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Abstract

We provide novel theoretical insights on structured prediction in the context of
efficient convex surrogate loss minimization with consistency guarantees. For any
task loss, we construct a convex surrogate that can be optimized via stochastic
gradient descent and we prove tight bounds on the so-called “calibration function’
relating the excess surrogate risk to the actual risk. In contrast to prior related
work, we carefully monitor the effect of the exponential number of classes in the
learning guarantees as well as on the optimization complexity. As an interesting
consequence, we formalize the intuition that some task losses make learning harder
than others, and that the classical 0-1 loss is ill-suited for structured prediction.

)

1 Introduction

Structured prediction is a subfield of machine learning aiming at making multiple interrelated
predictions simultaneously. The desired outputs (labels) are typically organized in some structured
object such as a sequence, a graph, an image, etc. Tasks of this type appear in many practical domains
such as computer vision [34], natural language processing [42] and bioinformatics [19].

The structured prediction setup has at least two typical properties differentiating it from the classical
binary classification problems extensively studied in learning theory:

1. Exponential number of classes: this brings both additional computational and statistical challenges.
By exponential, we mean exponentially large in the size of the natural dimension of output, e.g., the
number of all possible sequences is exponential w.r.t. the sequence length.

2. Cost-sensitive learning: in typical applications, prediction mistakes are not all equally costly.
The prediction error is usually measured with a highly-structured task-specific loss function, e.g.,
Hamming distance between sequences of multi-label variables or mean average precision for ranking.

Despite many algorithmic advances to tackle structured prediction problems [4, 35], there have been
relatively few papers devoted to its theoretical understanding. Notable recent exceptions that made
significant progress include Cortes et al. [13] and London et al. [28] (see references therein) which
proposed data-dependent generalization error bounds in terms of popular empirical convex surrogate
losses such as the structured hinge loss [44, 45, 47]. A question not addressed by these works is
whether their algorithms are consistent: does minimizing their convex bounds with infinite data lead
to the minimization of the task loss as well? Alternatively, the structured probit and ramp losses are
consistent [31, 30], but non-convex and thus it is hard to obtain computational guarantees for them.
In this paper, we aim at getting the property of consistency for surrogate losses that can be efficiently
minimized with guarantees, and thus we consider convex surrogate losses.

The consistency of convex surrogates is well understood in the case of binary classification [50, 5, 43]
and there is significant progress in the case of multi-class 0-1 loss [49, 46] and general multi-
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class loss functions [3, 39, 48]. A large body of work specifically focuses on the related tasks of
ranking [18, 9, 40] and ordinal regression [37].

Contributions. In this paper, we study consistent convex surrogate losses specifically in the context
of an exponential number of classes. We argue that even while being consistent, a convex surrogate
might not allow efficient learning. As a concrete example, Ciliberto et al. [10] recently proposed a
consistent approach to structured prediction, but the constant in their generalization error bound can
be exponentially large as we explain in Section 5. There are two possible sources of difficulties from
the optimization perspective: to reach adequate accuracy on the task loss, one might need to optimize
a surrogate loss to exponentially small accuracy; or to reach adequate accuracy on the surrogate loss,
one might need an exponential number of algorithm steps because of exponentially large constants
in the convergence rate. We propose a theoretical framework that jointly tackles these two aspects
and allows to judge the feasibility of efficient learning. In particular, we construct a calibration
function [43], i.e., a function setting the relationship between accuracy on the surrogate and task
losses, and normalize it by the means of convergence rate of an optimization algorithm.

Aiming for the simplest possible application of our framework, we propose a family of convex
surrogates that are consistent for any given task loss and can be optimized using stochastic gradient
descent. For a special case of our family (quadratic surrogate), we provide a complete analysis
including general lower and upper bounds on the calibration function for any task loss, with exact
values for the 0-1, block 0-1 and Hamming losses. We observe that to have a tractable learning
algorithm, one needs both a structured loss (not the 0-1 loss) and appropriate constraints on the
predictor, e.g., in the form of linear constraints for the score vector functions. Our framework also
indicates that in some cases it might be beneficial to use non-consistent surrogates. In particular, a
non-consistent surrogate might allow optimization only up to specific accuracy, but exponentially
faster than a consistent one.

