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Abstract

Nowozin et al showed last year how to extend the GAN principle to all f -
divergences. The approach is elegant but falls short of a full description of the
supervised game, and says little about the key player, the generator: for example,
what does the generator actually converge to if solving the GAN game means
convergence in some space of parameters? How does that provide hints on the gen-
erator’s design and compare to the flourishing but almost exclusively experimental
literature on the subject? In this paper, we unveil a broad class of distributions for
which such convergence happens — namely, deformed exponential families, a wide
superset of exponential families —. We show that current deep architectures are
able to factorize a very large number of such densities using an especially compact
design, hence displaying the power of deep architectures and their concinnity in the
f -GAN game. This result holds given a sufficient condition on activation functions
— which turns out to be satisfied by popular choices. The key to our results is a
variational generalization of an old theorem that relates the KL divergence between
regular exponential families and divergences between their natural parameters. We
complete this picture with additional results and experimental insights on how
these results may be used to ground further improvements of GAN architectures,
via (i) a principled design of the activation functions in the generator and (ii) an
explicit integration of proper composite losses’ link function in the discriminator.

1 Introduction

In a recent paper, Nowozin et al. [30] showed that the GAN principle [15] can be extended to the
variational formulation of all f -divergences. In the GAN game, there is an unknown distribution P
which we want to approximate using a parameterised distribution Q. Q is learned by a generator
by finding a saddle point of a function which we summarize for now as f -GAN(P, Q), where f is
a convex function (see eq. (7) below for its formal expression). A part of the generator’s training
involves as a subroutine a supervised adversary — hence, the saddle point formulation – called
discriminator, which tries to guess whether randomly generated observations come from P or Q.
Ideally, at the end of this supervised game, we want Q to be close to P, and a good measure of this is
the f -divergence If (P‖Q), also known as Ali-Silvey distance [1, 12]. Initially, one choice of f was
considered [15]. Nowozin et al. significantly grounded the game and expanded its scope by showing
that for any f convex and suitably defined, then [30, Eq. 4]:

f -GAN(P, Q) ≤ If (P‖Q) . (1)

The inequality is an equality if the discriminator is powerful enough. So, solving the f -GAN game
can give guarantees on how P and Q are distant to each other in terms of f -divergence. This elegant
characterization of the supervised game unfortunately falls short of justifying or elucidating all
parameters of the supervised game [30, Section 2.4], and the paper is also silent regarding a key
part of the game: the link between distributions in the variational formulation and the generator, the
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main player which learns a parametric model of a density. In doing so, the f -GAN approach and
its members remain within an information theoretic framework that relies on divergences between
distributions only [30]. In the GAN world at large, this position contrasts with other prominent
approaches that explicitly optimize geometric distortions between the parameters or support of
distributions [6, 14, 16, 21, 22], and raises the problem of connecting the f -GAN approach to any
sort of information geometric optimization. One such information-theoretic/information-geometric
identity is well known: The Kullback-Leibler (KL) divergence between two distributions of the
same (regular) exponential family equals a Bregman divergence D between their natural parameters
[2, 4, 7, 9, 35], which we can summarize as:

IfKL
(P‖Q) = D(θ‖ϑ) . (2)

Here, θ and ϑ are respectively the natural parameters of P and Q. Hence, distributions are points on
a manifold on the right-hand side, a powerful geometric statement [4]; however, being restricted to
KL divergence or "just" exponential families, it certainly falls short of the power to explain the GAN
game. To our knowledge, the only generalizations known fall short of the f -divergence formulation
and are not amenable to the variational GAN formulation [5, Theorem 9], [13, Theorem 3].

