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Abstract

The k-means clustering algorithm is a ubiquitous tool in data mining and machine
learning that shows promising performance. However, its high computational
cost has hindered its applications in broad domains. Researchers have success-
fully addressed these obstacles with dimensionality reduction methods. Recently,
[1] develop a state-of-the-art random projection (RP) method for faster k-means
clustering. Their method delivers many improvements over other dimensionality
reduction methods. For example, compared to the advanced singular value de-
composition based feature extraction approach, [1] reduce the running time by a
factor of min{n, d}ε2log(d)/k for data matrix X ∈ Rn×d with n data points and
d features, while losing only a factor of one in approximation accuracy. Unfortu-
nately, they still require O( ndk

ε2log(d) ) for matrix multiplication and this cost will
be prohibitive for large values of n and d. To break this bottleneck, we carefully
build a sparse embedded k-means clustering algorithm which requires O(nnz(X))
(nnz(X) denotes the number of non-zeros in X) for fast matrix multiplication.
Moreover, our proposed algorithm improves on [1]’s results for approximation
accuracy by a factor of one. Our empirical studies corroborate our theoretical find-
ings, and demonstrate that our approach is able to significantly accelerate k-means
clustering, while achieving satisfactory clustering performance.

1 Introduction

Due to its simplicity and flexibility, the k-means clustering algorithm [2, 3, 4] has been identified
as one of the top 10 data mining algorithms. It has shown promising results in various real world
applications, such as bioinformatics, image processing, text mining and image analysis. Recently, the
dimensionality and scale of data continues to grow in many applications, such as biological, finance,
computer vision and web [5, 6, 7, 8, 9], which poses a serious challenge in designing efficient and
accurate algorithmic solutions for k-means clustering.

To address these obstacles, one prevalent technique is dimensionality reduction, which embeds the
original features into low dimensional space before performing k-means clustering. Dimensionality
reduction encompasses two kinds of approaches: 1) feature selection (FS), which embeds the
data into a low dimensional space by selecting the actual dimensions of the data; and 2) feature
extraction (FE), which finds an embedding by constructing new artificial features that are, for
example, linear combinations of the original features. Laplacian scores [10] and Fisher scores
[11] are two basic feature selection methods. However, they lack a provable guarantee. [12] first
propose a provable singular value decomposition (SVD) feature selection method. It uses the SVD
to find O(klog(k/ε)/ε2) actual features such that with constant probability the clustering structure

∗The first two authors make equal contributions.
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Table 1: Dimension reduction methods for k-means clustering. The third column corresponds to the
number of selected or extracted features. The fourth column corresponds to the time complexity of
each dimension reduction method. The last column corresponds to the approximation accuracy. N/A
denotes not available. nnz(X) denotes the number of non-zeros in X . ε and δ represent the gap to
optimality and the confidence level, respectively. Sparse embedding is abbreviated to SE.

METHOD DESCRIPTION DIMENSIONS TIME ACCURACY
[13] SVD-FE k O(ndmin{n, d}) 2
FOLKLORE RP-FE O( log(n)

ε2
) O(ndlog(n)

ε2log(d)
) 1 + ε

[12] SVD-FS O( klog(k/ε)
ε2

) O(ndmin{n, d}) 2 + ε
[14] SVD-FE O( k

ε2
) O(ndmin{n, d}) 1 + ε

[1] RP-FE O( k
ε2
) O( ndk

ε2log(d)
) 2 + ε

[15] RP-FE O( log(n)
n

) O(dlog(d)n+ dlog(n)) N/A
THIS PAPER SE-FE O(max( k+log(1/δ)

ε2
, 6
ε2δ

)) O(nnz(X)) 1 + ε

is preserved within a factor of 2 + ε. [13] propose a popular feature extraction approach, where k
artificial features are constructed using the SVD such that the clustering structure is preserved within
a factor of two. Recently, corollary 4.5 in [14]’s study improves [13]’s results, by claiming thatO( kε2 )
dimensions are sufficient for preserving 1 + ε accuracy.