We introduce the structured prediction setting suitable for studying consistency in Sections 2 and 3.
We analyze the calibration function for the quadratic surrogate loss in Section 4. We review the
related works in Section 5 and conclude in Section 6.

2 Structured prediction setup

In structured prediction, the goal is to predict a structured output ¢y € ) (such as a sequence, a graph,
an image) given an input * € X. The quality of prediction is measured by a task-dependent loss
Sunction L(g,y | ) > 0 specifying the cost for predicting g when the correct output is y. In this
paper, we consider the case when the number of possible predictions and the number of possible
labels are both finite. For simplicity,! we also assume that the sets of possible predictions and correct
outputs always coincide and do not depend on . We refer to this set as the set of labels ), denote its
cardinality by k, and map its elements to 1, ..., k. In this setting, assuming that the loss function
depends only on g and y, but not on « directly, the loss is defined by a loss matrix L € R*** We
assume that all the elements of the matrix L are non-negative and will use L, to denote the maximal
element. Compared to multi-class classification, k is typically exponentially large in the size of the
natural dimension of y, e.g., contains all possible sequences of symbols from a finite alphabet.

Following standard practices in structured prediction [12, 44], we define the prediction model by
a score function § : X — R specifying a score fy () for each possible output y € Y. The final
prediction is done by selecting a label with the maximal value of the score

pred(f(x)) := argmax fy (), (D
gyey

with some fixed strategy to resolve ties. To simplify the analysis, we assume that among the labels
with maximal scores, the predictor always picks the one with the smallest index.

The goal of prediction-based machine learning consists in finding a predictor that works well on
the unseen test set, i.e., data points coming from the same distribution D as the one generating the
training data. One way to formalize this is to minimize the generalization error, often referred to as
the actual (or population) risk based on the loss L,

RL(f) = E(zy)~p L(pred(j(z)), y). 2
Minimizing the actual risk (2) is usually hard. The standard approach is to minimize a surrogate risk,
which is a different objective easier to optimize, e.g., convex. We define a surrogate loss as a function

'Our analysis is generalizable to rectangular losses, e.g., ranking losses studied by Ramaswamy et al. [40].



® : R¥ x ) — R depending on a score vector f = f(x) € R¥ and a target label y € ) as input
arguments. We denote the y-th component of f with f,,. The surrogate risk (the ®-risk) is defined as

Ro(f) == E@ )~ 2(f(2), y), 3)
where the expectation is taken w.r.t. the data-generating distribution D. To make the minimization
of (3) well-defined, we always assume that the surrogate loss @ is bounded from below and continuous.

Examples of common surrogate losses include the structured hinge-loss [44, 47] ®ssym(f,y) =
maxgey ( fg + L(9, y)) — fy, the log loss (maximum likelihood learning) used, e.g., in conditional
random fields [25], @ (f, y) = IOg(dey exp fy) — fy, and their hybrids [38, 21, 22, 41].

In terms of task losses, we consider the unstructured 0-1 loss Loi(9,y) = [§ # y],> and the
two following structured losses: block 0-1 loss with b equal blocks of labels Lo (g, y) =
[ and y are not in the same block]; and (normalized) Hamming loss between tuples of T binary

variables y;: Lyam,7 (¥, Y) = % Zthl [ # yi]- To illustrate some aspects of our analysis, we also
look at the mixed loss Lo p,,: a convex combination of the 0-1 and block 0-1 losses, defined as
Lo1,p,n :=nLo1 + (1 — 1) Lo1,p for some n € [0, 1].

3 Consistency for structured prediction

3.1 Calibration function

‘We now formalize the connection between the actual risk R, and the surrogate ®-risk R¢ via the
so-called calibration function, see Definition 1 below [5, 49, 43, 18, 3]. As it is standard for this
kind of analysis, the setup is non-parametric, i.e. it does not take into account the dependency of
scores on input variables . For now, we assume that a family of score functions § # consists of all
vector-valued Borel measurable functions f : X — F where 7 C RF is a subspace of allowed score
vectors, which will play an important role in our analysis. This setting is equivalent to a pointwise
analysis, i.e, looking at the different input x independently. We bring the dependency on the input
back into the analysis in Section 3.3 where we assume a specific family of score functions.