Our first contribution is such an identity that connects the general If -divergence formulation in eq.
(1) to the general D (Bregman) divergence formulation in eq. (2). We now briefly state it, postponing
the details to Section 3:

f -GAN(P, escort(Q)) = D(θ‖ϑ) + Penalty(Q) , (3)

for P and Q (with respective parameters θ and ϑ) which happen to lie in a superset of exponential
families called deformed exponential families, that have received extensive treatment in statistical
physics and differential information geometry over the last decade [3, 25]. The right-hand side of
eq. (3) is the information geometric part [4], in which D is a Bregman divergence. Therefore, the
f -GAN problem can be equivalent to a geometric optimization problem [4], like for the Wasserstein
GAN and its variants [6]. Notice also that Q appears in the game in the form of an escort [5]. The
difference vanish only for exponential families (escort(Q) = Q, Penalty(Q) = 0 and f = KL).

Our second contribution drills down into the information-theoretic and information-geometric
parts of (3). In particular, from the former standpoint, we completely specify the parameters of the
supervised game, unveiling a key parameter left arbitrary in [30] (explicitly incorporating the link
function of proper composite losses [32]). From the latter standpoint, we show that the standard deep
generator architecture is powerful at modelling complex escorts of any deformed exponential family,
factorising a number of escorts in order of the total inner layers’ dimensions, and this factorization
happens for an especially compact design. This hints on a simple sufficient condition on the activation
function to guarantee the escort modelling, and it turns out that this condition is satisfied, exactly or
in a limit sense, by most popular activation functions (ELU, ReLU, Softplus, ...). We also provide
experiments1 that display the uplift that can be obtained through a principled design of the activation
function (generator), or tuning of the link function (discriminator).

Due to the lack of space, a supplement (SM) provides the proof of the results in the main file and
additional experiments. A longer version with a more exhaustive treatment of related results is
available [27]. The rest of this paper is as follows. Section § 2 presents definition, § 3 formally
presents eq. (3), § 4 derives consequences for deep learning, § 5 completes the supervised game
picture of [30], Section § 6 presents experiments and a last Section concludes.

2 Definitions
Throughout this paper, the domain X of observations is a measurable set. We begin with two
important classes of distortion measures, f -divergences and Bregman divergences.

Definition 1 For any two distributions P and Q having respective densities P and Q absolutely
continuous with respect to a base measure µ, the f -divergence between P and Q, where f : R+ → R
is convex with f(1) = 0, is

If (P‖Q)
.
= EX∼Q

[
f

(
P (X)

Q(X)

)]
=

∫
X

Q(x) · f
(
P (x)

Q(x)

)
dµ(x) . (4)

1The code used for our experiments is available through https://github.com/qulizhen/fgan_info_geometric
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For any convex differentiable ϕ : Rd → R, the (ϕ-)Bregman divergence between θ and % is:

Dϕ(θ‖%)
.
= ϕ(θ)− ϕ(%)− (θ − %)>∇ϕ(%) , (5)

where ϕ is called the generator of the Bregman divergence.

f -divergences are the key distortion measure of information theory, while Bregman divergences are
the key distortion measure of information geometry. A distribution P from a (regular) exponential
family with cumulant C : Θ → R and sufficient statistics φ : X → Rd has density PC(x|θ,φ)

.
=

exp(φ(x)>θ − C(θ)), where Θ is a convex open set, C is convex and ensures normalization on the
simplex (we leave implicit the associated dominating measure [3]). A fundamental Theorem ties
Bregman divergences and f -divergences: when P and Q belong to the same exponential family, and
denoting their respective densities PC(x|θ,φ) andQC(x|ϑ,φ), it holds that IKL(P‖Q) = DC(ϑ‖θ).
Here, IKL is Kullback-Leibler (KL) f -divergence (f .

