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Abstract

The independence clustering problem is considered in the following formulation:
given a set S of random variables, it is required to find the finest partitioning
{U1, . . . , Uk} of S into clusters such that the clusters U1, . . . , Uk are mutually
independent. Since mutual independence is the target, pairwise similarity measure-
ments are of no use, and thus traditional clustering algorithms are inapplicable. The
distribution of the random variables in S is, in general, unknown, but a sample is
available. Thus, the problem is cast in terms of time series. Two forms of sampling
are considered: i.i.d. and stationary time series, with the main emphasis being on
the latter, more general, case. A consistent, computationally tractable algorithm for
each of the settings is proposed, and a number of fascinating open directions for
further research are outlined.

1 Introduction

Many applications face the situation where a set S = {x1, . . . ,xN} of samples has to be divided into
clusters in such a way that inside each cluster the samples are dependent, but the clusters between
themselves are as independent as possible. Here each xi may itself be a sample or a time series
xi = Xi

1, . . . , X
i
n. For example, in financial applications, xi can be a series of recordings of prices of

a stock i over time. The goal is to find the segments of the market such that different segments evolve
independently, but within each segment the prices are mutually informative [15, 17]. In biological
applications, each xi may be a DNA sequence, or may represent gene expression data [28, 20], or, in
other applications, an fMRI record [4, 13].

The staple approach to this problem in applications is to construct a matrix of (pairwise) correlations
between the elements, and use traditional clustering methods, e.g., linkage-based methods or k means
and its variants, with this matrix [15, 17, 16]. If mutual information is used, it is used as a (pairwise)
proximity measure between individual inputs, e.g. [14].

We remark that pairwise independence is but a surrogate for (mutual) independence, and, in addition,
correlation is a surrogate for pairwise independence. There is, however, no need to resort to surrogates
unless forced to do so by statistical or computational hardness results. We therefore propose to
reformulate the problem from the first principles, and then show that it is indeed solvable both
statistically and computationally — but calls for completely different algorithms. The formulation
proposed is as follows.

Given a set S = (x1, . . . ,xN ) of random variables, it is required to find the finest partitioning
{U1, . . . , Uk} of S into clusters such that the clusters U1, . . . , Uk are mutually independent.

To our knowledge, this problem in its full generality has not been addressed before. A similar
informal formulation appears in the work [1] that is devoted to optimizing a generalization of the
ICA objective. However, the actual problem considered only concerns the case of tree-structured
dependence, which allows for a solution based on pairwise measurements of mutual information.
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Note that in the fully general case pairwise measurements are useless, as are, furthermore, bottom-up
(e.g., linkage-based) approaches. Thus, in particular, a proximity matrix cannot be used for the
analysis. Indeed, it is easy to construct examples in which any pair or any small group of elements
are independent, but are dependent when the same group is considered jointly with more elements.
For instance, consider a group of Bernoulli 1/2-distributed random variables x1, . . . ,xN+1, where
x1, . . . ,xN are i.i.d. and xN+1 =

∑N
i=1 ximod2. Note that any N out of these N + 1 random

variables are i.i.d., but together the N + 1 are dependent. Add then two more groups like this, say,
y1, . . . ,yN+1 and z1, . . . , zN+1 that have the exact same distribution, with the groups of x, y and z
mutually independent. Naturally, these are the three clusters we would want to recover. However, if
we try to cluster the union of the three, then any algorithm based on pairwise correlations will return
an essentially arbitrary result. What is more, if we try to find clusters that are pairwise independent,
then, for example, the clustering {(xi,yi, zi)i=1..N} of the input set into N + 1 clusters appears
correct, but, in fact, the resulting clusters are dependent. Of course, real-world data does not come
in the form of summed up Bernoulli variables, but this simple example shows that considering
independence of small subsets may be very misleading.

The considered problem is split into two parts considered separately: the computational and the
statistical part. This is done by first considering the problem assuming the joint distribution of
all the random variables is known, and is accessible via an oracle. Thus, the problem becomes
computational. A simple, computationally efficient algorithm is proposed for this case. We then
proceed to the time-series formulations: the distribution of (x1, . . . ,xN ) is unknown, but a sample
(X1

1 , . . . , X
N
1 ), . . . , (X1

n, . . . , X
N
n ) is provided, so that xi can be identified with the time series

Xi
1, . . . , X

i
n. The sample may be either independent and identically distributed (i.i.d.), or, in a more

general formulation, stationary. As one might expect, relying on the existing statistical machinery, the
case of known distributions can be directly extended to the case of i.i.d. samples. Thus, we show that
it is possible to replace the oracle access with statistical tests and estimators, and then use the same
algorithm as in the case of known distributions. The general case of stationary samples turns out
to be much more difficult, in particular because of a number of strong impossibility results. In fact,
it is challenging already to determine what is possible and what is not from the statistical point of
view. In this case, it is not possible to replicate the oracle access to the distribution, but only its weak
version that we call fickle oracle. We find that, in this case, it is only possible to have a consistent
algorithm for the case of known k. An algorithm that has this property is constructed. This algorithm
is computationally feasible when the number of clusters k is small, as its complexity is O(N2k).
Besides, a measure of information divergence is proposed for time-series distributions that may be
of independent interest, since it can be estimated consistently without any assumptions at all on the
distributions or their densities (the latter may not exist).