Let Dy represent the marginal distribution for D on « and P(- | ) denote its conditional given x.
‘We can now rewrite the risk R, and ®-risk R4 as

RL(f) = Eanpy L(§(2), P(- | 2)), Ra(f) = Eznp, ¢((2), P(- | 2)),
where the conditional risk ¢ and the conditional ®-risk ¢ depend on a vector of scores f and a
conditional distribution on the set of output labels g as

k k
(f.q):=)  acLlpred(f).c), o(f.q):=) a(f.0).
The calibration function Hg 1, 7 between the surrogate loss @ and the task loss L relates the excess
surrogate risk with the actual excess risk via the excess risk bound:

H@,L,f((se(qu)) é 5¢(faq)7 Vf € Fa Vq S Aka (4)

where 6¢(f,q) = 6(f,q) — inf s> &(f,q), 5U(f,q) = ((f,q) —inf s - £(f, q) are the excess
risks and Ay, denotes the probability simplex on k elements.

In other words, to find a vector f that yields an excess risk smaller than ¢, we need to optimize the
®-risk up to Hg, 1, #(&) accuracy (in the worst case). We make this statement precise in Theorem 2
below, and now proceed to the formal definition of the calibration function.

Definition 1 (Calibration function). For a task loss L, a surrogate loss ®, a set of feasible scores F,
the calibration function He 1, (¢) (defined for € > 0) equals the infimum excess of the conditional
surrogate risk when the excess of the conditional actual risk is at least ¢:

Hg 1, 7(¢) ::fe}_i’ qfeAk&b(f; q) (5)
st. 0(f,q) >e. (6)

We set Ho 1, 7(€) to +00 when the feasible set is empty.

By construction, Hg 1, 7 is non-decreasing on [0, +00), Hg 1, #(¢) > 0, the inequality (4) holds,
and Hg 1, 7(0) = 0. Note that H 1 can be non-convex and even non-continuous (see examples
in Figure 1). Also, note that large values of Hg j r(¢) are better.

*Here we use the Iverson bracket notation, i.e., [A] := 1if a logical expression A is true, and zero otherwise.
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Figure 1: Calibration functions for the quadratic surrogate @, (12) defined in Section 4 and two
different task losses. (a) — the calibration functions for the Hamming loss Ly,m 7 when used without
constraints on the scores, F = R (in red), and with the tight constraints implying consistency,
F = span(Lyam,7) (in blue). The red curve can grow exponentially slower than the blue one. (b) —
the calibration functions for the mixed loss Lg1 3, with 77 = 0.4 (see Section 2 for the definition) when
used without constraints on the scores (red) and with tight constraints for the block 0-1 loss (blue).
The blue curve represents level-0.2 consistency. The calibration function equals zero for e < 7/2,
but grows exponentially faster than the red curve representing a consistent approach and thus could
be better for small 7. More details on the calibration functions in this figure are given in Section 4.

3.2 Notion of consistency

We use the calibration function Hg ;7 to set a connection between optimizing the surrogate and
task losses by Theorem 2, which is similar to Theorem 3 of Zhang [49].

Theorem 2 (Calibration connection). Let Hg. 1, 7 be the calibration function between the surrogate
loss ® and the task loss L with feasible set of scores F C RF. Let vap’L,]: be a convex non-decreasing
lower bound of the calibration function. Assume that ® is continuous and bounded from below. Then,
for any € > 0 with finite Hy 1, () and any § € § r, we have

Ro(f) < R r + Hor7(e) = Ri() <RLz+e, )
where Ry r = infieg, Ra(f) and Ry, 5 := infiez, RL(f).

Proof. We take the expectation of (4) w.r.t. , where the second argument of / is set to the conditional
distribution P(- | ). Then, we apply Jensen’s inequality (since Hg 1, F is convex) to get

Hy 1 7(Ri(f) — Ri ) < Ra(f) — Ry » < Ha 1 7(2), (8)

which implies (7) by monotonicity of pr, L.F- O

A suitable convex non-decreasing lower bound T @17 (€) required by Theorem 2 always exists, e.g.,
the zero constant. However, in this case Theorem 2 is not informative, because the Lh.s. of (7) is
never true. Zhang [49, Proposition 25] claims that Hg 1, 7 defined as the lower convex envelope of
the calibration function Hg s, 7 satisfies Hg 1 7(g) > 0, Ve > 0, if He 1, () > 0, Ve > 0, and,
e.g., the set of labels is finite. This statement implies that an informative H. ®,1,7 always exists and
allows to characterize consistency through properties of the calibration function Hg 1, 7.

