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Abstract

We present a new model, Predictive State Recurrent Neural Networks (PSRNNs),
for filtering and prediction in dynamical systems. PSRNNs draw on insights from
both Recurrent Neural Networks (RNNs) and Predictive State Representations
(PSRs), and inherit advantages from both types of models. Like many successful
RNN architectures, PSRNNs use (potentially deeply composed) bilinear transfer
functions to combine information from multiple sources. We show that such bilinear
functions arise naturally from state updates in Bayes filters like PSRs, in which
observations can be viewed as gating belief states. We also show that PSRNNs
can be learned effectively by combining Backpropogation Through Time (BPTT)
with an initialization derived from a statistically consistent learning algorithm
for PSRs called two-stage regression (2SR). Finally, we show that PSRNNs can
be factorized using tensor decomposition, reducing model size and suggesting
interesting connections to existing multiplicative architectures such as LSTMs and
GRUs. We apply PSRNNs to 4 datasets, and show that we outperform several
popular alternative approaches to modeling dynamical systems in all cases.

1 Introduction

Learning to predict temporal sequences of observations is a fundamental challenge in a range of
disciplines including machine learning, robotics, and natural language processing. While there are a
wide variety of different approaches to modelling time series data, many of these approaches can be
categorized as either recursive Bayes Filtering or Recurrent Neural Networks.

Bayes Filters (BFs) [1] focus on modeling and maintaining a belief state: a set of statistics, which,
if known at time t, are sufficient to predict all future observations as accurately as if we know the
full history. The belief state is generally interpreted as the statistics of a distribution over the latent
state of a data generating process, conditioned on history. BFs recursively update the belief state by
conditioning on new observations using Bayes rule. Examples of common BFs include sequential
filtering in Hidden Markov Models (HMMs) [2] and Kalman Filters (KFs) [3].

Predictive State Representations [4] (PSRs) are a variation on Bayes filters that do not define system
state explicitly, but proceed directly to a representation of state as the statistics of a distribution
of features of future observations, conditioned on history. By defining the belief state in terms of
observables rather than latent states, PSRs can be easier to learn than other filtering methods [5–7].
PSRs also support rich functional forms through kernel mean map embeddings [8], and a natural
interpretation of model update behavior as a gating mechanism. This last property is not unique to
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PSRs, as it is also possible to interpret the model updates of other BFs such as HMMs in terms of
gating.

Due to their probabilistic grounding, BFs and PSRs possess a strong statistical theory leading
to efficient learning algorithms. In particular, method-of-moments algorithms provide consistent
parameter estimates for a range of BFs including PSRs [5, 7, 9–11]. Unfortunately, current versions
of method of moments initialization restrict BFs to relatively simple functional forms such as linear-
Gaussian (KFs) or linear-multinomial (HMMs).

Recurrent Neural Networks (RNNs) are an alternative to BFs that model sequential data via a
parameterized internal state and update function. In contrast to BFs, RNNs are directly trained to
minimize output prediction error, without adhering to any axiomatic probabilistic interpretation.
Examples of popular RNN models include Long-Short Term Memory networks [12] (LSTMs), Gated
Recurrent Units [13] (GRUs), and simple recurrent networks such as Elman networks [14].

RNNs have several advantages over BFs. Their flexible functional form supports large, rich models.
And, RNNs can be paired with simple gradient-based training procedures that achieve state-of-the-art
performance on many tasks [15]. RNNs also have drawbacks however: unlike BFs, RNNs lack an
axiomatic probabilistic interpretation, and are therefore difficult to analyze. Furthermore, despite
strong performance in some domains, RNNs are notoriously difficult to train; in particular it is
difficult to find good initializations.