The main results of this work are theoretical. The goal is to determine, as a first step, what is
possible and what is not from both statistical and computational points of view. The main emphasis
is placed on highly dependent time series, as warranted by the applications cited above, leaving
experimental investigations for future work. The contribution can be summarized as follows:

• a consistent, computationally feasible algorithm for known distributions, unknown number
of clusters, and an extension to the case of unknown distributions and i.i.d. samples;

• an algorithm that is consistent under stationary ergodic sampling with arbitrary, unknown
distributions, but with a known number k of clusters;

• an impossibility result for clustering stationary ergodic samples with k unknown;
• an information divergence measure for stationary ergodic time-series distributions along

with its estimator that is consistent without any extra assumptions;

In addition, an array of open problems and exciting directions for future work is proposed.

Related work. Apart from the work on independence clustering mentioned above, it is worth pointing
out the relation to some other problems. First, the proposed problem formulation can be viewed
as a Bayesian-network learning problem: given an unknown network, it is required to split it into
independent clusters. In general, learning a Bayesian network is NP-hard [5], even for rather restricted
classes of networks (e.g., [18]). Here the problem we consider is much less general, which is why it
admits a polynomial-time solution. A related clustering problem, proposed in [23] (see also [12]) is
clustering time series with respect to distribution. Here, it is required to put two time series samples
x1,x2 into the same cluster if and only if their distribution is the same. Similar to the independence
clustering introduced here, this problem admits a consistent algorithm if the samples are i.i.d. (or
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mixing) and the number of distributions (clusters) is unknown, and in the case of stationary ergodic
samples if and only if k is known.

2 Set-up and preliminaries

A set S := {x1, . . . ,xN} is given, where we will either assume that the joint distribution of xi is
known, or else that the distribution is unknown but a sample (X1

1 , . . . , X
1
n), . . . , (X

N
1 , . . . , X

N
n ) is

given. In the latter case, we identify each xi with the sequence (sample) Xi
1, . . . , X

i
n, or Xi

1..n for
short, of length n. The lengths of the samples are the same only for the sake of notational convenience;
it is easy to generalize all algorithms to the case of different sample lengths ni, but the asymptotic
would then be with respect to n := mini=1..N ni. It is assumed that Xi

j ∈ X := R are real-valued,
but extensions to more general cases are straightforward.

For random variables A,B,C we write (A ⊥ B)|C to say that A is conditionally independent of B
given C, and A ⊥ B ⊥ C to say that A,B and C are mutually independent.

The (unique up to a permutation) partitioning U := {U1, . . . , Uk} of the set S is called the ground-
truth clustering if U1, . . . , Uk are mutually independent (U1 ⊥ · · · ⊥ Uk) and no refinement of U
has this property. A clustering algorithm is consistent if it outputs the ground-truth clustering, and
it is asymptotically consistent if w.p. 1 it outputs the ground-truth clustering from some n on.

For a discrete A-valued r.v. X its Shannon entropy is defined as H(X) :=
∑
a∈A−P (X =

a) logP (X = a), letting 0 log 0 = 0. For a distribution with a density f its (differential) entropy is
defined as H(X) =: −

∫
f(x) log f(x). For two random variables X,Y their mutual information

I(X,Y ) is defined as I(X,Y ) = H(X)+H(Y )−H(X,Y ). For discrete random variables, as well
as for continuous ones with a density, X ⊥ Y if and only if I(X,Y ) = 0; see, e.g., [6]. Likewise,
I(X1, . . . , Xm) is defined as

∑
i=1..mH(Xi)−H(X1, . . . , Xm).

For the sake of convenience, in the next two sections we make the assumption stated below. However,
we will show (Sections 5,6) that this assumption can be gotten rid of as well.

Assumption 1. All distributions in question have densities bounded away from zero on their support.

3 Known distributions

As with any statistical problem, it is instructive to start with the case where the (joint) distribution of
all the random variables in question is known. Finding out what can be done and how to do it in this
case helps us to set the goals for the (more realistic) case of unknown distributions.

Thus, in this section, x1, . . . ,xN are not time series, but random variables whose joint distribution is
known to the statistician. The access to this distribution is via an oracle; specifically, our oracle will
provide answers to the following questions about mutual information (where, for convenience, we
assume that the mutual information with the empty set is 0):
Oracle TEST. Given sets of random variables A,B,C,D ⊂ {x1, . . . ,xN} answer whether
I(A,B) > I(C,D).
Remark 1 ( Conditional independence oracle). Equivalently, one can consider an oracle that answers
conditional independence queries of the form (A ⊥ B)|C. The definition above is chosen for the sake
of continuity with the next section, and it also makes the algorithm below more intuitive. However, in
order to test conditional independence statistically one does not have to use mutual information, but
may resort to any other divergence measure instead.