= x 7→ x log x). Remark that the arguments in
the Bregman divergence are permuted with respect to those in eq. (2) in the introduction. This also
holds if we consider fKL in eq. (2) to be the Csiszár dual of f [8], namely fKL : x 7→ − log x, since
in this case IfKL

(P‖Q) = IKL(Q‖P) = DC(θ‖ϑ). We made this choice in the introduction for the
sake of readability in presenting eqs. (1 — 3). We now define generalizations of exponential families,
following [5, 13]. Let χ : R+ → R+ be non-decreasing [25, Chapter 10]. We define the χ-logarithm,
logχ, as logχ(z)

.
=
∫ z

1
1
χ(t)dt. The χ-exponential is expχ(z)

.
= 1 +

∫ z
0
λ(t)dt, where λ is defined

by λ(logχ(z))
.
= χ(z). In the case where the integrals are improper, we consider the corresponding

limit in the argument / integrand.

Definition 2 [5] A distribution P from a χ-exponential family (or deformed exponential family, χ
being implicit) with convex cumulant C : Θ→ R and sufficient statistics φ : X→ Rd has density
given by Pχ,C(x|θ,φ)

.
= expχ(φ(x)>θ −C(θ)), with respect to a dominating measure µ. Here, Θ

is a convex open set and θ is called the coordinate of P. The escort density (or χ-escort) of Pχ,C is

P̃χ,C
.
=

1

Z
· χ(Pχ,C) , Z

.
=

∫
X

χ(Pχ,C(x|θ,φ))dµ(x) . (6)

Z is the escort’s normalization constant.

We leaving implicit the dominating measure and denote P̃ the escort distribution of P whose density
is given by eq. (6). We shall name χ the signature of the deformed (or χ-)exponential family, and
sometimes drop indexes to save readability without ambiguity, noting e.g. P̃ for P̃χ,C . Notice that
normalization in the escort is ensured by a simple integration [5, Eq. 7]. For the escort to exist, we
require that Z <∞ and therefore χ(P ) is finite almost everywhere. Such a requirement would be
satisfied in the GAN game. There is another generalization of regular exponential families, known as
generalized exponential families [13, 27]. The starting point of our result is the following Theorem,
in which the information-theoretic part is not amenable to the variational GAN formulation.

Theorem 3 [5][36] for any two χ-exponential distributions P and Q with respective densities
Pχ,C , Qχ,C and coordinates θ, ϑ, DC(θ‖ϑ) = EX∼Q̃[logχ(Qχ,C(X))− logχ(Pχ,C(X))].

We now briefly frame the now popular (f -)GAN adversarial learning [15, 30]. We have a true
unknown distribution P over a set of objects, e.g. 3D pictures, which we want to learn. In the GAN
setting, this is the objective of a generator, who learns a distribution Qθ parameterized by vector
θ. Qθ works by passing (the support of) a simple, uninformed distribution, e.g. standard Gaussian,
through a possibly complex function, e.g. a deep net whose parameters are θ and maps to the support
of the objects of interest. Fitting Q. involves an adversary (the discriminator) as subroutine, which
fits classifiers, e.g. deep nets, parameterized by ω. The generator’s objective is to come up with
arg minθ Lf (θ) with Lf (θ) the discriminator’s objective:

Lf (θ)
.
= sup

ω
{EX∼P[Tω(X)]− EX∼Qθ [f?(Tω(X))]} , (7)

where ? is Legendre conjugate [10] and Tω : X → R integrates the classifier of the discriminator
and is therefore parameterized by ω. Lf is a variational approximation to a f -divergence [30]; the
discriminator’s objective is to segregate true (P) from fake (Q.) data. The original GAN choice, [15]

fGAN(z)
.
= z log z − (z + 1) log(z + 1) + 2 log 2 (8)

(the constant ensures f(1) = 0) can be replaced by any convex f meeting mild assumptions.
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3 A variational information geometric identity for the f -GAN game

We deliver a series of results that will bring us to formalize eq. (3). First, we define a new set of
distortion measures, that we call KLχ divergences.

Definition 4 For any χ-logarithm and distributions P,Q having respective densities P and Q
absolutely continuous with respect to base measure µ, the KLχ divergence between P and Q is
defined as KLχ(P‖Q)

.
= EX∼P

[
− logχ (Q(X)/P (X))

]
.