We now define a notion of level-n consistency, which is more general than consistency.

Definition 3 (level-n consistency). A surrogate loss ® is consistent up to level n > 0 w.x.t. a task
loss L and a set of scores F if and only if the calibration function satisfies Hg 1, 7() > 0 for all
€ > n and there exists € > n such that Hg 1, 7 (£) is finite.

Looking solely at (standard level-0) consistency vs. inconsistency might be too coarse to capture
practical properties related to optimization accuracy (see, e.g., [29]). For example, if He 1, #(€) = 0
only for very small values of ¢, then the method can still optimize the actual risk up to a certain
level which might be good enough in practice, especially if it means that it can be optimized faster.
Examples of calibration functions for consistent and inconsistent surrogate losses are shown in
Figure 1.

Other notions of consistency. Definition 3 with = 0 and F = R* results in the standard setting
often appearing in the literature. In particular, in this case Theorem 2 implies Fisher consistency as



formulated, e.g., by Pedregosa et al. [37] for general losses and Lin [27] for binary classification.
This setting is also closely related to many definitions of consistency used in the literature. For
example, for a bounded from below and continuous surrogate, it is equivalent to infinite-sample
consistency [49], classification calibration [46], edge-consistency [18], (L,Rk)-calibration [39],
prediction calibration [48]. See [49, Appendix A] for the detailed discussion.

Role of 7. Let the approximation error for the restricted set of scores F be defined as R}, » — R, :=
infjeg . Ri(f) — inf; R (). For any conditional distribution g, the score vector f := —Lq will
yield an optimal prediction. Thus the condition span(L) C F is sufficient for F to have zero
approximation error for any distribution D, and for our O-consistency condition to imply the standard
Fisher consistency with respect to L. In the following, we will see that a restricted F can both play a
role for computational efficiency as well as statistical efficiency (thus losses with smaller span(L)
might be easier to work with).

3.3 Connection to optimization accuracy and statistical efficiency

The scale of a calibration function is not intrinsically well-defined: we could multiply the surrogate
function by a scalar and it would multiply the calibration function by the same scalar, without
changing the optimization problem. Intuitively, we would like the surrogate loss to be of order 1. If
with this scale the calibration function is exponentially small (has a 1/k factor), then we have strong
evidence that the stochastic optimization will be difficult (and thus learning will be slow).

To formalize this intuition, we add to the picture the complexity of optimizing the surrogate loss with
a stochastic approximation algorithm. By using a scale-invariant convergence rate, we provide a
natural normalization of the calibration function. The following two observations are central to the
theoretical insights provided in our work:

1. Scale. For a properly scaled surrogate loss, the scale of the calibration function is a good indication
of whether a stochastic approximation algorithm will take a large number of iterations (in the worst
case) to obtain guarantees of small excess of the actual risk (and vice-versa, a large coefficient
indicates a small number of iterations). The actual verification requires computing the normalization
quantities given in Theorem 6 below.

2. Statistics. The bound on the number of iterations directly relates to the number of training
examples that would be needed to learn, if we see each iteration of the stochastic approximation
algorithm as using one training example to optimize the expected surrogate.

To analyze the statistical convergence of surrogate risk optimization, we have to specify the set of
score functions that we work with. We assume that the structure on input € X is defined by a
positive definite kernel K : X x X — R. We denote the corresponding reproducing kernel Hilbert
space (RKHS) by # and its explicit feature map by ¥ (x) € H. By the reproducing property, we
have (f,¢(x))y = f(z) forall x € X, f € H, where (-, -) is the inner product in the RKHS. We
define the subspace of allowed scores 7 C R* via the span of the columns of a matrix F' € R*¥*",
The matrix F' explicitly defines the structure of the score function. With this notation, we will assume
that the score function is of the form f(x) = FW1(x), where W : H — R” is a linear operator
to be learned (a matrix if H is of finite dimension) that represents a collection of r elements in H,
transforming () to a vector in R” by applying the RKHS inner product  times.®> Note that for
structured losses, we usually have < k. The set of all score functions is thus obtained by varying W
in this definition and is denoted by § 7 7. As a concrete example of a score family § r 7 for structured
prediction, consider the standard sequence model with unary and pairwise potentials. In this case, the
dimension r equals T's + (T — 1)s?, where T is the sequence length and s is the number of labels
of each variable. The columns of the matrix F' consist of 27" — 1 groups (one for each unary and
pairwise potential). Each row of F' has exactly one entry equal to one in each column group (with
zeros elsewhere).

