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Abstract

Learning directed acyclic graphs using both observational and interventional data is
now a fundamentally important problem due to recent technological developments
in genomics that generate such single-cell gene expression data at a very large
scale. In order to utilize this data for learning gene regulatory networks, efficient
and reliable causal inference algorithms are needed that can make use of both
observational and interventional data. In this paper, we present two algorithms
of this type and prove that both are consistent under the faithfulness assumption.
These algorithms are interventional adaptations of the Greedy SP algorithm and
are the first algorithms using both observational and interventional data with
consistency guarantees. Moreover, these algorithms have the advantage that they
are nonparametric, which makes them useful also for analyzing non-Gaussian data.
In this paper, we present these two algorithms and their consistency guarantees,
and we analyze their performance on simulated data, protein signaling data, and
single-cell gene expression data.

1 Introduction

Discovering causal relations is a fundamental problem across a wide variety of disciplines including
computational biology, epidemiology, sociology, and economics [5, 18, 20, 22]. DAG models can
be used to encode causal relations in terms of a directed acyclic graph (DAG) G, where each node
is associated to a random variable and the arrows represent their causal influences on one another.
The non-arrows of G encode a collection of conditional independence (CI) relations through the so-
called Markov properties. While DAG models are extraordinarily popular within the aforementioned
research fields, it is in general a difficult task to recover the underlying DAG G from samples from the
joint distribution on the nodes. In fact, since different DAGs can encode the same set of CI relations,
from observational data alone the underlying DAG G is in general only identifiable up to Markov
equivalence, and interventional data is needed to identify the complete DAG.

In recent years, the new drop-seq technology has allowed obtaining high-resolution observational
single-cell gene expression data at a very large scale [12]. In addition, earlier this year this technology
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was combined with the CRISPR/Cas9 system into perturb-seq, a technology that allows obtaining
high-throughput interventional gene expression data [4]. An imminent question now is how to make
use of a combination of observational and interventional data (of the order of 100,000 cells / samples
on 20,000 genes / variables) in the causal discovery process. Therefore, the development of efficient
and consistent algorithms using both observational and interventional data that are implementable
within genomics is now a crucial goal. This is the purpose of the present paper.

The remainder of this paper is structured as follows: In Section 2 we discuss related work. Then
in Section 3, we recall fundamental facts about DAG models and causal inference that we will use
in the coming sections. In Section 4, we present the two algorithms and discuss their consistency
guarantees. In Section 5, we analyze the performance of the two algorithms on both simulated and
real datasets. We end with a short discussion in Section 6.

2 Related Work

Causal inference algorithms based on observational data can be classified into three categories:
constraint-based, score-based, and hybrid methods. Constraint-based methods, such as the PC
algorithm [22], treat causal inference as a constraint satisfaction problem and rely on CI tests to
recover the model via its Markov properties. Score-based methods, on the other hand, assign a
score function such as the Bayesian Information Criterion (BIC) to each DAG and optimize the
score via greedy approaches. An example is the prominent Greedy Equivalence Search (GES) [14].
Hybrid methods either alternate between score-based and constraint-based updates, as in Max-Min
Hill-Climbing [26], or use score functions based on CI tests, as in the recently introduced Greedy SP
algorithm [23].

Based on the growing need for efficient and consistent algorithms that accommodate observational and
interventional data [4], it is natural to consider extensions of the previously described algorithms that
can accommodate interventional data. Such options have been considered in [8], in which the authors
propose GIES, an extension of GES that accounts for interventional data. This algorithm can be
viewed as a greedy approach to `0-penalized maximum likelihood estimation with interventional data,
an otherwise computationally infeasible score-based approach. Hence GIES is a parametric approach
(relying on Gaussianity) and while it has been applied to real data [8, 9, 15], we will demonstrate via
an example in Section 3 that it is in general not consistent. In this paper, we assume causal sufficiency,
i.e., that there are no latent confounders in the data-generating DAG. In addition, we assume that the
interventional targets are known. Methods such as ACI [13], HEJ [10], COmbINE [25] and ICP [15]
allow for latent confounders with possibly unknown interventional targets. In addition, other methods
have been developed specifically for the analysis of gene expression data [19]. A comparison of the
method presented here and some of these methods in the context of gene expression data is given in
the Supplementary Material.