Since χ is non-decreasing, − logχ is convex and so any KLχ divergence is an f -divergence.
When χ(z)

.
= z, KLχ is the KL divergence. In what follows, base measure µ and abso-

lute continuity are implicit, as well as that P (resp. Q) is the density of P (resp. Q). We
now relate KLχ divergences vs f -divergences. Let ∂f be the subdifferential of convex f and
IP,Q

.
= [infx P (x)/Q(x), supx P (x)/Q(x)) ⊆ R+ denote the range of density ratios of P over Q.

Our first result states that if there is a selection of the subdifferential which is upperbounded on IP,Q,
the f -divergence If (P‖Q) is equal to a KLχ divergence.

Theorem 5 Suppose that P,Q are such that there exists a selection ξ ∈ ∂f with sup ξ(IP,Q) <∞.
Then ∃χ : R+ → R+ non decreasing such that If (P‖Q) = KLχ(Q‖P).

Theorem 5 essentially covers most if not all relevant GAN cases, as the assumption has to be satisfied
in the GAN game for its solution not to be vacuous up to a large extent (eq. (7)). We provide a
more complete treatment in the extended version [27]. The proof of Theorem 5 (in SM, Section
I) is constructive: it shows how to pick χ which satisfies all requirements. It brings the following
interesting corollary: under mild assumptions on f , there exists a χ that fits for all densities P and Q.
A prominent example of f that fits is the original GAN choice for which we can pick

χGAN(z)
.
=

1

log
(
1 + 1

z

) . (9)

We now define a slight generalization of KLχ-divergences and allow for χ to depend on the choice
of the expectation’s X, granted that for any of these choices, it will meet the constraints to be
R+ → R+ and also increasing, and therefore define a valid signature. For any f : X → R+, we
denote KLχf

(P‖Q)
.
= EX∼P

[
− logχf(X)

(Q(X)/P (X))
]
, where for any p ∈ R+, χp(t)

.
= 1

p ·χ(tp).
Whenever f = 1, we just write KLχ as we already did in Definition 4. We note that for any x ∈ X,
χf(x) is increasing and non negative because of the properties of χ and f , so χf(x)(t) defines a
χ-logarithm. We are ready to state a Theorem that connects KLχ-divergences and Theorem 3.

Theorem 6 Letting P .
= Pχ,C andQ .

= Qχ,C for short in Theorem 3, we have EX∼Q̃[logχ(Q(X))−
logχ(P (X))] = KLχQ̃

(Q̃‖P)− J(Q), with J(Q)
.
= KLχQ̃

(Q̃‖Q).

(Proof in SM, Section II) To summarize, we know that under mild assumptions relatively to the GAN
game, f -divergences coincide with KLχ divergences (Theorems 5). We also know from Theorem
6 that KLχ.

divergences quantify the geometric proximity between the coordinates of generalized
exponential families (Theorem 3). Hence, finding a geometric (parameter-based) interpretation of
the variational f -GAN game as described in eq. (7) can be done via a variational formulation of the
KLχ divergences appearing in Theorem 6. Since penalty J(Q) does not belong to the GAN game (it
does not depend on P), it reduces our focus on KLχQ̃

(Q̃‖P).

Theorem 7 KLχQ̃
(Q̃‖P) admits the variational formulation

KLχQ̃
(Q̃‖P) = sup

T∈R++
X

{
EX∼P[T (X)]− EX∼Q̃[(− logχQ̃

)?(T (X))]
}
, (10)

with R++
.
= R\R++. Furthermore, letting Z denoting the normalization constant of the χ-escort of

Q, the optimum T ∗ : X→ R++ to eq. (10) is T ∗(x) = −(1/Z) · (χ(Q(x))/χ(P (x))).
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(Proof in SM, Section III) Hence, the variational f -GAN formulation can be captured in an
information-geometric framework by the following identity using Theorems 3, 5, 7.