In this setting, we use the online projected averaged stochastic subgradient descent ASGD* (stochastic
w.r.t. data (m("), y(”)) ~ D) to minimize the surrogate risk directly [6]. The n-th update consists in

W(n) — PD [W(n—l) _ ,y(n)‘Z;u'l'vq),t/](w(n))T}7 (9)

3Note that if rank(F') = r, our setup is equivalent to assuming a joint kernel [47] in the product form:
Ko ((z,¢), (&', ) := K(x,2')F(c,:)F(c,:)", where F(c,:) is the row ¢ for matrix F.
*See, e.g., [36] for the formal setup of kernel ASGD.



where FTV®)(x(™)T : H — R" is the stochastic functional gradient, 7(") is the step size
and Pp is the projection on the ball of radius D w.r.t. the Hilbert-Schmidt norm> The vector
V® ¢ R* is a regular gradient of the sampled surrogate ®(f(z(™), y(™)) w.r.t. the scores, V& =
Vi®(f,y™)| F=f(x(m)- We wrote the above update using an explicit feature map ¥ for notational
simplicity, but kernel ASGD can also be implemented without it by using the kernel trick. The
convergence properties of ASGD in RKHS are analogous to the finite-dimensional ASGD because
they rely on dimension-free quantities. To use a simple convergence analysis, we follow Ciliberto

et al. [10] and make the following simplifying assumption:

Assumption 4 (Well-specified optimization w.r.t. the function class §r ). The distribution D is
such that R, r = infjez, Ro (f) has some global minimum §* that also belongs to F 3.

Assumption 4 simply means that each row of W* defining {* belongs to the RKHS H implying
a finite norm ||W*||zs. Assumption 4 can be relaxed if the kernel K is universal, but then the
convergence analysis becomes much more complicated [36].

Theorem 5 (Convergence rate). Under Assumption 4 and assuming that (i) the functions ®(f,y)
are bounded from below and convex w.r.t. f € RF for all y € Y; (ii) the expected square of the norm
of the stochastic gradient is bounded, E(q, ) p||FTV®Y(x) ||} < M? and (iii) |W*||gs < D,

then running the ASGD algorithm (9) with the constant step-size v := MQ\I/JN for N steps admits the

following expected suboptimality for the averaged iterate ?W ):

- y - N
E[Rs(fM)] - Ry » < DI where fN) =L anlFW(")w(:c(”))T. (10)

Theorem 5 is a straight-forward extension of classical results [33, 36].

By combining the convergence rate of Theorem 5 with Theorem 2 that connects the surrogate and
actual risks, we get Theorem 6 which explicitly gives the number of iterations required to achieve
€ accuracy on the expected population risk (see App. A for the proof). Note that since ASGD is
applied in an online fashion, Theorem 6 also serves as the sample complexity bound, i.e., says how
many samples are needed to achieve ¢ target accuracy (compared to the best prediction rule if F has
Zero approximation error).

Theorem 6 (Learning complexity). Under the assumptions of Theorem 5, for any € > 0, the random
(w.r.t. the observed training set) output f(N) € §ru of the ASGD algorithm after
N > N* .= AD°M* (11)

H(%,L,}'(E)

iterations has the expected excess risk bounded with ¢, i.e., B[R (FM))] < R r+e

4 Calibration function analysis for quadratic surrogate

A major challenge to applying Theorem 6 is the computation of the calibration function Hg 1, 7. In
App. C, we present a generalization to arbitrary multi-class losses of a surrogate loss class from Zhang
[49, Section 4.4.2] that is consistent for any task loss L. Here, we consider the simplest example of
this family, called the quadratic surrogate ® 4.4, which has the advantage that we can bound or even
compute exactly its calibration function. We define the quadratic surrogate as
k
Paua(f,y) = g + LG I3 = 55 D (2 + 2feL(e,y) + Lic,y)?). (12)
c=1