The main purpose of this paper is to provide the first algorithms (apart from enumerating all DAGs)
for causal inference based on observational and interventional data with consistency guarantees.
These algorithms are adaptations of the Greedy SP algorithm [23]. As compared to GIES, another
advantage of these algorithms is that they are nonparametric and hence do not assume Gaussianity, a
feature that is crucial for applications to gene expression data which is inherently non-Gaussian.

3 Preliminaries

DAG models. Given a DAG G = ([p], A) with node set [p] := {1, . . . , p} and a collection of arrows
A, we associate the nodes of G to a random vector (X1, . . . , Xp) with joint probability distribution P.
For a subset of nodes S ⊂ [p], we let PaG(S), AnG(S), ChG(S), DeG(S), and NdG(S), denote the
parents, ancestors, children, descendants, and nondescendants of S in G. Here, we use the typical
graph theoretical definitions of these terms as given in [11]. By the Markov property, the collection of
non-arrows of G encode a set of CI relations Xi ⊥⊥ XNd(i)\Pa(i) | XPa(i). A distribution P is said to
satisfy the Markov assumption (a.k.a. be Markov) with respect to G if it entails these CI relations. A
fundamental result about DAG models is that the complete set of CI relations implied by the Markov
assumption for G is given by the d-separation relations in G [11, Section 3.2.2]; i.e., P satisfies the
Markov assumption with respect to G if and only if XA ⊥⊥ XB | XC in P whenever A and B are
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Figure 1: A generating DAG (left) and its GIES local maxima (right) for which GIES is not consistent.

d-separated in G given C. The faithfulness assumption is the assertion that the only CI relations
entailed by P are those implied by d-separation in G.

Two DAGs G and H with the same set of d-separation statements are called Markov equivalent,
and the complete set of DAGs that are Markov equivalent to G is called its Markov equivalence
class (MEC), denoted [G]. The MEC of G is represented combinatorially by a partially directed
graph Ĝ := ([p], D,E), called its CP-DAG or essential graph [1]. The arrows D are precisely
those arrows in G that have the same orientation in all members of [G], and the edges E represent
those arrows that change direction between distinct members of the MEC. In [2], the authors give a
transformational characterization of the members of [G]. An arrow i → j in G is called a covered
arrow if PaG(j) = PaG(i) ∪ {i}. Two DAGs G and H are Markov equivalent if and only if there
exists a sequence of covered arrow reversals transforming G into H [2]. This transformational
characterization plays a fundamental role in GES [14], GIES [8], Greedy SP [23], as well as the
algorithms we introduce in this paper.

Learning from Interventions. In this paper, we consider multiple interventions. Given an ordered
list of subsets of [p] denoted by I := {I1, I2, . . . , IK}, for each Ij we generate an interventional
distribution, denoted Pj , by forcing the random variables Xi for i ∈ Ij to the value of some
independent random variables. We assume throughout that Ij = ∅ for some j, i.e., that we have access
to a combination of observational and interventional data. If P is Markov with respect to G = ([p], A),
then the intervention DAG of Ij is the subDAG Gj := ([p], Aj) where Aj = {(i, j) ∈ A : j /∈ Ij};
i.e., Gj is given by removing the incoming arrows to all intervened nodes in G. Notice that Pj is
always Markov with respect to Gj . This fact allows us to naturally extend the notions of Markov
equivalence and essential graphs to the interventional setting, as described in [8]. Two DAGs G andH
are I-Markov equivalent for the collection of interventions I if they have the same skeleton and the
same set of immoralities, and if Gj andHj have the same skeleton for all j = 1, . . . ,K [8, Theorem
10]. Hence, any two I-Markov equivalent DAGs lie in the same MEC. The I-Markov equivalence
class (I-MEC) of G is denoted [G]I . The I-essential graph of G is the partially directed graph
ĜI :=

(
[p],∪Kj=1D

j ,∪Kj=1E
j
)
, where Ĝj = ([p], Dj , Ej). The arrows of ĜI are called I-essential

arrows of G.