The proposed algorithm (see the pseudocode listing below) works as follows. It attempts to split the
input set recursively into two independent clusters, until it is no longer possible. To split a set in
two, it starts with putting one element x from the input set S into a candidate cluster C := {x}, and
measures its mutual information I(C,R) with the rest of the set, R := S \C. If I(C,R) is already 0
then we have split the set into two independent clusters and can stop. Otherwise, the algorithm then
takes the elements out of R one by one without replacement and each time looks whether I(C,R)
has decreased. Once such an element is found, it is moved from R to C and the process is restarted
from the beginning with C thus updated. Note that, if we have started with I(C,R) > 0, then taking
elements out of R without replacement we eventually should find a one that decreases I(C,R), since
I(C,∅) = 0 and I(C,R) cannot increase in the process.
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Theorem 1. The algorithm CLIN outputs the correct clustering using at most 2kN2 oracle calls.

Proof. We shall first show that the procedure for splitting a set into two indeed splits the input set into
two independent sets, if and only if such two sets exist. First, note that if I(C, S \C) = 0 then C ⊥ R
and the function terminates. In the opposite case, when I(C, S \ C) > 0, by removing an element
from R := S \ C, I(C,R) can only decrease (indeed, h(C|R) ≤ h(C|R \ {x}) by information
processing inequality). Eventually when all elements are removed, I(C,R) = I(C, {}) = 0, so
there must be an element x removing which decreases I(C,R). When such an element x found it is
moved to C. Note that, in this case, indeed x⊥\C. However, it is possible that removing an element x
from R does not reduce I(C,R), yet x⊥\C. This is why the while loop is needed, that is, the whole
process has to be repeated until no elements can be moved to C. By the end of each for loop, we
have either found at least one element to move to C, or we have assured that C ⊥ S \ C and the
loop terminates. Since there are only finitely many elements in S \ C, the while loop eventually
terminates. Moreover, each of the two loops (while and for) terminates in at most N iterations.
Finally, notice that if (C1, C2) ⊥ C3 and C1 ⊥ C2 then also C1 ⊥ C2 ⊥ C3, which means that by
repeating the Split function recursively we find the correct clustering.

From the above, the bound on the number of oracle calls is easily obtained by direct calculation.

4 I.I.D. sampling

Figure 1: CLIN: cluster with k unknown,
given an oracle for MI

INPUT: The set S.
(C1, C2) := Split(S)
if C2 6= ∅ then

Output:CLIN(C1), CLIN(C2)
else

Output: C1

end if
Function Split(Set S of samples)
Initialize: C := {x1}, R := S \ C;
while TEST(I(C;R) > 0) do

for each x ∈ R do
if TEST(I(C;R)>I(C;R \ {x}))
then

move x from R to C
break the for loop

else
move x from R to M

end if
end for
M := {}, R := S \ C;

end while
Return(C,R)
END function

In this section we assume that the distribution of
(x1, . . . ,xN ) is not known, but an i.i.d. sample
(X1

1 , . . . , X
N
1 ), . . . , (X1

n, . . . , X
N
n ) is provided. We iden-

tify xi with the (i.i.d.) time series Xi
1..n. Formally, N X -

valued processes is just a single XN -valued process. The
latter can be seen as a matrix (Xi

j)i=1..N,j=1..∞, where
each row i is the sample xi = Xi

1..n.. and each column j
is what is observed at time j: X1

j ..X
N
j .

The case of i.i.d. samples is not much different from the
case of a known distribution. What we need is to replace
the oracle test with (nonparametric) statistical tests. First,
a test for independence is needed to replace the oracle call
TEST(I(C,R) > 0) in the while loop. Such tests are
indeed available, see, for example, [8]. Second, we need
an estimator of mutual information I(X,Y ), or, which is
sufficient, for entropies, but with a rate of convergence.
If the rate of convergence is known to be asymptotically
bounded by, say, t(n), then, in order to construct an asymp-
totically consistent test, we can take any t′(n)→ 0 such
that t(n) = o(t′(n)) and decide our inequality as fol-
lows: if Î(C;R \ {x}) < Î(C;R) − t′(n) then say that
I(C;R \ {x}) < I(C;R). The required rates of conver-
gence, which are of order

√
n under Assumption 1, can be

found in [3].

Given the result of the previous section, it is clear that if
the oracle is replaced by the tests described, then CLIN is
a.s. consistent. Thus, we have demonstrated the following.

Theorem 2. Under Assumption 1, there is an asymptoti-
cally consistent algorithm for independence clustering with i.i.d. sampling.

Remark 2 (Necessity of the assumption). The independence test of [8] does not need Assumption 1,
as it is distribution-free. Since the mutual information is defined in terms of densities, if we want
to completely get rid of Assumption 1, we would need to use some other measure of dependence
for the test. One such measure is defined in the next section already for the general case of process
distributions. However, the rates of convergence of its empirical estimates under i.i.d. sampling
remain to be studied.
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Remark 3 (Estimators vs. tests). As noted in Remark 1, the tests we are using are, in fact, tests
for (conditional) independence: testing I(C;R) > I(C;R \ {x}) is testing for (C ⊥ {x}|R \
{x}). Conditional independence can be tested directly, without estimating I (see, for example 27),
potentially allowing for tighter performance guarantees under more general conditions.

5 Stationary sampling

We now enter the hard mode. The general case of stationary sampling presents numerous obstacles,
often in the form of theoretical impossibility results: there are (provably) no rates of convergence,
no independence test, and 0 mutual information rate does not guarantee independence. Besides,
some simple-looking questions regarding the existence of consistent tests, which indeed have simple
answers in the i.i.d. case, remain open in the stationary ergodic case. Despite all this, a computationally
feasible asymptotically consistent independence clustering algorithm can be obtained, although only
for the case of a known number of clusters. This parallels the situation of clustering according to the
distribution [23, 12].