In summary, RNNs and BFs offer complementary advantages and disadvantages: RNNs offer rich
functional forms at the cost of statistical insight, while BFs possess a sophisticated statistical theory
but are restricted to simpler functional forms in order to maintain tractable training and inference. By
drawing insights from both Bayes Filters and RNNs we develop a novel hybrid model, Predictive
State Recurrent Neural Networks (PSRNNs). Like many successful RNN architectures, PSRNNs
use (potentially deeply composed) bilinear transfer functions to combine information from multiple
sources. We show that such bilinear functions arise naturally from state updates in Bayes filters like
PSRs, in which observations can be viewed as gating belief states. We show that PSRNNs directly
generalize discrete PSRs, and can be learned effectively by combining Backpropogation Through
Time (BPTT) with an approximately consistent method-of-moments initialization based on two-stage
regression. We also show that PSRNNs can be factorized using tensor decomposition, reducing model
size and suggesting interesting connections to existing multiplicative architectures such as LSTMs.

2 Related Work

It is well known that a principled initialization can greatly increase the effectiveness of local search
heuristics. For example, Boots [16] and Zhang et al. [17] use subspace ID to initialize EM for linear
dyanmical systems, and Ko and Fox [18] use N4SID [19] to initialize GP-Bayes filters.

Pasa et al. [20] propose an HMM-based pre-training algorithm for RNNs by first training an HMM,
then using this HMM to generate a new, simplified dataset, and, finally, initializing the RNN weights
by training the RNN on this dataset.

Belanger and Kakade [21] propose a two-stage algorithm for learning a KF on text data. Their
approach consists of a spectral initialization, followed by fine tuning via EM using the ASOS method
of Martens [22]. They show that this approach has clear advantages over either spectral learning or
BPTT in isolation. Despite these advantages, KFs make restrictive linear-Gaussian assumptions that
preclude their use on many interesting problems.

Downey et al. [23] propose a two-stage algorithm for learning discrete PSRs, consisting of a spectral
initialization followed by BPTT. While that work is similar in spirit to the current paper, it is still an
attempt to optimize a BF using BPTT rather than an attempt to construct a true hybrid model. This
results in several key differences: they focus on the discrete setting, and they optimize only a subset
of the model parameters.

Haarnoja et al. [24] also recognize the complementary advantages of Bayes Filters and RNNs, and
propose a new network architecture attempting to combine some of the advantages of both. Their
approach differs substantially from ours as they propose a network consisting of a Bayes Filter
concatenated with an RNN, which is then trained end-to-end via backprop. In contrast our entire
network architecture has a dual interpretation as both a Bayes filter and a RNN. Because of this,
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our entire network can be initialized via an approximately consistent method of moments algorithm,
something not possible in [24].

Finally, Kossaifi et al. [25] also apply tensor decomposition in the neural network setting. They
propose a novel neural network layer, based on low rank tensor factorization, which can directly
process tensor input. This is in contrast to a standard approach where the data is flattened to a vector.
While they also recognize the strength of the multilinear structure implied by tensor weights, both
their setting and their approach differ from ours: they focus on factorizing tensor input data, while
we focus on factorizing parameter tensors which arise naturally from a kernelized interpretation of
Bayes rule.

3 Background

3.1 Predictive State Representations

Predictive state representations (PSRs) [4] are a class of models for filtering, prediction, and simulation
of discrete time dynamical systems. PSRs provide a compact representation of a dynamical system
by representing state as a set of predictions of features of future observations.

Let ft = f(ot:t+k−1) be a vector of features of future observations and let ht = h(o1:t−1) be a
vector of features of historical observations. Then the predictive state is qt = qt|t−1 = E[ft | o1:t−1].
The features are selected such that qt determines the distribution of future observations P (ot:t+k−1 |
o1:t−1).1 Filtering is the process of mapping a predictive state qt to qt+1 conditioned on ot, while
prediction maps a predictive state qt = qt|t−1 to qt+j|t−1 = E[ft+j | o1:t−1] without intervening
observations.