Because SVD is computationally expensive, we focus on another important feature extraction method
that randomly projects the data into low dimensional space. [1] develop a state-of-the-art random
projection (RP) method, which is based on random sign matrices. Compared to SVD-based feature
extraction approaches [14], [1] reduce the running time by a factor of min{n, d}ε2log(d)/k2, while
losing only a factor of one in approximation accuracy. They also improve the results of the folklore
RP method by a factor of log(n)/k in terms of the number of embedded dimensions and the running
time, while losing a factor of one in approximation accuracy. Compared to SVD-based feature
selection methods, [1] reduce the embedded dimension by a factor of log(k/ε) and the running time
by a factor of min{n, d}ε2log(d)/k, respectively. Unfortunately, they still require O( ndk

ε2log(d) ) for
matrix multiplication and this cost will be prohibitive for large values of n and d.

This paper carefully constructs a sparse matrix for the RP method that only requires O(nnz(X)) for
fast matrix multiplication. Our algorithm is significantly faster than other dimensionality reduction
methods, especially when nnz(X) << nd. Theoretically, we show a provable guarantee for our
algorithm. Given d̃ = O(max(k+log(1/δ)ε2 , 6

ε2δ )), with probability at least 1−O(δ), our algorithm
preserves the clustering structure within a factor of 1 + ε, improving on the results of [12] and [1] by
a factor of one for approximation accuracy. These results are summarized in Table 1.

Experiments on three real-world data sets show that our algorithm outperforms other dimension
reduction methods. The results verify our theoretical analysis. We organize this paper as follows.
Section 2 introduces the concept of ε-approximation k-means clustering and our proposed sparse
embedded k-means clustering algorithm. Section 3 analyzes the provable guarantee for our algorithm
and experimental results are presented in Section 4. The last section provides our conclusions.

2 Sparse Embedded k-Means Clustering

2.1 ε-Approximation k-Means Clustering

Given X ∈ Rn×d with n data points and d features. We denote the transpose of the vector/matrix
by superscript ′ and the logarithms to base 2 by log. Let r = rank(X). By using singular value
decomposition (SVD), we haveX = UΣV ′, where Σ ∈ Rr×r is a positive diagonal matrix containing
the singular values of X in decreasing order (σ1 ≥ σ2 ≥ . . . ≥ σr), and U ∈ Rn×r and V ∈ Rd×r
contain orthogonal left and right singular vectors of X . Let Uk and Vk represent U and V with all
but their first k columns zeroed out, respectively, and Σk be Σ with all but its largest k singular
values zeroed out. Assume k ≤ r, [16] have already shown that Xk = UkΣkV

′
k is the optimal rank k

2Refer to Section 2.1 for the notations.

2



approximation to X for any unitarily invariant norm, including the Frobenius and spectral norms. The
pseudoinverse of X is given by X+ = V Σ−1U ′. Assume Xr|k = X −Xk. In denotes the n× n
identity matrix. Let ||X||F be the Frobenius norm of matrix X . For concision, ||A||2 represents the
spectral norm of A if A is a matrix and the Euclidean norm of A if A is a vector. Let nnz(X) denote
the number of non-zeros in X .

The task of k-means clustering is to partition n data points in d dimensions into k clusters. Let µi
be the centroid of the vectors in cluster i and c(xi) be the cluster that xi is assigned to. Assume
D ∈ Rn×k is the indicator matrix which has exactly one non-zero element per row, which denotes
cluster membership. The i-th data point belongs to the j-th cluster if and only if Dij = 1/

√
zj , where

zj denotes the number of data points in cluster j. Note that D′D = Ik and the i-th row of DD′X is
the centroid of xi’s assigned cluster. Thus, we have

∑n
i=1 ||xi − µc(xi)||22 = ||X −DD′X||2F . We

formally define the k-means clustering task as follows, which is also studied in [12] and [1].
Definition 1 (k-Means Clustering). Given X ∈ Rn×d and a positive integer k denoting the number
of clusters. Let D be the set of all n× k indicator matrices D. The task of k-means clustering is to
solve

min
D∈D

||X −DD′X||2F (1)