In this section we assume that the distribution of (x1, . . . ,xN ) is not known, but a jointly stationary
ergodic sample (X1

1 , . . . , X
N
1 ), . . . , (X1

n, . . . , X
N
n ) is provided. Thus, xi is a stationary ergodic time

series Xi
1..n. Here is also where we drop Assumption 1; in particular, densities do not have to exist.

This new relaxed set of assumptions can be interpreted as using a weaker oracle, as explained in
Remark 5 below.

We start with preliminaries about stationary processes, followed by impossibility results, and con-
cluding with an algorithm for the case of known k.

5.1 Preliminaries: stationary ergodic processes
Stationary, ergodicity, information rate. (Time-series) distributions, or processes, are measures
on the space (X∞,FX∞), where FX∞ is the Borel sigma-algebra of X∞. Recall that N X -valued
process is just a single XN -valued process. So the distributions are on the space ((XN )∞,F(AN )∞);
this will be often left implicit. For a sequence x ∈ An and a set B ∈ B denote ν(x, B) the
frequency with which the sequence x falls in the set B. A process ρ is stationary if ρ(X1..|B| =
B) = ρ(Xt..t+|B|−1 = B) for any measurable B ∈ X ∗ and t ∈ N. We further abbreviate
ρ(B) := ρ(X1..|B| = B). A stationary process ρ is called (stationary) ergodic if the frequency of
occurrence of each measurable B ∈ X ∗ in a sequence X1, X2, . . . generated by ρ tends to its a priori
(or limiting) probability a.s.: ρ(limn→∞ ν(X1..n, B) = ρ(B)) = 1. By virtue of the ergodic theorem,
this definition can be shown to be equivalent to the more standard definition of stationary ergodic
processes given in terms of shift-invariant sets [26]. Denote S and E the sets of all stationary and
stationary ergodic processes correspondingly. The ergodic decomposition theorem for stationary
processes (see, e.g., 7) states that any stationary process can be expressed as a mixture of stationary
ergodic processes. That is, a stationary process ρ can be envisaged as first selecting a stationary
ergodic distribution according to some measure Wρ over the set of all such distributions, and then
using this ergodic distribution to generate the sequence. More formally, for any ρ ∈ S there is a
measure Wρ on (S,FS), such that Wρ(E) = 1, and ρ(B) =

∫
dWρ(µ)µ(B), for any B ∈ FX∞ .

For a stationary time series x, its m-order entropy hm(x) is defined as EX1..m−1
h(Xm|X1..m−1) (so

the usual Shannon entropy is the entropy of order 0). By stationarity, the limit limm→∞ hm exists
and equals limm→∞

1
mh(X1..m) (see, for example, [6] for more details). This limit is called entropy

rate and is denoted h∞. For l stationary processes xi = (Xi
1, . . . , X

i
n, . . . ), i = 1..l, the m-order

mutual information is defined as Im(x1, . . . ,xl) :=
∑l
i=1 hm(xi)− hm(x1, . . . ,xl) and the mutual

information rate is defined as the limit

I∞(x1, . . . ,xl) := lim
m→∞

Im(x1, . . . ,xl). (1)

Discretisations and a metric. For each m, l ∈ N, let Bm,l be a partitioning of Xm into 2l sets such
that jointly they generate Fm of Xm, i.e. σ(∪l∈NBm,l) = Fm. The distributional distance between a
pair of process distributions ρ1, ρ2 is defined as follows [7]:

d(ρ1, ρ2) =

∞∑
m,l=1

wmwl
∑

B∈Bm,l

|ρ1(B)− ρ2(B)|, (2)
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where we set wj := 1/j(j + 1), but any summable sequence of positive weights may be used.
As shown in [22], empirical estimates of this distance are asymptotically consistent for arbitrary
stationary ergodic processes. These estimates are used in [23, 12] to construct time-series clustering
algorithms for clustering with respect to distribution. Here we will only use this distance in the
impossibility results. Basing on these ideas, Györfi [9] suggested to use a similar construction for
studying independence, namely d(ρ1, ρ2) =

∑∞
m,l=1 wmwl

∑
A,B∈Bm,l |ρ1(A)ρ2(B)− ρ(A×B)|,

where ρ1 and ρ2 are the two marginals of a process ρ on pairs, and noted that its empirical estimates
are asymptotically consistent. The distance we will use is similar, but is based on mutual information.

5.2 Impossibility results

First of all, while the definition of ergodic processes guarantees convergence of frequencies to the
corresponding probabilities, this convergence can be arbitrary slow [26]: there are no meaningful
bounds on |ν(X1..n, 0) − ρ(X1 = 0)| in terms of n for ergodic ρ. This means that we cannot use
tests for (conditional) independence of the kind employed in the i.i.d. case (Section 4).

Thus, the first question we have to pose is whether it is possible to test independence, that is, to say
whether x1 ⊥ x2 based on a stationary ergodic samples X1

1..n, X
2
1..n. Here we show that the answer

in a certain sense is negative, but some important questions remain open.