PSRs were originally developed for discrete data as a generalization of existing Bayes Filters such as
HMMs [4]. However, by leveraging the recent concept of Hilbert Space embeddings of distributions
[26], we can embed a PSR in a Hilbert Space, and thereby handle continuous observations [8].
Hilbert Space Embeddings of PSRs (HSE-PSRs) [8] represent the state as one or more nonparametric
conditional embedding operators in a Reproducing Kernel Hilbert Space (RKHS) [27] and use Kernel
Bayes Rule (KBR) [26] to estimate, predict, and update the state.

For a full treatment of HSE-PSRs see [8]. Let kf , kh, ko be translation invariant kernels [28] defined
on ft, ht, and ot respectively. We use Random Fourier Features [28] (RFF) to define projections
φt = RFF (ft), ηt = RFF (ht), and ωt = RFF (ot) such that kf (fi, fj) ≈ φTi φj , kh(hi, hj) ≈
ηTi ηj , ko(oi, oj) ≈ ωTi ωj . Using this notation, the HSE-PSR predictive state is qt = E[φt | ot:t−1].
Formally an HSE-PSR (hereafter simply referred to as a PSR) consists of an initial state b1, a 3-mode
update tensor W , and a 3-mode normalization tensor Z. The PSR update equation is

qt+1 = (W ×3 qt) (Z ×3 qt)
−1 ×2 ot. (1)

where ×i is tensor multiplication along the ith mode of the preceding tensor. In some settings (such
as with discrete data) it is possible to read off the observation probability directly from W ×3 qt;
however, in order to generalize to continuous observations with RFF features we include Z as a
separate parameter.

3.2 Two-stage Regression

Hefny et al. [7] show that PSRs can be learned by solving a sequence of regression problems. This
approach, referred to as Two-Stage Regression or 2SR, is fast, statistically consistent, and reduces to
simple linear algebra operations. In 2SR the PSR model parameters q1, W , and Z are learned using

1For convenience we assume that the system is k-observable: that is, the distribution of all future observations
is determined by the distribution of the next k observations. (Note: not by the next k observations themselves.)
At the cost of additional notation, this restriction could easily be lifted.

3



the history features ηt defined earlier via the following set of equations:

q1 =
1

T

T∑
t=1

φt (2)

W =

(
T∑
t=1

φt+1 ⊗ ωt ⊗ ηt

)
×3

(
T∑
t=1

ηt ⊗ φt

)+

(3)

Z =

(
T∑
t=1

ωt ⊗ ωt ⊗ ηt

)
×3

(
T∑
t=1

ηt ⊗ φt

)+

. (4)

Where + is the Moore-Penrose pseudo-inverse. It’s possible to view (2–4) as first estimating predictive
states by regression from history (stage 1) and then estimating parameters W and Z by regression
among predictive states (stage 2), hence the name Two-Stage Regression; for details see [7]. Finally
in practice we use ridge regression in order to improve model stability, and minimize the destabilizing
effect of rare events while preserving consistency. We could instead use nonlinear predictors in stage
1, but with RFF features, linear regression has been sufficient for our purposes.2 Once we learn model
parameters, we can apply the filtering equation (1) to obtain predictive states q1:T .

3.3 Tensor Decomposition

The tensor Canonical Polyadic decomposition (CP decomposition) [29] can be viewed as a general-
ization of the Singular Value Decomposition (SVD) to tensors. If T ∈ R(d1×...×dk) is a tensor, then a
CP decomposition of T is:

T =

m∑
i=1

a1i ⊗ a2i ⊗ ...⊗ aki

where aji ∈ Rdj and ⊗ is the Kronecker product. The rank of T is the minimum m such that the
above equality holds. In other words, the CP decomposition represents T as a sum of rank-1 tensors.

4 Predictive State Recurrent Neural Networks

In this section we introduce Predictive State Recurrent Neural Networks (PSRNNs), a new RNN
architecture inspired by PSRs. PSRNNs allow for a principled initialization and refinement via BPTT.
The key contributions which led to the development of PSRNNs are: 1) a new normalization scheme
for PSRs which allows for effective refinement via BPTT; 2) the extention of the 2SR algorithm to a
multilayered architecture; and 3) the optional use of a tensor decomposition to obtain a more scalable
model.