Greedy Interventional Equivalence Search (GIES). GIES is a three-phase score-based algorithm:
In the forward phase, GIES initializes with an empty I-essential graph Ĝ0. Then it sequentially
steps from one I-essential graph Ĝi to a larger one Ĝi+1 given by adding a single arrow to Ĝi. In
the backward phase, it steps from one essential graph Ĝi to a smaller one Ĝi+1 containing precisely
one less arrow than Ĝi. In the turning phase, the algorithm reverses the direction of arrows. It first
considers reversals of non-I-essential arrows and then the reversal of I-essential arrows, allowing
it to move between I-MECs. At each step in all phases the maximal scoring candidate is chosen,
and the phase is only terminated when no higher-scoring I-essential graph exists. GIES repeatedly
executes the forward, backward, and turning phases, in that order, until no higher-scoring I-essential
graph can be found. It is amenable to any score that is constant on an I-MEC, such as the BIC.

The question whether GIES is consistent, was left open in [8]. We now prove that GIES is in general
not consistent; i.e., if nj i.i.d. samples are drawn from the interventional distribution Pj , then even
as n1 + · · ·+ nK →∞ and under the faithfulness assumption, GIES may not recover the optimal
I-MEC with probability 1. Consider the data-generating DAG depicted on the left in Figure 1.
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Algorithm 1:

Input: Observations X̂ , an initial permutation π0, a threshold δn >
∑K
k=1 λnk

, and a set of
interventional targets I = {I1, . . . , IK}.

Output: A permutation π and its minimal I-MAP Gπ .

1 Set Gπ := argmax
G consistent withπ

Score(G);

2 Using a depth-first search approach with root π, search for a permutation πs with
Score(Gπs

) > Score(Gπ) that is connected to π through a sequence of permutations

π0 = π, π1, · · · , πs−1, πs,

where each permutation πk is produced from πk−1 by a transposition that corresponds to a
covered edge in Gπk−1

such that Score(Gπk
) > Score(Gπk−1

)− δn. If no such Gπs
exists,

return π and Gπ; else set π := πs and repeat.

Suppose we take interventions I consisting of I1 = ∅, I2 = {4}, I3 = {5}, and that GIES arrives at
the DAG G depicted on the right in Figure 1. If the data collected grows as n1 = Cn2 = Cn3 for
some constant C > 1, then we can show that the BIC score of G is a local maximum with probability
1
2 as n1 tends to infinity. The proof of this fact relies on the observation that GIES must initialize the
turning phase at G, and that G contains precisely one covered arrow 5→ 4, which is colored red in
Figure 1. The full proof is given in the Supplementary Material.

Greedy SP. In this paper we adapt the hybrid algorithm Greedy SP to provide consistent algorithms
that use both interventional and observational data. Greedy SP is a permutation-based algorithm that
associates a DAG to every permutation of the random variables and greedily updates the DAG by
transposing elements of the permutation. More precisely, given a set of observed CI relations C and a
permutation π = π1 · · ·πp, the Greedy SP algorithm assigns a DAG Gπ := ([p], Aπ) to π via the rule

πi → πj ∈ Aπ ⇐⇒ i < j and πi 6⊥⊥ πj | {π1, . . . , πmax(i,j)}\{πi, πj},
for all 1 ≤ i < j ≤ p. The DAG Gπ is a minimal I-MAP (independence map) with respect to C,
since any DAG Gπ is Markov with respect to C and any proper subDAG of Gπ encodes a CI relation
that is not in C [17]. Using a depth-first search approach, the algorithm reverses covered edges in
Gπ , takes a linear extension τ of the resulting DAG and re-evaluates against C to see if Gτ has fewer
arrows than Gπ . If so, the algorithm reinitializes at τ , and repeats this process until no sparser DAG
can be recovered. In the observational setting, Greedy SP is known to be consistent whenever the
data-generating distribution is faithful to the sparsest DAG [23].