Corollary 8 (the variational information-geometric f -GAN identity) Using notations from Theorems
6, 7 and letting θ (resp. ϑ) denote the coordinate of P (resp. Q), we have:

sup
T∈R++

X

{
EX∼P[T (X)]− EX∼Q̃[(− logχQ̃

)?(T (X))]
}

= DC(θ‖ϑ) + J(Q) . (11)

We shall also name for short vig-f -GAN the identity in eq. (11). We note that we can drill down
further the identity, expressing in particular the Legendre conjugate (− logχQ̃

)? with an equivalent
"dual" (negative) χ-logarithm in the variational problem [27]. The left hand-side of Eq. (11) has the
exact same overall shape as the variational objective of [30, Eqs 2, 6]. However, it tells the formal
story of GANs in significantly greater details, in particular for what concerns the generator. For
example, eq. (11) yields a new characterization of the generators’ convergence: because DC is a
Bregman divergence, it satisfies the identity of the indiscernibles. So, solving the f -GAN game [30]
can guarantees convergence in the parameter space (ϑ vs θ). In the realm of GAN applications, it
makes sense to consider that P (the true distribution) can be extremely complex. Therefore, even when
deformed exponential families are significantly more expressive than regular exponential families
[25], extra care should be put before arguing that complex applications comply with such a geometric
convergence in the parameter space. One way to circumvent this problem is to build distributions in
Q that factorize many deformed exponential families. This is one strong point of deep architectures
that we shall prove next.

4 Deep architectures in the vig-f -GAN game

In the GAN game, distribution Q in eq. (11) is built by the generator (call it Qg), by passing the
support of a simple distribution (e.g. uniform, standard Gaussian), Qin, through a series of non-linear
transformations. Letting Qin denote the corresponding density, we now compute Qg. Our generator
g : X→ Rd consists of two parts: a deep part and a last layer. The deep part is, given some L ∈ N,
the computation of a non-linear transformation φL : X→ RdL as

Rdl 3 φl(x)
.
= v(Wlφl−1(x) + bl) ,∀l ∈ {1, 2, ..., L} , (12)

φ0(x)
.
= x ∈ X . (13)

v is a function computed coordinate-wise, such as (leaky) ReLUs, ELUs [11, 17, 23, 24], Wl ∈
Rdl×dl−1 , bl ∈ Rdl . The last layer computes the generator’s output fromφL: g(x)

.
= vOUT(ΓφL(x)+

β), with Γ ∈ Rd×dL ,β ∈ Rd; in general, vOUT 6= v and vOUT fits the output to the domain at hand,
ranging from linear [6, 20] to non-linear functions like tanh [30]. Our generator captures the
high-level features of some state of the art generative approaches [31, 37].

To carry our analysis, we make the assumption that the network is reversible, which is going to reguire
that vOUT,Γ,Wl (l ∈ {1, 2, ..., L}) are invertible. We note that popular examples can be invertible (e.g.
DCGAN, if we use µ-ReLU, dimensions match and fractional-strided convolutions are invertible).
At this reasonable price, we get in closed form the generator’s density and it shows the following:
for any continuous signature χnet, there exists an activation function v such that the deep part in the
network factors as escorts for the χnet-exponential family. Let 1i denote the ith canonical basis vector.

Theorem 9 ∀vOUT,Γ,Wl invertible (l ∈ {1, 2, ..., L}), for any continuous signature χnet, there exists
activation v and bl ∈ Rd (∀l ∈ {1, 2, ..., L}) such that for any output z, letting x .

