model, it is better to use the non-convex objective directly.

4 Experiments

We experiment with two datasets: The ProPublica COMPAS dataset and the Adult income dataset.
ProPublica COMPAS (Correctional Offender Management Profiling for Alternative Sanctions) has a
total of 5,278 data instances, each with 5 features (e.g., count of prior offences, charge for which the
person was arrested, race). The binary target outcome is whether or not the defendant recidivated
within two years. For this dataset, we follow the setting in [5] and consider race, which is binarized
as either black or white, as a protected characteristic. We use 4, 222 instances for training and 1, 056
instances for test. The Adult dataset has a total of 45, 222 data instances, each with 14 features (e.g.,
gender, educational level, number of work hours per week). The binary target outcome is whether
or not income is larger than 50K dollars. For this dataset, we follow [20] and consider gender as a
binary protected characteristic. We use 36, 178 instances for training and 9, 044 instances for test.

Methods We have two variants of our distribution matching framework: DM that uses SVM as the
base classifier coupled with the constraint in (7b), and DM+ ((7a) and (7b)). We compare our methods
with several baselines: support vector machine (SVM), logistic regression (LR), mean matching with
logistic regression as the base classifier (Zafar et al.) [5], and a threshold classifier method with
protected characteristic-specific thresholds on the output of a logistic regression model (Hardt et
al.) [4]. All methods but Hardt et al. do not use protected characteristics at prediction time.

Optimization procedure For our DM and DM+ methods, we identify at least three options on how
to optimize the multi-objective optimization problem in (7): using Convex Concave Procedure (CCP),
using Broyden-Fletcher-Goldfarb-Shanno gradient descent method with limited-memory variation
(L-BFGS), and using evolutionary multi-objective optimization (EMO). We discuss those options

in turn. First, we can express each additive term in the M̂MD2(pz=0, pz=1) fairness constraint (7b)
as a difference of two convex functions, find the convex upper bound of each term, and place the
convexified fairness constraint as part of the objective function. In our initial experiments, solving
(7) with CCP tends to ignore the fairness constraint, therefore we do not explore this approach
further. As mentioned earlier, the convex upper bounds on each of the additive terms in the MMD
constraint become increasingly loose as we move away from the current point of approximation. This
leads to the second optimization approach. We turn the constrained optimization problem into an

unconstrained one by introducing a non-negative weight CMMD to scale the M̂MD2(pz=0, pz=1) term.
We then solve this unconstrained problem using L-BFGS. The main challenge with this procedure
is the need to trade-off multiple competing goals by tuning several hyper-parameters, which will
be discussed in the next section. The CCP and L-BFGS procedures will only return one optimal
solution from the Pareto frontier. Third, to approximate the Pareto-optimal set, we can instead use
EMO procedures (e.g. Non-dominated Sorting Genetic Algorithm (NSGA) – II and Strength Pareto
Evolutionary Algorithm (SPEA) - II). For the EMO, we also solve the unconstrained problem as
in the second approach, but we do not need to introduce a trade-off parameter for each term in the
objective function. We use the DEAP toolbox [42] for experimenting with EMO.

Model selection For the baseline Zafar et al., as in [5], we set the hyper-parameters τ and
µ corresponding to the Penalty Convex Concave procedure to 5.0 and 1.2, respectively. Gaus-
sian RBF kernel with a kernel width σ2 is used for the MMD term. When solving DM (and
DM+) optimization problems with L-BFGS, the hyper-parameters C,CMMD, σ

2, (and γ) are set
to 1000., 5000., 10., (and 1.) for both datasets. For DM+, we select ∆ over the range {1., 2., . . . , 10.}
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Table 1: Results on multi-objective optimization which balances two main objectives: performance
accuracies and fairness criteria. Equal true positive rates are required for ProPublica COMPAS
dataset, and equal accuracies between two demographics z = 0 and z = 1 are required for Adult
dataset. The solver of Zafar et al. fails on the Adult dataset while enforcing equal accuracies
across the two demographics. Hardt et al.’s method does not enforce equal accuracies. SVM and
LR only optimize performance accuracies. The terms |Acc.z=0 - Acc.z=1|, |TPRz=0 - TPRz=1|, and
|FPRz=0 - FPRz=1| denote accuracy, true positive rate, and false positive rate discrepancies in an
absolute term between the two demographics (the smaller the fairer). For ProPublica COMPAS
dataset, we boldface |TPRz=0 - TPRz=1| since we enforce the equality of opportunity criterion on
this dataset. For Adult dataset, we boldface |Acc.z=0 - Acc.z=1| since this is the fairness criterion.

ProPublica COMPAS dataset (Fairness Constraint on equal TPRs)

|Acc.z=0 - Acc.z=1 | |TPRz=0 - TPRz=1| |FPRz=0 - FPRz=1| Acc.
LR 0.0151±0.0116 0.2504±0.0417 0.1618±0.0471 0.6652±0.0139
SVM 0.0172±0.0102 0.2573±0.0158 0.1603±0.0490 0.6367±0.0212

Zafar et al. 0.0174±0.0142 0.1144±0.0482 0.1914±0.0314 0.6118±0.0198
Hardt et al.∗ 0.0219±0.0191 0.0463±0.0185 0.0518±0.0413 0.6547±0.0128
DM (L-BFGS) 0.0457±0.0289 0.1169±0.0690 0.0791±0.0395 0.5931±0.0599
DM+ (L-BFGS) 0.0608±0.0259 0.1065±0.0413 0.0973±0.0272 0.6089±0.0398
DM (EMO Usr1) 0.0537±0.0121 0.1346±0.0360 0.1028±0.0481 0.6261±0.0133
DM (EMO Usr2) 0.0535±0.0213 0.1248±0.0509 0.0906±0.0507 0.6148±0.0137
∗use protected characteristics at prediction time.