4 Two Permutation-Based Algorithms with Interventions

We now introduce our two interventional adaptations of Greedy SP and prove that they are consistent
under the faithfulness assumption. In the first algorithm, presented in Algorithm 1, we use the same
moves as Greedy SP, but we optimize with respect to a new score function that utilizes interventional
data, namely the sum of the interventional BIC scores. To be more precise, for a collection of
interventions I = {I1, . . . , IK}, the new score function is

Score(G) :=

K∑
k=1

(
maximize
(A,Ω)∈Gk

`k

(
X̂k;A,Ω

))
−

K∑
k=1

λnk
|Gk|,

where `k denotes the log-likelihood of the interventional distribution Pk, (A,Ω) are any parameters
consistent with Gk, |G| denotes the number of arrows in G, and λnk

= lognk

nk
.

When Algorithm 1 has access to observational and interventional data, then uniform consistency
follows using similar techniques to those used to prove uniform consistency of Greedy SP in [23]. A
full proof of the following consistency result for Algorithm 1 is given in the Supplementary Material.
Theorem 4.1. Suppose P is Markov with respect to an unknown I-MAP Gπ∗ . Suppose also that
observational and interventional data are drawn from P for a collection of interventional targets
I = {I1 := ∅, I2, . . . , IK}. If Pk is faithful to (Gπ∗)k for all k ∈ [K], then Algorithm 1 returns the
I-MEC of the data-generating DAG Gπ∗ almost surely as nk →∞ for all k ∈ [K].
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Algorithm 2: Interventional Greedy SP (IGSP)
Input: A collection of interventional targets I = {I1, . . . , IK} and a starting permutation π0.
Output: A permutation π and its minimal I-MAP Gπ .

1 Set G := Gπ0 ;
2 Using a depth-first-search approach with root π, search for a minimal I-MAP Gτ with
|G| > |Gτ | that is connected to G by a list of I-covered edge reversals. Along the search,
prioritize the I-covered edges that are also I-contradicting edges. If such Gτ exists, set
G := Gτ , update the number of I-contradicting edges, and repeat this step. If not, output Gτ
with |G| = |Gτ | that is connected to G by a list of I-covered edges and minimizes the number
of I-contradicting edges.

A problematic feature of Algorithm 1 from a computational perspective is the the slack parameter δn.
In fact, if this parameter were not included, then Algorithm 1 would not be consistent. This can be
seen via an application of Algorithm 1 to the example depicted in Figure 1. Using the same set-up
as the inconsistency example for GIES, suppose that the left-most DAG G in Figure 1 is the data
generating DAG, and that we draw nk i.i.d. samples from the interventional distribution Pk for the
collection of targets I = {I1 = ∅, I2 = {4}, I3 = {5}}. Suppose also that n1 = Cn2 = Cn3 for
some constant C > 1, and now additionally assume that we initialize Algorithm 1 at the permutation
π = 1276543. Then the minimal I-MAP Gπ is precisely the DAG presented on the right in Figure 1.
This DAG contains one covered arrow, namely 5→ 4. Reversing it produces the minimal I-MAP Gτ
for τ = 1276453. Computing the score difference Score(Gτ )− Score(Gπ) using [16, Lemma 5.1]
shows that as n1 tends to infinity, Score(Gτ ) < Score(Gπ) with probability 1

2 . Hence, Algorithm 1
would not be consistent without the slack parameter δn. This calculation can be found in the
Supplementary Material.

Our second interventional adaptation of the Greedy SP algorithm, presented in Algorithm 2, leaves the
score function the same (i.e., the number of edges of the minimal I-MAP), but restricts the possible
covered arrow reversals that can be queried at each step. In order to describe this restricted set of
moves we provide the following definitions.
Definition 4.2. Let I = {I1, . . . , IK} be a collection of interventions, and for i, j ∈ [p] define the
collection of indices

Ii\j := {k ∈ [K] : i ∈ Ik and j 6∈ Ik}.
For a minimal I-MAP Gπ we say that a covered arrow i→ j ∈ Gπ is I-covered if

Ii\j = ∅ or i→ j 6∈ (Gk)π for all k ∈ Ii\j .