= g−1(z),
Qg(z) factorizes as Qg(z) = (Qin(x)/Q̃deep(x)) · 1/(Hout(x) · Znet), with Znet > 0 a constant,
Hout(x)

.
=
∏d
i=1 |v′OUT(γ

>
i φL(x) + βi)|, γi

.
= Γ>1i, and (letting wl,i

.
= W>l 1i):

Q̃deep(x)
.
=

L∏
l=1

d∏
i=1

P̃χnet,bl,i(x|wl,i,φl−1) . (14)
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Name v(z) χ(z)

ReLU(§) max{0, z} 1z>0

Leaky-ReLU(†)
{

z if z > 0
εz if z ≤ 0

{
1 if z > −δ
1
ε

if z ≤ −δ

(α, β)-ELU(♥)

{
βz if z > 0

α(exp(z)− 1) if z ≤ 0

{
β if z > α
z if z ≤ α

prop-τ (♣) k + τ?(z)
τ?(0)

τ ′−1◦(τ?)−1(τ?(0)z)
τ?(0)

Softplus(♦) k + log2(1 + exp(z)) 1
log 2
·
(
1− 2−z

)
µ-ReLU(♠) k +

z+
√

(1−µ)2+z2
2

4z2

(1−µ)2+4z2

LSU k +

 0 if z < −1
(1 + z)2 if z ∈ [−1, 1]

4z if z > 1

{
2
√
z if z < 4

4 if z > 4

Table 1: Some strongly/weakly admissible couples (v, χ). (§) : 1. is the indicator function; (†) :
δ ≤ 0, 0 < ε ≤ 1 and dom(v) = [δ/ε,+∞). (♥) : β ≥ α > 0; (♣) : ? is Legendre conjugate; (♠) :
µ ∈ [0, 1). Shaded: prop-τ activations; k is a constant (e.g. such that v(0) = 0) (see text).

(Proof in SM, Section IV) The relationship between the inner layers of a deep net and deformed
exponential families (Definition 2) follows from the theorem: rows in Wls define coordinates, φl
define "deep" sufficient statistics, bl are cumulants and the crucial part, the χ-family, is given by the
activation function v. Notice also that the bls are learned, and so the deformed exponential families’
normalization is in fact learned and not specified. We see that Q̃deep factors escorts, and in number.
What is notable is the compactness achieved by the deep representation: the total dimension of all
deep sufficient statistics in Q̃deep (eq. (14)) is L · d. To handle this, a shallow net with a single inner
layer would require a matrix W of space Ω(L2 · d2). The deep net g requires only O(L · d2) space to
store all Wls. The proof of Theorem 9 is constructive: it builds v as a function of χ. In fact, the proof
also shows how to build χ from the activation function v in such a way that Q̃deep factors χ-escorts.
The following Lemma essentially says that this is possible for all strongly admissible activations v.

Definition 10 Activation function v is strongly admissible iff dom(v) ∩ R+ 6= ∅ and v is C1,
lowerbounded, strictly increasing and convex. v is weakly admissible iff for any ε > 0, there exists
vε strongly admissible such that ||v − vε||L1

< ε, where ||f ||L1

.
=
∫
|f(t)|dt.

Lemma 11 The following holds: (i) for any strongly admissible v, there exists signature χ such that
Theorem 9 holds; (ii) (γ,γ)-ELU (for any γ > 0), Softplus are strongly admissible. ReLU is weakly
admissible.

(proof in SM, Section V) The proof uses a trick for ReLU which can easily be repeated for (α, β)-
ELU, and for leaky-ReLU, with the constraint that the domain has to be lowerbounded. Table 1
provides some examples of strongly / weakly admissible activations. It includes a wide class of
so-called "prop-τ activations", where τ is negative a concave entropy, defined on [0, 1] and symmetric
around 1/2 [29]. This concludes our treatment of the information geometric part of the vig-f -GAN
identity. We now complete it with a treatment of its information-theoretic part.