To accelerate the optimization of problem 1, we aim to find a ε-approximate solution for problem 1
by optimizing D (either exactly or approximately) over an embedded matrix X̂ ∈ Rn×d̃ with d̃ < d.
To measure the quality of approximation, we first define the ε-approximation embedded matrix:
Definition 2 (ε-Approximation Embedded Matrix). Given 0 ≤ ε < 1 and a non-negative constant τ .
X̂ ∈ Rn×d̃ with d̃ < d is a ε-approximation embedded matrix for X , if

(1− ε)||X −DD′X||2F≤ ||X̂ −DD′X̂||2F + τ ≤ (1 + ε)||X −DD′X||2F (2)

We show that a ε-approximation embedded matrix is sufficient for approximately optimizing problem
1:
Lemma 1 (ε-Approximation k-Means Clustering). Given X ∈ Rn×d and D be the set of all n× k
indicator matrices D, let D∗ = arg minD∈D ||X −DD′X||2F . Given X̂ ∈ Rn×d̃ with d̃ < d, let
D̂∗ = arg minD∈D ||X̂ − DD′X̂||2F . If X̂ is a ε′-approximation embedded matrix for X , given
ε = 2ε′/(1− ε′), then for any γ ≥ 1, if ||X̂ − D̂D̂′X̂||2F ≤ γ||X̂ − D̂∗D̂∗

′
X̂||2F , we have

||X − D̂D̂′X||2F ≤ (1 + ε)γ||X −D∗D∗
′
X||2F

Proof. By definition, we have ||X̂ − D̂∗D̂∗′X̂||2F ≤ ||X̂ −D∗D∗
′
X̂||2F and thus

||X̂ − D̂D̂′X̂||2F ≤ γ||X̂ −D∗D∗
′
X̂||2F (3)

Since X̂ is a ε-approximation embedded matrix for X , we have

||X̂ −D∗D∗
′
X̂||2F≤(1 + ε′)||X −D∗D∗

′
X||2F − τ

||X̂ − D̂D̂′X̂||2F≥(1− ε′)||X − D̂D̂′X||2F − τ
(4)

Combining Eq.(3) and Eq.(4), we obtain:

(1− ε′)||X − D̂D̂′X||2F − τ ≤ ||X̂ − D̂D̂′X̂||2F ≤γ||X̂ −D∗D∗
′
X̂||2F

≤(1 + ε′)γ||X −D∗D∗
′
X||2F − τγ

(5)

Eq.(5) implies that

||X − D̂D̂′X||2F ≤ (1 + ε′)/(1− ε′)γ||X −D∗D∗
′
X||2F ≤ (1 + ε)γ||X −D∗D∗

′
X||2F (6)

Remark. Lemma 1 implies that if D̂ is an optimal solution for X̂ , then it also preserves ε-
approximation for X . Parameter γ allows D̂ to be approximately global optimal for X̂ .
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Algorithm 1 Sparse Embedded k-Means Clustering
Input: X ∈ Rn×d. Number of clusters k.
Output: ε-approximate solution for problem 1.

1: Set d̃ = O(max(k+log(1/δ)ε2 , 6
ε2δ )).

2: Build a random map h so that for any i ∈ [d], h(i) = j for j ∈ [d̃] with probability 1/d̃.
3: Construct matrix Φ ∈ {0, 1}d×d̃ with Φi,h(i) = 1, and all remaining entries 0.
4: Construct matrix Q ∈ Rd×d is a random diagonal matrix whose entries are i.i.d. Rademacher

variables.
5: Compute the product X̂ = XQΦ and run exact or approximate k-means algorithms on X̂ .