Definition 4.3. We say that an arrow i → j ∈ Gπ is I-contradicting if the following three
conditions hold: (a) Ii\j ∪ Ij\i 6= ∅, (b) Ii\j = ∅ or i ⊥⊥ j in distribution Pk for all k ∈ Ii\j ,
(c) Ij\i = ∅ or there exists k ∈ Ij\i such that i 6⊥⊥ j in distribution Pk.

In the observational setting, GES and Greedy SP utilize covered arrow reversals to transition between
members of a single MEC as well as between MECs [2, 3, 23]. Since an I-MEC is characterized
by the skeleta and immoralities of each of its interventional DAGs, I-covered arrows represent the
natural candidate for analogous transitionary moves between I-MECs in the interventional setting. It
is possible that reversing an I-covered edge i→ j in a minimal I-MAP Gπ results in a new minimal
I-MAP Gτ that is in the same I-MEC as Gπ . Namely, this happens when i→ j is a non-I-essential
edge in Gπ . Similar to Greedy SP, Algorithm 2 implements a depth-first-search approach that allows
for such I-covered arrow reversals, but it prioritizes those I-covered arrow reversals that produce a
minimal I-MAP Gτ that is not I-Markov equivalent to Gπ . These arrows are I-contradicting arrows.
The result of this refined search via I-covered arrow reversal is an algorithm that is consistent under
the faithfulness assumption.
Theorem 4.4. Algorithm 2 is consistent under the faithfulness assumption.

The proof of Theorem 4.4 is given in the Supplementary Material. When only observational data is
available, Algorithm 2 boils down to greedy SP. We remark that the number of queries conducted in a
given step of Algorithm 2 is, in general, strictly less than in the purely observational setting. That is
to say, I-covered arrows generally constitute a strict subset of the covered arrows in a DAG. At first
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(a) p = 10, K = 1 (b) p = 10, K = 2 (c) p = 20, K = 1 (d) p = 20, K = 2

Figure 2: The proportion of consistently estimated DAGs for 100 Gaussian DAG models on p nodes
with K single-node interventions.

glance, keeping track of the I-covered edges may appear computationally inefficient. However, at
each step we only need to update this list locally; so the computational complexity of the algorithm
is not drastically impacted by this procedure. Hence, access to interventional data is beneficial in
two ways: it allows to reduce the search directions at every step and it often allows to estimate
the true DAG more accurately, since an I-MEC is in general smaller than an MEC. Note that in
this paper all the theoretical analysis are based on the low-dimensional setting, where p� n. The
high-dimensional consistency of greedy SP is shown in [23], and it is not difficult to see that the same
high-dimensional consistency guarantees also apply to IGSP.

5 Evaluation

In this section, we compare Algorithm 2, which we call Interventional Greedy SP (IGSP) with GIES
on both simulated and real data. Algorithm 1 is of interest from a theoretical perspective, but it is
computationally inefficient since it requires performing two variable selection procedures per update.
Therefore, it will not be analyzed in this section. The code utilized for the following experiments can
be found at https://github.com/yuhaow/sp-intervention.

5.1 Simulations

Our simulations are conducted for linear structural equation models with Gaussian noise:

(X1, . . . , Xp)
T = ((X1, . . . , Xp)A)T + ε,

where ε ∼ N (0,1p) and A = (aij)
p
i,j=1 is an upper-triangular matrix of edge weights with aij 6= 0

if and only if i→ j is an arrow in the underlying DAG G∗. For each simulation study we generated
100 realizations of an (Erdös-Renyi) random p-node Gaussian DAG model for p ∈ {10, 20} with an
expected edge density of 1.5. The collections of interventional targets I = {I0 := ∅, I1, . . . , IK}
always consist of the empty set I0 together with K = 1 or 2. For p = 10, the size of each intervention
set was 5 for K = 1 and 4 for K = 2. For p = 20, the size was increased up to 10 and 8 to keep
the proportion of intervened nodes constant. In each study, we compared GIES with Algorithm 2
for n samples for each intervention with n = 103, 104, 105. Figure 2 shows the proportion of
consistently estimated DAGs as distributed by choice of cut-off parameter for partial correlation tests.
Interestingly, although GIES is not consistent on random DAGs, in some cases it performs better than
IGSP, in particular for smaller sample sizes. However, as implied by the consistency guarantees given
in Theorem 4.4, IGSP performs better as the sample size increases.