5 A complete proper loss picture of the supervised GAN game

In their generalization of the GAN objective, Nowozin et al. [30] leave untold a key part of the
supervised game: they split in eq. (7) the discriminator’s contribution in two, Tω = gf ◦ Vω , where
Vω : X → R is the actual discriminator, and gf is essentially a technical constraint to ensure that
Vω(.) is in the domain of f?. They leave the choice of gf "somewhat arbitrary" [30, Section 2.4]. We
now show that if one wants the supervised loss to have the desirable property to be proper composite
[32]2, then gf is not arbitrary. We proceed in three steps, first unveiling a broad class of proper
f -GANs that deal with this property. The initial motivation of eq. (7) was that the inner maximisation
may be seen as the f -divergence between P and Qθ [26], Lf (θ) = If (P‖Qθ). In fact, this variational

2informally, Bayes rule realizes the optimum and the loss accommodates for any real valued predictor.
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representation of an f -divergence holds more generally: by [33, Theorem 9], we know that for any
convex f , and invertible link function Ψ: (0, 1)→ R, we have:

inf
T : X→R

E
(X,Y)∼D

[`Ψ(Y, T (X))] = −1

2
· If (P ‖Q) (15)

where D is the distribution over (observations × {fake, real}) and the loss function `Ψ is defined by:

`Ψ(+1, z)
.
= −f ′

(
Ψ−1(z)

1−Ψ−1(z)

)
; `Ψ(−1, z)

.
= f?

(
f ′
(

Ψ−1(z)

1−Ψ−1(z)

))
, (16)

assuming f differentiable. Note now that picking Ψ(z) = f ′(z/(1 − z)) with z .
= T (x) and

simplifying eq. (15) with P[Y = fake] = P[Y = real] = 1/2 in the GAN game yields eq. (7). For
other link functions, however, we get an equally valid class of losses whose optimisation will yield
a meaningful estimate of the f -divergence. The losses of eq. (16) belong to the class of proper
composite losses with link function Ψ [32]. Thus (omitting parameters θ,ω), we rephrase eq. (7) and
refer to the proper f -GAN formulation as infQ LΨ(Q) with (` is as per eq. (16)):

LΨ(Q)
.
= sup
T : X→R

{
E

X∼P
[−`Ψ(+1, T (X))] + E

X∼Q
[−`Ψ(−1, T (X))]

}
. (17)

Note also that it is trivial to start from a suitable proper composite loss, and derive the corresponding
generator f for the f -divergence as per eq. (15). Finally, our proper composite loss view of the
f -GAN game allows us to elicitate gf in [30]: it is the composition of f ′ and Ψ in eq. (16).
The use of proper composite losses as part of the supervised GAN formulation sheds further light
on another aspect the game: the connection between the value of the optimal discriminator, and
the density ratio between the generator and discriminator distributions. Instead of the optimal
T ∗(x) = f ′(P (x)/Q(x)) for eq. (7) [30, Eq. 5], we now have with the more general eq. (17) the
result T ∗(x) = Ψ((1 +Q(x)/P (x))−1). We now show that proper f -GANs can easily be adapted
to eq. (11). We let χ•(t) .

= 1/χ−1(1/t).

Theorem 12 For any χ, define `x(−1, z)
.
= − log(χ•) 1

Q̃(x)

(−z), and let `(+1, z)
.
= −z. Then

LΨ(Q) in eq. (17) equals eq. (11). Its link in eq. (17) is Ψx(z) = −1/χQ̃(x) (z/(1− z)).

(Proof in SM, Section VI) Hence, in the proper composite view of the vig-f -GAN identity, the
generator rules over the supervised game: it tempers with both the link function and the loss
— but only for fake examples. Notice also that when z = −1, the fake examples loss satisfies
`x(−1,−1) = 0 regardless of x by definition of the χ-logarithm.

6 Experiments

Two of our theoretical contributions are (A) the fact that on the generator’s side, there exists numerous
activation functions v that comply with the design of its density as factoring escorts (Lemma 11),
and (B) the fact that on the discriminator’s side, the so-called output activation function gf of [30]
aggregates in fact two components of proper composite losses, one of which, the link function Ψ,
should be a fine knob to operate (Theorem 12). We have tested these two possibilities with the idea
that an experimental validation should provide substantial ground to be competitive with mainstream
approaches, leaving space for a finer tuning in specific applications. Also, in order not to mix their
effects, we have treated (A) and (B) separately.