An (independence) test ϕ is a function that takes two samplesX1
1..n, X

2
1..n and a parameter α ∈ (0, 1),

called the confidence level, and outputs a binary answer: independent or not. A test ϕ is α-level
consistent if, for every stationary ergodic distribution ρ over a pair of samples (X1

1..n.., X
2
1..n..), for

every confidence level α, ρ(ϕα(X1
1..n, X

2
1..n) = 1) < α if the marginal distributions of the samples

are independent, and ϕα(X1
1..n, X

2
1..n) converges to 1 as n→∞ with ρ-probability 1 otherwise.

The next proposition can be established using the criterion of [25]. Recall that, for ρ ∈ S , the measure
Wρ over E is its ergodic decomposition. The criterion states that there is an α-level consistent test for
H0 against E \H0 if an only if Wρ(H0) = 1 for every ρ ∈ clH0.
Proposition 1. There is no α-level consistent independence test (jointly stationary ergodic samples).

Proof. The example is based on the so-called translation process, constructed as follows. Fix
some irrational α ∈ (0, 1) and select r0 ∈ [0, 1] uniformly at random. For each i = 1..n.. let
ri = (ri−1 + α)mod 1 (the previous element is shifted by α to the right, considering the [0,1]
interval looped). The samples Xi are obtained from ri by thresholding at 1/2, i.e. Xi := I{ri > 0.5}
(here ri can be considered hidden states). This process is stationary and ergodic; besides, it has 0
entropy rate [26], and this is not the last of its peculiarities. Take now two independent copies of this
process to obtain a pair (x1,x2) = (X1

1 , X
2
1 . . . , X

1
n, X

2
n, . . . ). The resulting process on pairs, which

we denote ρ, is stationary, but it is not ergodic. To see the latter, observe that the difference between
the corresponding hidden states remains constant. In fact, each initial state (r1, r2) corresponds to
an ergodic component of our process on pairs. By the same argument, these ergodic components
are not independent. Thus, we have taken two independent copies of a stationary ergodic process,
and obtained a stationary process which is not ergodic and whose ergodic components are pairs of
processes that are not independent! To apply the criterion cited above, it remains to show that the
process ρ we constructed can be obtained as a limit of stationary ergodic processes on pairs. To see
this, consider, for each ε, a process ρε, whose construction is identical to ρ except that instead of
shifting the hidden states by α we shift them by α + uεi where uεi are i.i.d. uniformly random on
[−ε, ε]. It is easy to see that limε→0 ρε = ρ in distributional distance, and all ρε are stationary ergodic.
Thus, if H0 is the set of all stationary ergodic distributions on pairs, we have found a distribution
ρ ∈ clH0 such that Wρ(H0) = 0.

Thus, there is no consistent test that could provide a given level of confidence under H0, even if
only asymptotic consistency is required under H1. However, a yet weaker notion of consistency
might suffice to construct asymptotically consistent clustering algorithms. Namely, we could ask
for a test whose answer converges to either 0 or 1 according to whether the distributions generating
the samples are independent or not. Unfortunately, it is not known whether a test consistent in this
weaker sense exists or not. I conjecture that it does not. The conjecture is based not only on the
result above, but also on the result of [24] that shows that there is no such test for the related problem
of homogeneity testing, that is, for testing whether two given samples have the same or different
distributions. This negative result holds even if the distributions are independent, binary-valued, the
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difference is restricted to P (X0 = 0), and, finally, for a smaller family of processes (B-processes).
Thus, for now what we can say is that there is no test for independence available that would be
consistent under ergodic sampling. Therefore, we cannot distinguish even between the cases of 1 and
2 clusters. Thus, in the following it is assumed that the number of clusters k is given.

The last problem we have to address is mutual information for processes. The analogue of mutual
information for stationary processes is the mutual information rate (1). Unfortunately, 0 mutual
information rate does not imply independence. This is manifest on processes with 0 entropy rate, for
example those of the example in the proof of Proposition 1. What happens is that, if two processes
are dependent, then indeed at least one of the m-order entropy rates Im is non-zero, but the limit may
still be zero. Since we do not know in advance which Im to take, we will have to consider all of them,
as is explained in the next subsection.

5.3 Clustering with the number of clusters known

The quantity introduced below, which we call sum-information, will serve as an analogue of mutual
information in the i.i.d. case, allowing us to get around the problem that the mutual information
rate may be 0 for a pair of dependent stationary ergodic processes. Defined in the same vein as the
distributional distance (2), this new quantity is a weighted sum over all the mutual informations up
to time n; in addition, all the individual mutual informations are computed for quantized versions
of random variables in question, with decreasing cell size of quantization, keeping all the mutual
information resulting from different quantizations. The latter allows us not to require the existence
of densities. Weighting is needed in order to be able to obtain consistent empirical estimates of the
theoretical quantity under study.

First, for a process x = (X1, . . . , Xn, . . . ) and for each m, l ∈ N define the l’th quantized version
[X1..m]l of X1..m as the index of the cell of Bm,l to which X1..m belongs. Recall that each of the
partitions Bm,l has cell size 2l, and that wl := 1/l(l + 1).
Definition 1 (sum-information). For stationary x1..xN define the sum-information

sI(x1, . . . ,xN ) :=

∞∑
m=1

1

m
wm

∞∑
l=1

1

l
wl

(
N∑
i=1

h([Xi
1..m]l)

)
− h([X1

1..m]l, . . . , [XN
1..m]l) (3)

The next lemma follows from the fact that ∪l∈NBm,l generates Fm and ∪m∈NFm generates F∞.
Lemma 1. sI(x1, . . . ,xN ) = 0 if and only if x1, . . . ,xN are mutually independent.