2.2 Sparse Embedding

[1] construct a random embedded matrix for fast k-means clustering by post-multiplying X with a
d× d̃ random matrix having entries 1√

d̃
or −1√

d̃
with equal probability. However, this method requires

O( ndk
ε2log(d) ) for matrix multiplication and this cost will be prohibitive for large values of n and d. To

break this bottleneck, Algorithm 1 demonstrates our sparse embedded k-means clustering, which
requires O(nnz(X)) for fast matrix multiplication. Our algorithm is significantly faster than other
dimensionality reduction methods, especially when nnz(X) << nd. For an index i taking values in
the set {1, · · · , n}, we write i ∈ [n].

Next, we state our main theorem to show that XQΦ is the ε-approximation embedded matrix for X:

Theorem 1. Let Φ and Q be constructed as in Algorithm 1 and R = (QΦ)′ ∈ Rd̃×d. Given
d̃ = O(max(k+log(1/δ)ε2 , 6

ε2δ )). Then for any X ∈ Rn×d, with a probability of at least 1 − O(δ),
XR′ is the ε-approximation embedded matrix for X .

3 Proofs

Let Z = In−DD′ and tr be the trace notation. Eq.(2) can be formulated as: (1− ε)tr(ZXX ′Z) ≤
tr(ZX̂X̂ ′Z)+τ ≤ (1+ ε)tr(ZXX ′Z). Then, we try to approximateXX ′ with X̂X̂ ′. To prove our
main theorem, we write X̂ = XR′ and our goal is to show that tr(ZXX ′Z) can be approximated
by tr(ZXR′RX ′Z). Lemma 2 provides conditions on the error matrix E = X̂X̂ ′ −XX ′ that are
sufficient to guarantee that X̂ is a ε-approximation embedded matrix for X . For any two symmetric
matrices A,B ∈ Rn×n, A � B indicates that B −A is positive semidefinite. Let λi(A) denote the
i-th largest eigenvalue of A in absolute value. 〈·, ·〉 represents the inner product, and 0n×d denotes an
n× d zero matrix with all its entries being zero.

Lemma 2. Let C = XX ′ and Ĉ = X̂X̂ ′. If we write Ĉ = C + E1 + E2 + E3 + E4, where:

(i) E1 is symmetric and −ε1C � E1 � ε1C.

(ii) E2 is symmetric,
∑k
i=1 |λi(E2)| ≤ ε2||Xr|k||2F , and tr(E2) ≤ ε̃2||Xr|k||2F .

(iii) The columns of E3 fall in the column span of C and tr(E ′3C
+E3) ≤ ε23||Xr|k||2F .

(iv) The rows of E4 fall in the row span of C and tr(E4C
+E ′4) ≤ ε24||Xr|k||2F .

and ε1 + ε2 + ε̃2 + ε3 + ε4 = ε, then X̂ is a ε-approximation embedded matrix for X . Specifically,
we have (1− ε)tr(ZCZ) ≤ tr(ZĈZ)−min{0, tr(E2)} ≤ (1 + ε)tr(ZCZ).

The proof can be referred to [17]. Next, we show XR′ is the ε-approximation embedded matrix for
X . We first present the following theorem:
Theorem 2. Assume r > 2k and let V2k ∈ Rd×r represent V with all but their first 2k columns
zeroed out. We define M1 = V ′2k, M2 =

√
k/||Xr|k||F (X − XV2kV ′2k) and M ∈ R(n+r)×d as

containing M1 as its first r rows and M2 as its lower n rows. We construct R = (QΦ)′ ∈ Rd̃×d,
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which is shown in Algorithm 1. Given d̃ = O(max(k+log(1/δ)ε2 , 6
ε2δ )), then for any X ∈ Rn×d, with

a probability of at least 1−O(δ), we have

(i) ||(RM ′)′(RM ′)−MM ′||2 < ε.

(ii) |||RM ′2||2F − ||M ′2||2F | ≤ εk.

Proof. To prove the first result, one can easily check that M1M
′
2 = 0r×n, thus MM ′ is a block

diagonal matrix with an upper left block equal to M1M
′
1 and lower right block equal to M2M

′
2.