4.1 Architecture

The basic building block of a PSRNN is a 3-mode tensor, which can be used to compute a bilinear
combination of two input vectors. We note that, while bilinear operators are not a new development
(e.g., they have been widely used in a variety of systems engineering and control applications for
many years [30]), the current paper shows how to chain these bilinear components together into a
powerful new predictive model.

Let qt and ot be the state and observation at time t. Let W be a 3-mode tensor, and let q be a vector.
The 1-layer state update for a PSRNN is defined as:

qt+1 =
W ×2 ot ×3 qt + b

‖W ×2 ot ×3 qt + b‖2
(5)

Here the 3-mode tensor of weightsW and the bias vector b are the model parameters. This architecture
is illustrated in Figure 1a. It is similar, but not identical, to the PSR update (Eq. 1); sec 3.1 gives

2Note that we can train a regression model to predict any quantity from the state. This is useful for general
sequence-to-sequence mapping models. However, in this work we focus on predicting future observations.
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more detail on the relationship. This model may appear simple, but crucially the tensor contraction
W ×2 ot×3 qt integrates information from bt and ot multiplicatively, and acts as a gating mechanism,
as discussed in more detail in section 5.

The typical approach used to increase modeling capability for BFs (including PSRs) is to use an initial
fixed nonlinearity to map inputs up into a higher-dimensional space [31, 30]. PSRNNs incorporate
such a step, via RFFs. However, a multilayered architecture typically offers higher representation
power for a given number of parameters [32].

To obtain a multilayer PSRNN, we stack the 1-layer blocks of Eq. (5) by providing the output of one
layer as the observation for the next layer. (The state input for each layer remains the same.) In this
way we can obtain arbitrarily deep RNNs. This architecture is displayed in Figure 1b.

We choose to chain on the observation (as opposed to on the state) as this architecture leads to a
natural extension of 2SR to multilayered models (see Sec. 4.2). In addition, this architecture is
consistent with the typical approach for constructing multilayered LSTMs/GRUs [12]. Finally, this
architecture is suggested by the full normalized form of an HSE PSR, where the observation is passed
through two layers.

(a) Single Layer PSRNN (b) Multilayer PSRNN

Figure 1: PSRNN architecture: See equation 5 for details. We omit bias terms to avoid clutter.

4.2 Learning PSRNNs

There are two components to learning PSRNNs: an initialization procedure followed by gradient-
based refinement. We first show how a statistically consistent 2SR algorithm derived for PSRs can
be used to initialize the PSRNN model; this model can then be refined via BPTT. We omit the
BPTT equations as they are similar to existing literature, and can be easily obtained via automatic
differentiation in a neural network library such as PyTorch or TensorFlow.

The Kernel Bayes Rule portion of the PSR update (equation 1) can be separated into two terms:
(W ×3 qt) and (Z ×3 qt)

−1. The first term corresponds to calculating the joint distribution, while
the second term corresponds to normalizing the joint to obtain the conditional distribution. In the
discrete case, this is equivalent to dividing the joint distribution of ft+1 and ot by the marginal of ot;
see [33] for details.

If we remove the normalization term, and replace it with two-norm normalization, the PSR update
becomes qt+1 = W×3qt×2ot

‖W×3qt×2ot‖ , which corresponds to calculating the joint distribution (up to a scale
factor), and has the same functional form as our single-layer PSRNN update equation (up to bias).

It is not immediately clear that this modification is reasonable. We show in appendix B that our
algorithm is consistent in the discrete (realizable) setting; however, to our current knowledge we
lose the consistency guarantees of the 2SR algorithm in the full continuous setting. Despite this we
determined experimentally that replacing full normalization with two-norm normalization appears to
have a minimal effect on model performance prior to refinement, and results in improved performance
after refinement. Finally, we note that working with the (normalized) joint distribution in place of the
conditional distribution is a commonly made simplification in the systems literature, and has been
shown to work well in practice [34].