The empirical estimates ĥn([Xi
1..m]l) of entropy are defined by replacing unknown probabilities by

frequencies; the estimate ŝIn(x1, . . . ,xN ) of is obtained by replacing h in (3) with ĥ.

Remark 4 (Computing ŝIn). The expression (3) might appear to hint at a computational disaster, as
it involves two infinite sums, and, in addition, the number of elements in the sum inside h([]l) grows
exponentially in l. However, it is easy to see that, when we replace the probabilities with frequencies,
all but a finite number of summands are either zero or can be collapsed (because they are constant).
Moreover, the sums can be further truncated so that the total computation becomes quasilinear in n.
This can be done exactly the same way as for distributional distance, as described in [12, Section 5].

The following lemma can be proven analogously to the corresponding statement about consistency of
empirical estimates of the distributional distance, given in [22, Lemma 1].
Lemma 2. Let the distribution ρ of x1, . . . ,xN be jointly stationary ergodic. Then
ŝIn(x1, . . . ,xk)→ sI(x1, . . . ,xN ) ρ-a.s.

This lemma alone is enough to establish the existence of a consistent clustering algorithm. To see this,
first consider the following problem, which is the “independence” version of the classical statistical
three-sample problem.

The 3-sample-independence problem. Three samples x1,x2,x3, are given, and it is known that
either (x1,x2) ⊥ x3 or x1 ⊥ (x2,x3) but not both. It is required to find out which one is the case.
Proposition 2. There exists an algorithm for solving the 3-sample-independence problem that is
asymptotically consistent under ergodic sampling.
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Indeed, it is enough to consider an algorithm that compares ŝIn((x1,x2),x3) and ŝIn(x1, (x2,x3))
and answers according to whichever is smaller.

The independence clustering problem which we are after is a generalisation of the 3-sample-
independence problem to N samples. We can also have a consistent algorithm for the clustering
problem, simply comparing all possible clusterings U1, . . . , Uk of the N samples given and selecting
whichever minimizes ŝIn(U1, . . . , Uk). Such an algorithm is of course not practical, since the number
of computations it makes must be exponential in N and k. We will show that the number of candidate
clustering can be reduced dramatically, making the problem amenable to computation.

Figure 2: CLINk: cluster given k and an
estimator of mutual sum-information

Consider all the clusterings obtained
by applying recursively the function
Split to each of the sets in each of
the candidate partitions, starting with
the input set S, until k clusters are
obtained. Output the clustering U that
minimizes ŝI(U)
Function Split(Set S of samples)
Initialize: C := {x1}, R := S \ C,
P := {}
while R 6= ∅ do

Initialize:M := {}, d := 0;
xmax:= index of any x in R

Add (C,R) to P
for each x ∈ R do
r := ŝI(C,R)
move x from R to M
r′ := ŝI(C,R); d′ := r − r′
if d′ > d then
d := d′, xmax:=index of(x)

end if
end for
Move xxmax from M to C; R :=
S \ C

end while
Return(List of candidate splits P)
END function

The proposed algorithm CLINk (Algorithm 2 below)
works similarly to CLIN, but with some important dif-
ferences. Like before, the main procedure is to attempt
to split the given set of samples into two clusters. This
splitting procedure starts with a single element x1 and
estimates its sum-information ŝI(x1, R) with the rest of
the elements, R. It then takes the elements out of R one
by one without replacement, each time measuring how
this changes ŝI(x1, R). As before, once and if we find an
element that is not independent of x1, this change will
be positive. However, unlike in the i.i.d. case, here we
cannot test whether this change is 0. Yet, we can say that
if, among the tested elements, there is one that gives a
non-zero change in sI , then one of such elements will be
the one that gives the maximal change in ŝI (provided, of
course, that we have enough data for the estimates ŝI to
be close enough to the theoretical values sI). Thus, we
keep each split that arises from such a maximal-change el-
ement, resulting in O(N2) candidate splits for the case of
2 clusters. For k clusters, we have to consider all the com-
binations of the splits, resulting in O(N2k−2) candidate
clusterings. Then select the one that minimizes ŝI .
Theorem 3. CLINk is asymptotically consistent under
ergodic sampling. This algorithm makes at most N2k−2

calls to the estimator of mutual sum-information.
Proof. The consistency of ŝI (Lemma 2) implies that, for
every ε > 0, from some n on w.p. 1, all the estimates of
sI the algorithm uses will be within ε of their sI values.
Since I(U1, . . . , Uk) = 0 if and only if U1, . . . , Uk is
the correct clustering (Lemma 1), it is enough to show
that, assuming all the ŝI estimates are close enough to
the sI values, the clustering that minimizes ŝI(U1, . . . , Uk)
is among those the algorithm searchers through, that is,

among the clusterings obtained by applying recursively the function Split to each of the sets in each
of the candidate partitions, starting with the input set S, until k clusters are obtained.