The spectral norm of M1M
′
1 is 1. ||M2M

′
2||2 = ||M2||22 =

k||X−XV2kV
′
2k||

2
2

||Xr|k||2F
=

k||Xr|2k||22
||Xr|k||2F

. As

||Xr|k||2F ≥ k||Xr|2k||22, we derive ||M2M
′
2||2 ≤ 1. Since MM ′ is a block diagonal matrix, we

have ||M ||22 = ||MM ′||2 = max{||M1M
′
1||2, ||M2M

′
2||2} = 1. tr(M1M

′
1) = 2k. tr(M2M

′
2) =

k||Xr|2k||2F
||Xr|k||2F

. As ||Xr|k||2F ≥ ||Xr|2k||2F , we derive tr(M2M
′
2) ≤ k. Then we have ||M ||2F =

tr(MM ′) = tr(M1M
′
1) + tr(M2M

′
2) ≤ 3k. Applying Theorem 6 from [18], we can obtain that

given d̃ = O(k+log(1/δ)ε2 ), with a probability of at least 1− δ, ||(RM ′)′(RM ′)−MM ′||2 < ε.

The proof of the second result can be found in the Supplementary Materials.

Based on Theorem 2, we show that X̂ = XR′ satisfies the conditions of Lemma 2.

Lemma 3. Assume r > 2k and we construct M and R as in Theorem 2. Given d̃ =
O(max(k+log(1/δ)ε2 , 6

ε2δ )), then for anyX ∈ Rn×d, with a probability of at least 1−O(δ), X̂ = XR′

satisfies the conditions of Lemma 2.

Proof. We construct H1 ∈ Rn×(n+r) as H1 = [XV2k,0n×n], thus H1M = XV2kV
′
2k. And we set

H2 ∈ Rn×(n+r) as H2 = [0n×r,
||Xr|k||F√

k
In], so we have H2M =

||Xr|k||F√
k

M2 = X−XV2kV ′2k =

Xr|2k and X = H1M +H2M and we obtain the following:

E = X̂X̂ ′ −XX ′ = XR′RX ′ −XX ′ = 1©+ 2©+ 3©+ 4© (7)

Where 1© = H1MR′RM ′H ′1 − H1MM ′H ′1, 2© = H2MR′RM ′H ′2 − H2MM ′H ′2, 3© =
H1MR′RM ′H ′2 − H1MM ′H ′2 and 4© = H2MR′RM ′H ′1 − H2MM ′H ′1. We bound 1©, 2©,
3© and 4© separately, showing that each corresponds to one of the error terms described in Lemma 2.

Bounding 1©.

E1 = H1MR′RM ′H ′1 −H1MM ′H ′1 = XV2kV
′
2kR

′RV2kV
′
2kX

′ −XV2kV ′2kV2kV ′2kX ′ (8)

E1 is symmetric. By Theorem 2, we know that with a probability of at least 1− δ, ||(RM ′)′(RM ′)−
MM ′||2 < ε holds. Then we get −εIn+r � (RM ′)′(RM ′)−MM ′ � εIn+r. And we derive the
following:

−εH1H
′
1 � E1 � εH1H

′
1 (9)

For any vector v, v′XV2kV
′
2kV2kV

′
2kX

′v = ||V2kV ′2kX ′v||22 ≤ ||V2kV ′2k||22||X ′v||22 =
||X ′v||22 = v′XX ′v, so H1MM ′H ′1 = XV2kV

′
2kV2kV

′
2kX

′ � XX ′. Since H1MM ′H ′1 =
XV2kV

′
2kV2kV

′
2kX

′ = XV2kV
′
2kX

′ = H1H
′
1, we have

H1H
′
1 = H1MM ′H ′1 � XX ′ = C (10)

Combining Eqs.(9) and (10), we arrive at a probability of at least 1− δ,

−εC � E1 � εC (11)

satisfying the first condition of Lemma 2.

Bounding 2©.