The adaptation of the two-stage regression algorithm of Hefny et al. [7] described above allows us
to initialize 1-layer PSRNNs; we now extend this approach to multilayered PSRNNs. Suppose we
have learned a 1-layer PSRNN P using two-stage regression. We can use P to perform filtering
on a dataset to generate a sequence of estimated states q̂1, ..., q̂n. According to the architecture
described in Figure 1b, these states are treated as observations in the second layer. Therefore we
can initialize the second layer by an additional iteration of two-stage regression using our estimated
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states q̂1, ..., q̂n in place of observations. This process can be repeated as many times as desired to
initialize an arbitrarily deep PSRNN. If the first layer were learned perfectly, the second layer would
be superfluous; however, in practice, we observe that the second layer is able to learn to improve on
the first layer’s performance.

Once we have obtained a PSRNN using the 2SR approach described above, we can use BPTT to
refine the PSRNN. We note that we choose to use 2-norm divisive normalization because it is not
practical to perform BPTT through the matrix inverse required in PSRs: the inverse operation is
ill-conditioned in the neighborhood of any singular matrix. We observe that 2SR provides us with an
initialization which converges to a good local optimum.

4.3 Factorized PSRNNs

In this section we show how the PSRNN model can be factorized to reduce the number of parameters
prior to applying BPTT.

Let (W, b0) be a PSRNN block. Suppose we decompose W using CP decomposition to obtain

W =

n∑
i=1

ai ⊗ bi ⊗ ci

Let A (similarly B, C) be the matrix whose ith row is ai (respectively bi, ci). Then the PSRNN state
update (equation (5)) becomes (up to normalization):

qt+1 =W ×2 ot ×3 qt + b (6)
= (A⊗B ⊗ C)×2 ot ×3 qt + b (7)

= AT (Bot � Cqt) + b (8)

where � is the Hadamard product. We call a PSRNN of this form a factorized PSRNN. This
model architecture is illustrated in Figure 2. Using a factorized PSRNN provides us with complete
control over the size of our model via the rank of the factorization. Importantly, it decouples the
number of model parameters from the number of states, allowing us to set these two hyperparameters
independently.

Figure 2: Factorized PSRNN Architecture

We determined experimentally that factorized PSRNNs are poorly conditioned when compared with
PSRNNs, due to very large and very small numbers often occurring in the CP decomposition. To
alleviate this issue, we need to initialize the bias b in a factorized PSRNN to be a small multiple of
the mean state. This acts to stabilize the model, regularizing gradients and preventing us from moving
away from the good local optimum provided by 2SR.

We note that a similar stabilization happens automatically in randomly initialized RNNs: after the
first few iterations the gradient updates cause the biases to become non-zero, stabilizing the model
and resulting in subsequent gradient descent updates being reasonable. Initialization of the biases is
only a concern for us because we do not want the original model to move away from our carefully
prepared initialization due to extreme gradients during the first few steps of gradient descent.

In summary, we can learn factorized PSRNNs by first using 2SR to initialize a PSRNN, then using CP
decomposition to factorize the tensor model parameters to obtain a factorized PSRNN, then applying
BPTT to the refine the factorized PSRNN.
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5 Discussion

The value of bilinear units in RNNs was the focus of recent work by Wu et al [35]. They introduced the
concept of Multiplicative Integration (MI) units — components of the form Ax�By — and showed
that replacing additive units by multiplicative ones in a range of architectures leads to significantly
improved performance. As Eq. (8) shows, factorizing W leads precisely to an architecture with MI
units.

Modern RNN architectures such as LSTMs and GRUs are known to outperform traditional RNN
architectures on many problems [12]. While the success of these methods is not fully understood,
much of it is attributed to the fact that these architectures possess a gating mechanism which allows
them both to remember information for a long time, and also to forget it quickly. Crucially, we note
that PSRNNs also allow for a gating mechanism. To see this consider a single entry in the factorized
PSRNN update (omitting normalization).