To see the latter, on each iteration of the while loop, we either already have a correct candidate
split in P , that is, a split (U1, U2) such that sI(U1, U2) = 0, or we find (executing the for loop) an
element x′ to add to the set C such that C⊥\x′. Indeed, if at least one such element x′ exists, then
among all such elements there is one that maximizes the difference d′. Since the set C is initialized as
a singleton, a correct split is eventually found if it exists. Applying the same procedure exhaustively
to each of the elements of each of the candidate splits producing all the combinations of k candidate
clusterings, under the assumption that all the estimates ŝI are sufficiently close the corresponding
values, we are guaranteed to have the one that minimizes I(U1, . . . , Uk) among the output.

Remark 5 (Fickle oracle). Another way to look at the difference between the stationary and the
i.i.d. cases is to consider the following “fickle” version of the oracle test of Section 3. Consider
the oracle that, as before, given sets of random variables A,B,C,D ⊂ {x1, . . . ,xN} answers
whether sI(A,B) > sI(C,D). However, the answer is only guaranteed to be correct in the case
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sI(A,B) 6= sI(C,D). If sI(A,B) = sI(C,D) then the answer is arbitrary (and can be considered
adversarial). One can see that Lemma 2 guarantees the existence of the oracle that has the requisite
fickle correctness property asymptotically, that is, w.p. 1 from some n on. It is also easy to see that
Algorithm 2 can be rewritten in terms of calls to such an oracle.

6 Generalizations, future work

A general formulation of the independence clustering problem has been presented, and attempt
has been made to trace out broadly the limits of what is possible and what is not possible in this
formulation. In doing so, clear-cut formulations have been favoured over utmost generality, and over,
on the other end of the spectrum, precise performance guarantees. Thus, many interesting questions
have been left out; some of these are outlined in this section.
Beyond time series. For the case when the distribution of the random variables xi is unknown, we
have assumed that a sample Xi

1..n is available for each i = 1..N . Thus, each xi is represented by a
time series. A time series is but one form the data may come in. Other ways include functional data,
mutli-dimensional- or continuous-time processes, or graphs. Generalizations to some of these models,
such as, for example, space-time stationary processes, are relatively straightforward, while others
require more care. Some generalizations to infinite stationary graphs may be possible along the lines
of [21]. In any case, the generalization problem is statistical (rather than algorithmic). If the number
of clusters is unknown, we need to be able to replace the emulate the oracle test of section 3 with
statistical tests. As explained in Section 4, it is sufficient to find a test for conditional independence,
or an estimator of entropy along with guarantees on its convergence rates. If these are not available,
as is the case of stationary ergodic samples, we can still have a consistent algorithm for k known,
as long as we have an asymptotically consistent estimator of mutual information (without rates), or,
more generally, if we can emulate the fickle oracle (Remark 5).
Beyond independence. The problem formulation considered rests on the assumption that there exists
a partition U1, . . . , Uk of the input set S such that U1, . . . , Uk are jointly independent, that is, such
that I(U1, . . . , Uk) = 0. In reality, perhaps, nothing is really independent, and so some relaxations
are in order. It is easy to introduce some thresholding in the algorithms (replacing 0 in each test by
some threshold α) and derive some basic consistency guarantees for the resulting algorithms. The
general problem formulation is to find a finest clustering such that I(U1, . . . , Uk) > ε, for a given ε
(note that, unlike in the independence case of ε = 0, such a clustering may not be unique). If one
wants to get rid of ε, a tree of clusterings may be considered for all ε ≥ 0, which is a common way to
treat unknown parameters in the clustering literature (e.g.,[2]). Another generalization can be obtained
by considering the problem from the graphical model point of view. The random variables xi are
vertices of a graph, and edges represent dependencies. In this representation, clusters are connected
components of the graph. A generalization then is to clusters that are the smallest components that
are connected (to each other) by at most l edges, where l is a parameter. Yet another generalization
would be to decomposable distributions of [10].
Performance guarantees. Non-asymptotic results (finite-sample performance guarantees) can be
obtained under additional assumptions, using the corresponding results on (conditional) independence
tests and on estimators of divergence between distributions. Here it is worth noting that we are
not restricted to using the mutual information I , but any measure of divergence can be used, for
example, Rényi divergence; a variety of relevant estimators and corresponding bounds, obtained
under such assumptions as Hölder continuity, can be found in [19, 11]. From any such bounds, at
least some performance guarantees for CLIN can be obtained simply using the union bound over all
the invocations of the tests.
Complexity. The algorithmic aspects of the problem have only been started upon in this work. Thus,
it remains to find out what is the computational complexity of the studied problem. So far, we have
presented only some upper bounds, by constructing algorithms and bounding their complexity (kN2

for CLIN and N2k for CLINk). Lower bounds (and better upper bounds) are left for future work.
A subtlety worth noting is that, for the case of known distributions, the complexity may be affected
by the choice of the oracle. In other words, some calculations may be “pushed” inside the oracle.
In this regard, it may be better to consider the oracle for testing conditional independence, rather
than a comparison of mutual informations, as explained in Remarks 1, 3. The complexity of the
stationary-sampling version of the problem can be studied using the fickle oracle of Remark 5. The
consistency of the algorithm should then be established for every assignment of those answers of the
oracle that are arbitrary (adversarial).