We also conducted a focused simulation study on models for which the data-generating DAG G is that
depicted on the left in Figure 1, for which GIES is not consistent. In this simulation study, we took 100
realizations of Gaussian models for the data-generating DAG G for which the nonzero edge-weights
aij were randomly drawn from [−1,−c, ) ∪ (c, 1] for c = 0.1, 0.25, 0.5. The interventional targets
were I = {I0 = ∅, I1}, where I1 was uniformly at random chosen to be {4}, {5}, {4, 5}. Figure 3
shows, for each choice of c, the proportion of times G was consistently estimated as distributed by the
choice of cut-off parameter for the partial correlation tests. We see from these plots that as expected
from our theoretical results GIES recovers G at a lower rate than Algorithm 2.
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(a) c = 0.1 (b) c = 0.25 (c) c = 0.5

Figure 3: Proportion of times the DAG G from Figure 1 (left) is consistently estimated under GIES
and Algorithm 2 for Gaussian DAG models with edge-weights drawn from [−1,−c) ∪ (c, 1].

5.2 Application to Real Data

In the following, we report results for studies conducted on two real datasets coming from genomics.
The first dataset is the protein signaling dataset of Sachs et al. [21], and the second is the single-cell
gene expression data generated using perturb-seq in [4].

Analysis of protein signaling data. The dataset of Sachs et al. [21] consists of 7466 measurements of
the abundance of phosphoproteins and phospholipids recorded under different experimental conditions
in primary human immune system cells. The different experimental conditions are generated using
various reagents that inhibit or activate signaling nodes, and thereby correspond to interventions
at different nodes in the protein signaling network. The dataset is purely interventional and most
interventions take place at more than one target. Since some of the experimental perturbations
effect receptor enzymes instead of the measured signaling molecules, we consider only the 5846
measurements in which the perturbations of receptor enzymes are identical. In this way, we can define
the observational distribution to be that of molecule abundances in the model where only the receptor
enzymes are perturbed. This results in 1755 observational measurements and 4091 interventional
measurements. Table E.2 in the Supplementary Material summarizes the number of samples as
well as the targets for each intervention. For this dataset we compared the GIES results reported
in [9] with Algorithm 2 using both, a linear Gaussian and a kernel-based independence criterium
[6, 24]. A crucial advantage of Algorithm 2 over GIES is that it is nonparametric and does not require
Gaussianity. In particular, it supports kernel-based CI tests that are in general able to deal better with
non-linear relationships and non-Gaussian noise, a feature that is typical of datasets such as this one.

For the GIES algorithm we present the results of [8] in which the authors varied the number of edge
additions, deletions, and reversals as tuning parameters. For the linear Gaussian and kernel-based
implementations of IGSP our tuning parameter is the cut-off value for the CI tests, just as in the
simulated data studies in Section 5.1. Figure 4 reports our results for thirteen different cut-off values
in [10−4, 0.7], which label the corresponding points in the plots. The linear Gaussian and kernel-based
implementations of IGSP are comparable and generally both outperform GIES. The Supplementary
Material contains a comparison of the results obtained by IGSP on this dataset to other recent methods
that allow also for latent confounders, such as ACI, COmbINE and ICP.

Analysis of perturb-seq gene expression data. We analyzed the performance of GIES and IGSP
on perturb-seq data published by Dixit et al. [4]. The dataset contains observational data as well as
interventional data from ∼30,000 bone marrow-derived dendritic cells (BMDCs). Each data point
contains gene expression measurements of 32,777 genes, and each interventional data point comes
from a cell where a single gene has been targeted for deletion using the CRISPR/Cas9 system.