[qt+1]i =
∑
j

Aji

(∑
k

Bjk[ot]k �
∑
l

Cjl[qt]l

)
+ b (9)

The current state qt will only contribute to the new state if the function
∑
k Bjk[ot]k of ot is non-zero.

Otherwise ot will cause the model to forget this information: the bilinear component of the PSRNN
architecture naturally achieves gating.

We note that similar bilinear forms occur as components of many successful models. For example,
consider the (one layer) GRU update equation:

zt = σ(Wzot + Uzqt + cz)

rt = σ(Wrot + Urqt + cr)

qt+1 = zt � qt + (1− zt)� σ(Whot + Uh(rt � qt) + ch)

The GRU update is a convex combination of the existing state qt and and update termWhot+Uh(rt�
qt) + ch. We see that the core part of this update term Uh(rt � qt) + ch bears a striking similarity to
our factorized PSRNN update. The PSRNN update is simpler, though, since it omits the nonlinearity
σ(·), and hence is able to combine pairs of linear updates inside and outside σ(·) into a single matrix.

Finally, we would like to highlight the fact that, as discussed in section 5, the bilinear form shared in
some form by these models (including PSRNNs) resembles the first component of the Kernel Bayes
Rule update function. This observation suggests that bilinear components are a natural structure to
use when constructing RNNs, and may help explain the success of the above methods over alternative
approaches. This hypothesis is supported by the fact that there are no activation functions (other than
divisive normalization) present in our PSRNN architecture, yet it still manages to achieve strong
performance.

6 Experimental Setup

In this section we describe the datasets, models, model initializations, model hyperparameters, and
evaluation metrics used in our experiments.

We use the following datasets in our experiments:

• Penn Tree Bank (PTB) This is a standard benchmark in the NLP community [36]. Due to
hardware limitations we use a train/test split of 120780/124774 characters.

• Swimmer We consider the 3-link simulated swimmer robot from the open-source package
OpenAI gym.3 The observation model returns the angular position of the nose as well as the
angles of the two joints. We collect 25 trajectories from a robot that is trained to swim forward
(via the cross entropy with a linear policy), with a train/test split of 20/5.
• Mocap This is a Human Motion Capture dataset consisting of 48 skeletal tracks from three human

subjects collected while they were walking. The tracks have 300 timesteps each, and are from
a Vicon motion capture system. We use a train/test split of 40/8. Features consist of the 3D
positions of the skeletal parts (e.g., upper back, thorax, clavicle).

3https://gym.openai.com/
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• Handwriting This is a digit database available on the UCI repository [37, 38] created using a
pressure sensitive tablet and a cordless stylus. Features are x and y tablet coordinates and pressure
levels of the pen at a sampling rate of 100 milliseconds. We use 25 trajectories with a train/test
split of 20/5.

Models compared are LSTMs [30], GRUs [13], basic RNNs [14], KFs [3], PSRNNs, and factorized
PSRNNs. All models except KFs consist of a linear encoder, a recurrent module, and a linear decoder.
The encoder maps observations to a compressed representation; in the context of text data it can be
viewed as a word embedding. The recurrent module maps a state and an observation to a new state
and an output. The decoder maps an output to a predicted observation.4 We initialize the LSTMs and
RNNs with random weights and zero biases according to the Xavier initialization scheme [39]. We
initialize the the KF using the 2SR algorithm described in [7]. We initialize PSRNNs and factorized
PSRNNs as described in section 3.1.