Architectures and datasets — We provide in SM (Section VI) the detail of all experiments. To summa-
rize, we consider two architectures in our experiments: DCGAN [31] and the multilayer feedforward
network (MLP) used in [30]. Our datasets are MNIST [19] and LSUN tower category [38].

Comparison of varying activations in the generator (A) — We have compared µ-ReLUs with varying
µ in [0, 0.1, ..., 1] (hence, we include ReLU as a baseline for µ = 1), the Softplus and the Least
Square Unit (LSU, Table 1) activation (Figure 1). For each choice of the activation function, all
inner layers of the generator use the same activation function. We evaluate the activation functions
by using both DCGAN and the MLP used in [30] as the architectures. As training divergence, we
adopt both GAN [15] and Wasserstein GAN (WGAN, [6]). Results are shown in Figure 1 (left).
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µ

Softplus
LSU
ReLU

µ-ReLU Softplus / LS / ReLU Discriminator: varying link

Figure 1: Summary of our results on MNIST, on experiment A (left+center) and B (right). Left:
comparison of different values of µ for the µ-ReLU activation in the generator (ReLU = 1-ReLU, see
text). Thicker horizontal dashed lines present the ReLU average baseline: for each color, points above
the baselines represent values of µ for which ReLU is beaten on average. Center: comparison of
different activations in the generator, for the same architectures as in the left plot. Right: comparison
of different link function in the discriminator (see text, best viewed in color).

Three behaviours emerge when varying µ: either it is globally equivalent to ReLU (GAN DCGAN)
but with local variations that can be better (µ = 0.7) or worse (µ = 0), or it is almost consistently
better than ReLU (WGAN MLP) or worse (GAN MLP). The best results were obtained for GAN
DCGAN, and we note that the ReLU baseline was essentially beaten for values of µ yielding smaller
variance, and hence yielding smaller uncertainty in the results. The comparison between different
activation functions (Figure 1, center) reveals that (µ-)ReLU performs overall the best, yet with some
variations among architectures. We note in particular that, in the same way as for the comparisons
intra µ-ReLU (Figure 1, left), ReLU performs relatively worse than the other criteria for WGAN
MLP, indicating that there may be different best fit activations for different architectures, which is
good news. Visual results on LSUN (SM, Table A5) also display the quality of results when changing
the µ-ReLU activation.

Comparison of varying link functions in the discriminator (B) — We have compared the replacement
of the sigmoid function by a link which corresponds to the entropy which is theoretically optimal in
boosting algorithms, Matsushita entropy [18, 28], for which ΨMAT(z)

.
= (1/2) · (1 + z/

√
1 + z2).

Figure 1 (right) displays the comparison Matsushita vs "standard" (more specifically, we use sigmoid
in the case of GAN [30], and none in the case of WGAN to follow current implementations [6]). We
evaluate with both DCGAN and MLP on MNIST (same hyperparameters as for generators, ReLU
activation for all hidden layer activation of generators). Experiments tend to display that tuning the
link may indeed bring additional uplift: for GANs, Matsushita is indeed better than the sigmoid link
for both DCGAN and MLP, while it remains very competitive with the no-link (or equivalently an
identity link) of WGAN, at least for DCGAN.

7 Conclusion
It is hard to exaggerate the success of GAN approaches in modelling complex domains, and with
their success comes an increasing need for a rigorous theoretical understanding [34]. In this paper,
we complete the supervised understanding of the generalization of GANs introduced in [30], and
provide a theoretical background to understand its unsupervised part, showing in particular how deep
architectures can be powerful at tackling the generative part of the game. Experiments display that
the tools we develop may help to improve further the state of the art.
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