E2 =H2MR′RM ′H ′2 −H2MM ′H ′2

=(X −XV2kV ′2k)R′R(X −XV2kV ′2k)′ − (X −XV2kV ′2k)(X −XV2kV ′2k)′
(12)
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E2 is symmetric. Note that H2 just selects M2 from M and scales it by ||Xr|k||F /
√
k. Using

Theorem 2, we know that with a probability of at least 1− δ,

tr(E2) =
||Xr|k||2F

k
tr(M2R

′RM ′2 −M2M
′
2) ≤ ε||Xr|k||2F (13)

Applying Theorem 6.2 from [19] and rescaling ε , we can obtain a probability of at least 1− δ,

||E2||F = ||Xr|2kR
′RX ′r|2k −Xr|2kX

′
r|2k||F ≤

ε√
k
||Xr|2k||2F (14)

Combining Eq.(14), Cauchy-Schwarz inequality and ||Xr|2k||2F ≤ ||Xr|k||2F , we get that with a
probability of at least 1− δ,

k∑
i=1

|λi(E2)| ≤
√
k||E2||F ≤ ε||Xr|k||2F (15)

Eqs.(13) and (15) satisfy the second conditions of Lemma 2.

Bounding 3©.

E3 =H1MR′RM ′H ′2 −H1MM ′H ′2

=XV2kV
′
2kR

′R(X −XV2kV ′2k)′ −XV2kV ′2k(X −XV2kV ′2k)′
(16)

The columns of E3 are in the column span of H1M = XV2kV
′
2k, and so in the column span of

C. ||V2k||2F = tr(V ′2kV2k) = 2k. As V ′2kV = V ′2kV2k, V ′2kX
′
r|2k = V ′2k(V ΣU ′ − V2kΣ2kU

′
2k) =

Σ2kU
′
2k − Σ2kU

′
2k = 0r×n. Applying Theorem 6.2 from [19] again and rescaling ε, we can obtain

that with a probability of at least 1− δ,

tr(E ′3C
+E3) =||Σ−1U ′(H1MR′RM ′H ′2 −H1MM ′H ′2)||2F

=||V ′2kR′RX ′r|2k − 0r×n||2F ≤ ε2||Xr|k||2F
(17)

Thus, Eq.(17) satisfies the third condition of Lemma 2.

Bounding 4©.

E4 =H2MR′RM ′H ′1 −H2MM ′H ′1

=(X −XV2kV ′2k)R′RV2kV
′
2kX

′ − (X −XV2kV ′2k)V2kV
′
2kX

′ (18)

E4 = E ′3 and thus we immediately have that with a probability of at least 1− δ,

tr(E4C
+E ′4) ≤ ε2||Xr|k||2F (19)

Lastly, Eqs.(11), (13), (15), (17) and (19) ensure that, for any X ∈ Rn×d, X̂ = XR′ satisfies the
conditions of Lemma 2 and is the ε-approximation embedded matrix for X with a probability of at
least 1−O(δ).

4 Experiment

4.1 Data Sets and Baselines

We denote our proposed sparse embedded k-means clustering algorithm as SE for short. This section
evaluates the performance of the proposed method on four real-world data sets: COIL20, SECTOR,
RCV1 and ILSVRC2012. The COIL20 [20] and ILSVRC2012 [21] data sets are collected from
website34, and other data sets are collected from the LIBSVM website5. The statistics of these data
sets are presented in the Supplementary Materials.

We compare SE with several other dimensionality reduction techniques:

3http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
4http://www.image-net.org/challenges/LSVRC/2012/
5https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/
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Figure 1: Clustering accuracy of various methods on COIL20, SECTOR, RCV1 and ILSVRC2012
data sets.
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Figure 2: Dimension reduction time of various methods on COIL20, SECTOR, RCV1 and ILSVR-
C2012 data sets.
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Figure 3: Clustering time of various methods on COIL20, SECTOR, RCV1 and ILSVRC2012 data
sets.