9



References
[1] Francis R Bach and Michael I Jordan. Beyond independent components: trees and clusters.

Journal of Machine Learning Research, 4(Dec):1205–1233, 2003.

[2] Maria-Florina Balcan, Yingyu Liang, and Pramod Gupta. Robust hierarchical clustering. Journal
of Machine Learning Research, 15(1):3831–3871, 2014.

[3] Jan Beirlant, Edward J Dudewicz, László Györfi, and Edward C Van der Meulen. Nonparametric
entropy estimation: An overview. International Journal of Mathematical and Statistical
Sciences, 6(1):17–39, 1997.

[4] Simon Benjaminsson, Peter Fransson, and Anders Lansner. A novel model-free data analysis
technique based on clustering in a mutual information space: application to resting-state fmri.
Frontiers in systems neuroscience, 4:34, 2010.

[5] David Maxwell Chickering. Learning Bayesian networks is NP-complete. In Learning from
data, pages 121–130. Springer, 1996.

[6] Thomas M. Cover and Joy A. Thomas. Elements of information theory. Wiley-Interscience,
New York, NY, USA, 2006.

[7] Robert M. Gray. Probability, Random Processes, and Ergodic Properties. Springer Verlag,
1988.

[8] Arthur Gretton and László Györfi. Consistent nonparametric tests of independence. Journal of
Machine Learning Research, 11(Apr):1391–1423, 2010.

[9] László Györfi. Private communication. 2011.

[10] Radim Jirouvsek. Solution of the marginal problem and decomposable distributions. Kyber-
netika, 27(5):403–412, 1991.

[11] Kirthevasan Kandasamy, Akshay Krishnamurthy, Barnabas Poczos, Larry Wasserman, and
James M Robins. Influence functions for machine learning: Nonparametric estimators for
entropies, divergences and mutual informations. arXiv preprint arXiv:1411.4342, 2014.

[12] Azadeh Khaleghi, Daniil Ryabko, Jérémie Mary, and Philippe Preux. Consistent algorithms for
clustering time series. Journal of Machine Learning Research, 17:1–32, 2016.

[13] Artemy Kolchinsky, Martijn P van den Heuvel, Alessandra Griffa, Patric Hagmann, Luis M
Rocha, Olaf Sporns, and Joaquín Goñi. Multi-scale integration and predictability in resting
state brain activity. Frontiers in Neuroinformatics, 8, 2014.

[14] Alexander Kraskov, Harald Stögbauer, Ralph G Andrzejak, and Peter Grassberger. Hierarchical
clustering using mutual information. EPL (Europhysics Letters), 70(2):278, 2005.

[15] Rosario N Mantegna. Hierarchical structure in financial markets. The European Physical
Journal B-Condensed Matter and Complex Systems, 11(1):193–197, 1999.

[16] Guillaume Marrelec, Arnaud Messé, and Pierre Bellec. A Bayesian alternative to mutual infor-
mation for the hierarchical clustering of dependent random variables. PloS one, 10(9):e0137278,
2015.

[17] Gautier Marti, Sébastien Andler, Frank Nielsen, and Philippe Donnat. Clustering financial time
series: How long is enough? In IJCAI’16, 2016.

[18] Christopher Meek. Finding a path is harder than finding a tree. J. Artif. Intell. Res. (JAIR),
15:383–389, 2001.

[19] Dávid Pál, Barnabás Póczos, and Csaba Szepesvári. Estimation of rényi entropy and mutual
information based on generalized nearest-neighbor graphs. In Advances in Neural Information
Processing Systems, pages 1849–1857, 2010.

[20] Ido Priness, Oded Maimon, and Irad Ben-Gal. Evaluation of gene-expression clustering via
mutual information distance measure. BMC bioinformatics, 8(1):111, 2007.

10



[21] D. Ryabko. Hypotheses testing on infinite random graphs. In Proceedings of the 28th Inter-
national Conference on Algorithmic Learning Theory (ALT’17), volume 76 of PMLR, pages
400–411, Kyoto, Japan, 2017. JMLR.

[22] D. Ryabko and B. Ryabko. Nonparametric statistical inference for ergodic processes. IEEE
Transactions on Information Theory, 56(3):1430–1435, 2010.

[23] Daniil Ryabko. Clustering processes. In Proc. the 27th International Conference on Machine
Learning (ICML 2010), pages 919–926, Haifa, Israel, 2010.

[24] Daniil Ryabko. Discrimination between B-processes is impossible. Journal of Theoretical
Probability, 23(2):565–575, 2010.

[25] Daniil Ryabko. Testing composite hypotheses about discrete ergodic processes. Test, 21(2):317–
329, 2012.

[26] P. Shields. The interactions between ergodic theory and information theory. IEEE Trans. on
Information Theory, 44(6):2079–2093, 1998.

[27] K Zhang, J Peters, D Janzing, and B Schölkopf. Kernel-based conditional independence test and
application in causal discovery. In Proceedings of the 27th Annual Conference on Uncertainty
in Artificial Intelligence (UAI), 2011.

[28] Xiaobo Zhou, Xiaodong Wang, Edward R Dougherty, Daniel Russ, and Edward Suh. Gene clus-
tering based on clusterwide mutual information. Journal of Computational Biology, 11(1):147–
161, 2004.

11