Adult dataset (Fairness Constraint on equal accuracies)

|Acc.z=0 - Acc.z=1| |TPRz=0 - TPRz=1| |FPRz=0 - FPRz=1| Acc.
SVM 0.1136±0.0064 0.0964±0.0289 0.0694±0.0109 0.8457±0.0034

DM (L-BFGS) 0.0640±0.0280 0.0804±0.0659 0.0346±0.0343 0.8152±0.0068
DM+ (L-BFGS) 0.0459±0.0372 0.0759±0.0738 0.0368±0.0349 0.8127±0.0134
DM (EMO Usr1) 0.0388±0.0179 0.0398±0.0284 0.0398±0.0284 0.8057±0.0108
DM (EMO Usr2) 0.0482±0.0143 0.0302±0.0212 0.0135±0.0056 0.8111±0.0122

using 5-fold cross validation. The selection process goes as follow: we first sort ∆ values according
to how well they satisfy the fairness criterion, we then select a ∆ value at a point before it yields
a lower incremental classification accuracy. As stated earlier, we do not need C,CMMD, σ

2, γ,∆
hyper-parameters for balancing multiple terms in the objective function when using EMO for DM
and DM+. There are however several free parameters related to the evolutionary algorithm itself.
We use the NSGA – II selection strategy with a polynomial mutation operator as in the the original
implementation [43], and the mutation probability is set to 0.5. We do not use any mating operator.
We use 500 individuals in a loop of 50 iterations (generations).

Results Experimental results over 5 repeats are presented in Table 1. In the ProPublica COMPAS
dataset, we enforce equality of opportunity |TPRz=0 - TPRz=1|, i.e. equal true positive rates (Equation
(3)), as the fairness criterion (refer to the ProPublica COMPAS dataset in Table 1). Additionally, our
distribution matching methods, DM+ and DM also deliver a reduction in discrepancies between false
positive rates. We experiment with both L-BFGS and EMO optimization procedures. For EMO, we
simulate two decision makers choosing an operating point based on the visualization of Pareto frontier
in Figure 1 – Right (shown as DM (EMO Usr1) and DM (EMO Usr2) in Table 1). For this dataset,
Usr1 has an inclination to be more lenient in being fair for a gain in accuracy in comparison to the
Usr2. This is actually reflected in the selection of the operating point (see supplementary material).
The EMO is run on the 60% of the training data, the selection is done on the remaining 40%, and the
reported results are on the separate test set based on the model trained on the 60% of the training data.
The method Zafar et al. achieves similar reduction rate in the fairness criterion to our distribution
matching methods. As a reference, we also include results of Hardt et al.’s method; it achieves
the best equality of opportunity measure with only a slight drop in accuracy performance w.r.t. the
unfair LR. It is important to note that Hardt et al.’s method requires protected characteristics at
test time. If we allow the usage of protected characteristics at test time, we should expect similar
reduction rate in fairness and accuracy measures for other methods [5].
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Figure 1: Visualization of a Pareto frontier of our DM method for the ProPublica COMPAS dataset.
Left: In a 3D criterion space corresponding to the three objective functions: hinge loss, i.e.

max (0, 1− yn[〈w,xn〉+ b]), regularization, i.e. ‖w‖2`2 , and MMD, i.e. M̂MD2(pz=0, pz=1).
Fairer models (smaller MMD values) are gained at the expense of model complexity (higher regu-
larization and/or hinge loss values). Note that the unbiased estimate of MMD may be negative [37].
Right: The same Pareto frontier but in a 2D space of error and unfairness in predictions. Only the
first repeat is visualized; please refer to the supplementary material for the other four repeats, for the
Adult dataset, and of the DM+ method.

In the Adult dataset, we enforce equal accuracies |Acc.z=0 - Acc.z=1| (Equation (4)) as the fairness
criterion (refer to the Adult dataset in Table 1). The method whereby a decision maker uses a
Pareto frontier visualization for choosing the operating point (DM (EMO Usr1)) reaches the smallest
discrepancy between the two demographics. In addition to equal accuracies (Equation (4)), our
distribution matching methods, DM+ and DM, also deliver a reduction in discrepancies between true
positive and false positive rates w.r.t. SVM (second and third column). In this dataset, Zafar et
al. falls into numerical problems when enforcing equal accuracies (vide our earlier discussion on
different optimization procedures, especially related to CCP). As observed in prior work [5, 20],
the methods that do not enforce fairness (equal accuracies or equal true positive rates), SVM and LR,
achieve higher classification accuracy compared to the methods that do enforce fairness: Zafar et
al., DM+, and DM. This can be seen in the last column of Table 1.

5 Discussion and Conclusion

We have proposed a unified machine learning framework that is able to handle any definitions of
fairness, e.g. fairness through unawareness, demographic parity, equalized odds, and equality of op-
portunity. Our framework is based on learning using privileged information and matching conditional
distributions using a two-sample problem. By using distance measures in Hilbert Space to solve the
two-sample problem, our framework is general and will be applicable for protected characteristics
with binary/multi-class/continuous values. The current work focuses on a single binary protected
characteristic. This corresponds to conditional distribution matching with a binary conditioning
variable. To generalize this to any type and multiple dependence of protected characteristics, we can
use the Hilbert Space embedding of conditional distributions framework of [44, 45].

We note that there are important factors external to machine learning models that are relevant to
fairness. However, this paper adopts the established approach of existing work on fair machine
learning. In particular, it is taken as given that one typically does not have any control over the data
collection process because there is no practical way of enforcing truth/un-biasedness in datasets that
are generated by others, such as banks, police forces, and companies.
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