• SVD: The singular value decomposition or principal components analysis dimensionality
reduction approach.

• LLE: The local linear embedding (LLE) algorithm is proposed by [22]. We use the code
from website6 with default parameters.

• LS: [10] develop the laplacian score (LS) feature selection method. We use the code from
website7 with default parameters.
• PD: [15] propose an advanced compression scheme for accelerating k-means clustering. We

use the code from website8 with default parameters.
• RP: The state-of-the-art random projection method is proposed by [1].

After dimensionality reduction, we run all methods on a standard k-means clustering package, which
is from website9 with default parameters. We also compare all these methods against the standard
k-means algorithm on the full dimensional data sets. To measure the quality of all methods, we report
clustering accuracy based on the labelled information of the input data. Finally, we report the running

6http://www.cs.nyu.edu/ roweis/lle/
7www.cad.zju.edu.cn/home/dengcai/Data/data.html
8https://github.com/stephenbeckr/SparsifiedKMeans
9www.cad.zju.edu.cn/home/dengcai/Data/data.html
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times (in seconds) of both the dimensionality reduction procedure and the k-means clustering for all
baselines.

4.2 Results

The experimental results of various methods on all data sets are shown in Figures 1, 2 and 3. The Y
axes of Figures 2 and 3 represent dimension reduction and clustering time in log scale. We can’t get
the results of SVD, LLE and LS within three days on RCV1 and ILSVRC2012 data sets. Thus, these
results are not reported.

From Figures 1, 2 and 3, we can see that:

• As the number of embedded dimensions increases, the clustering accuracy and running times
of all dimensionality reduction methods increases, which is consistent with the empirical
results in [1].

• Our proposed dimensionality reduction method has superior performance compared to the
RP method and other baselines in terms of accuracy, which verifies our theoretical results.
LLE and LS generally underperforms on the COIL20 and SECTOR data sets.

• SVD and LLE are the two slowest methods compared with the other baselines in terms of
dimensionality reduction time. The dimension reduction time of the RP method increases
significantly with the increasing dimensions, while our method obtains a stable and lowest
dimensionality reduction time. We achieve several hundred orders of magnitude faster than
the RP method and other baselines. The results also support our complexity analysis.

• All dimensionality reduction methods are significantly faster than standard k-means al-
gorithm with full dimensions. Finally, we conclude that our proposed method is able to
significantly accelerate k-means clustering, while achieving satisfactory clustering perfor-
mance.

5 Conclusion

The k-means clustering algorithm is a ubiquitous tool in data mining and machine learning with
numerous applications. The increasing dimensionality and scale of data has provided a considerable
challenge in designing efficient and accurate k-means clustering algorithms. Researchers have
successfully addressed these obstacles with dimensionality reduction methods. These methods
embed the original features into low dimensional space, and then perform k-means clustering on
the embedded dimensions. SVD is one of the most popular dimensionality reduction methods.
However, it is computationally expensive. Recently, [1] develop a state-of-the-art RP method for
faster k-means clustering. Their method delivers many improvements over other dimensionality
reduction methods. For example, compared to an advanced SVD-based feature extraction approach
[14], [1] reduce the running time by a factor of min{n, d}ε2log(d)/k, while only losing a factor of
one in approximation accuracy. They also improve the result of the folklore RP method by a factor
of log(n)/k in terms of the number of embedded dimensions and the running time, while losing
a factor of one in approximation accuracy. Unfortunately, it still requires O( ndk

ε2log(d) ) for matrix
multiplication and this cost will be prohibitive for large values of n and d. To break this bottleneck, we
carefully construct a sparse matrix for the RP method that only requires O(nnz(X)) for fast matrix
multiplication. Our algorithm is significantly faster than other dimensionality reduction methods,
especially when nnz(X) << nd. Furthermore, we improve the results of [12] and [1] by a factor
of one for approximation accuracy. Our empirical studies demonstrate that our proposed algorithm
outperforms other dimension reduction methods, which corroborates our theoretical findings.
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