In two-stage regression we use a ridge parameter of 10(−2)n where n is the number of training
examples (this is consistent with the values suggested in [8]). (Experiments show that our approach
works well for a wide variety of hyperparameter values.) We use a horizon of 1 in the PTB experiments,
and a horizon of 10 in all continuous experiments. We use 2000 RFFs from a Gaussian kernel, selected
according to the method of [28], and with the kernel width selected as the median pairwise distance.
We use 20 hidden states, and a fixed learning rate of 1 in all experiments. We use a BPTT horizon of
35 in the PTB experiments, and an infinite BPTT horizon in all other experiments. All models are
single layer unless stated otherwise.

We optimize models on the PTB using Bits Per Character (BPC) and evaluate them using both BPC
and one-step prediction accuracy (OSPA). We optimize and evaluate all continuous experiments using
the Mean Squared Error (MSE).

7 Results

In Figure 3a we compare performance of LSTMs, GRUs, and Factorized PSRNNs on PTB, where
all models have the same number of states and approximately the same number of parameters. To
achieve this we use a factorized PSRNN of rank 60. We see that the factorized PSRNN significantly
outperforms LSTMs and GRUs on both metrics. In Figure 3b we compare the performance of 1- and
2-layer PSRNNs on PTB. We see that adding an additional layer significantly improves performance.

4This is a standard RNN architecture; e.g., a PyTorch implementation of this architecture for text prediction
can be found at https://github.com/pytorch/examples/tree/master/word_language_model.

(a) BPC and OSPA on PTB. All
models have the same number of
states and approximately the same
number of parameters.

(b) Comparison between 1- and 2-
layer PSRNNs on PTB.

(c) Cross-entropy and prediction
accuracy on Penn Tree Bank for
PSRNNs and factorized PSRNNs
of various rank.

Figure 3: PTB Experiments
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In Figure 3c we compare PSRNNs with factorized PSRNNs on the PTB. We see that PSRNNs
outperform factorized PSRNNs regardless of rank, even when the factorized PSRNN has significantly
more model parameters. (In this experiment, factorized PSRNNs of rank 7 or greater have more
model parameters than a plain PSRNN.) This observation makes sense, as the PSRNN provides a
simpler optimization surface: the tensor multiplication in each layer of a PSRNN is linear with respect
to the model parameters, while the tensor multiplication in each layer of a Factorized PSRNN is
bilinear. In addition, we see that higher-rank factorized models outperform lower-rank ones. However,
it is worth noting that even models with low rank still perform well, as demonstrated by our rank 40
model still outperforming GRUs and LSTMs, despite having fewer parameters.

(a) MSE vs Epoch on the Swimmer, Mocap, and Handwriting datasets

(b) Test Data vs Model Prediction on a single feature of Swimmer. The first row shows initial performance. The
second row shows performance after training. In order the columns show KF, RNN, GRU, LSTM, and PSRNN.

Figure 4: Swimmer, Mocap, and Handwriting Experiments

In Figure 4a we compare model performance on the Swimmer, Mocap, and Handwriting datasets.
We see that PSRNNs significantly outperform alternative approaches on all datasets. In Figure 4b we
attempt to gain insight into why using 2SR to initialize our models is so beneficial. We visualize the
the one step model predictions before and after BPTT. We see that the behavior of the initialization
has a large impact on the behavior of the refined model. For example the initial (incorrect) oscillatory
behavior of the RNN in the second column is preserved even after gradient descent.

8 Conclusions

We present PSRNNs: a new approach for modelling time-series data that hybridizes Bayes filters with
RNNs. PSRNNs have both a principled initialization procedure and a rich functional form. The basic
PSRNN block consists of a 3-mode tensor, corresponding to bilinear combination of the state and
observation, followed by divisive normalization. These blocks can be arranged in layers to increase
the expressive power of the model. We showed that tensor CP decomposition can be used to obtain
factorized PSRNNs, which allow flexibly selecting the number of states and model parameters. We
showed how factorized PSRNNs can be viewed as both an instance of Kernel Bayes Rule and a gated
architecture, and discussed links to existing multiplicative architectures such as LSTMs. We applied
PSRNNs to 4 datasets and showed that we outperform alternative approaches in all cases.
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