After processing the data for quality, the data consists of 992 observational samples and 13,435
interventional samples from eight gene deletions. The number of samples collected under each of the
eight interventions is shown in the Supplementary Material. These interventions were chosen based
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(a) Directed edge recovery (b) Skeleton recovery

Figure 4: ROC plot of the models estimated from the data [21] using GIES as reported in [8] and the
linear Gaussian and kernel-based versions of IGSP with different cut-off values for the CI tests. The
solid line indicates the accuracy achieved by random guessing.

on empirical evidence that the gene deletion was effective1. We used GIES and IGSP to learn causal
DAGs over 24 of the measured genes, including the ones targeted by the interventions, using both
observational and interventional data. We followed [4] in focusing on these 24 genes, as they are
general transcription factors known to regulate each other as well as numerous other genes [7].

We evaluated the learned causal DAGs based on their accuracy in predicting the true effects of each of
the interventions (shown in Figure 5(a)) when leaving out the data for that intervention. Specifically,
if the predicted DAG indicates an arrow from gene A to gene B, we count this as a true positive if
knocking out gene A caused a significant change2 in the distribution of gene B, and a false positive
otherwise. For each inference algorithm and for every choice of the tuning parameters, we learned
eight causal DAGs, each one trained with one of the interventional datasets being left out. We then
evaluated each algorithm based on how well the causal DAGs are able to predict the corresponding
held-out interventional data. As seen in Figure 5(b), IGSP predicted the held-out interventional data
better than GIES (as implemented in the R-package pcalg) and random guessing, for a number of
choices of the cut-off parameter. The true and reconstructed networks for both genomics datasets are
shown in the Supplementary Material.

6 Discussion

We have presented two hybrid algorithms for causal inference using both observational and inter-
ventional data and we proved that both algorithms are consistent under the faithfulness assumption.
These algorithms are both interventional adaptations of the Greedy SP algorithm and are the first
algorithms of this type that have consistency guarantees. While Algorithm 1 suffers a high level of
inefficiency, IGSP is implementable and competitive with the state-of-the-art, i.e., GIES. Moreover,
IGSP has the distinct advantage that it is nonparametric and therefore does not require a linear
Gaussian assumption on the data-generating distribution. We conducted real data studies for protein
signaling and single-cell gene expression datasets, which are typically non-linear with non-Gaussian
noise. In general, IGSP outperformed GIES. This purports IGSP as a viable method for analyzing the
new high-resolution datasets now being produced by procedures such as perturb-seq. An important

1An intervention was considered effective if the distribution of the gene expression levels of the deleted gene
is significantly different from the distribution of its expression levels without intervention, based on a Wilcoxon
Rank-Sum test with α = 0.05. Ineffective interventions on a gene are typically due to poor targeting ability of
the guide-RNA designed for that gene.

2Based on a Wilcoxon Rank-Sum test with α = 0.05, which is approximately equivalent to a q-value of
magnitude ≥ 3 in Figure 5(a)
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(a) True effects of gene deletions (b) Causal effect prediction accuracy rate

Figure 5: (a) Heatmap of the true effects of each gene deletion on each measured gene. The q-value
has the same magnitude as the log p-value of the Wilcoxon rank-sum test between the distributions of
observational data and the interventional data. Positive and negative q-values indicate increased and
decreased abundance as a result of deletion respectively. (b) ROC plot of prediction accuracy by the
causal DAGs learned by IGSP and GIES. The solid line indicates the accuracy achieved by random
guessing.

challenge for future work is to make these algorithms scale to 20,000 nodes, i.e., the typical number
of genes in such studies. In addition, in future work it would be interesting to extend IGSP to allow
for latent confounders. An advantage of not allowing for latent confounders is that a DAG is usually
more identifiable. For example, if we consider a DAG with two observable nodes, a DAG without
confounders is fully identifiable by intervening on only one of the two nodes, but the same is not true
for a DAG with confounders.
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