One simple sufficient condition for the surrogate (12) to be consistent and also to have zero approxi-
mation error is that F fully contains span(L). To make the dependence on the score subspace explicit,
we parameterize it with a matrix F' € R¥*” with the number of columns r typically being much
smaller than the number of labels k. With this notation, we have F = span(F) = {F0 | 8 € R"},
and the dimensionality of F equals the rank of F', which is at most r.°

3The Hilbert-Schmidt norm of a linear operator A is defined as || A|| s = VtrA A where A% is the adjoint
operator. In the case of finite dimension, the Hilbert—Schmidt norm coincides with the Frobenius matrix norm.

SEvaluating Dyuad TEquires computing FTF and F"L(:,y) for which direct computation is intractable when
k is exponential, but which can be done in closed form for the structured losses we consider (the Hamming and
block 0-1 loss). More generally, these operations require suitable inference algorithms. See also App. F.



For the quadratic surrogate (12), the excess of the expected surrogate takes a simple form:
Oqua(FO,q) = 3| FO + Lall3. (13)

Equation (13) holds under the assumption that the subspace F contains the column space of the
loss matrix span(L), which also means that the set 7 contains the optimal prediction for any q (see
Lemma 9 in App. B for the proof). Importantly, the function d@quad(F'8, q) is jointly convex in the
conditional probability g and parameters 8, which simplifies its analysis.

Lower bound on the calibration function. We now present our main technical result: a lower
bound on the calibration function for the surrogate loss ®quaq (12). This lower bound characterizes
the easiness of learning with this surrogate given the scaling intuition mentioned in Section 3.3. The
proof of Theorem 7 is given in App. D.1.

Theorem 7 (Lower bound on He,,,,). For any task loss L, its quadratic surrogate ® g4, and a score
subspace F containing the column space of L, the calibration function can be lower bounded:
2 2

3} g
H(I)qua(hL;f(S) Z 2kmaxi¢j HP]__Ang Z ak> (14)

where Pr is the orthogonal projection on the subspace F and A;; = e; — e; € R¥ with e, being
the c-th basis vector of the standard basis in R”.

Lower bound for specific losses. We now discuss the meaning of the bound (14) for some specific
losses (the detailed derivations are given in App. D.3). For the 0-1, block 0-1 and Hamming losses
(Lo1, Lo1,p and Lyam, 7, respectively) with the smallest possible score subspaces F, the bound (14)
gives Z—z, Z—Z and 85—;, respectively. All these bounds are tight (see App. E). However, if 7 = R*
the bound (14) is not tight for the block 0-1 and mixed losses (see also App. E). In particular, the
bound (14) cannot detect level-n consistency for 7 > 0 (see Def. 3) and does not change when the
loss changes, but the score subspace stays the same.

Upper bound on the calibration function. Theorem 8 below gives an upper bound on the calibration
function holding for unconstrained scores, i.e, F = R¥ (see the proof in App. D.2). This result shows
that without some appropriate constraints on the scores, efficient learning is not guaranteed (in the
worst case) because of the 1/k scaling of the calibration function.

Theorem 8 (Upper bound on Hg,,,). If a loss matrix L with L, > 0 defines a pseudometric’ on

labels and there are no constraints on the scores, i.e., F = RF, then the calibration function for the
2

quadratic surrogate ®g,q can be upper bounded: H<I>quad, LRF (e) < ;—k, 0<e< L.

From our lower bound in Theorem 7 (which guarantees consistency), the natural constraint on
the score is F = span(L), with the dimension of this space giving an indication of the intrinsic
“difficulty” of a loss. Computations for the lower bounds in some specific cases (see App. D.3 for
details) show that the O-1 loss is “hard” while the block 0-1 loss and the Hamming loss are “easy”.
Note that in all these cases the lower bound (14) is tight, see the discussion below.

Exact calibration functions. Note that the bounds proven in Theorems 7 and 8 imply that, in the
case of no constraints on the scores F = R*, for the 0-1, block 0-1 and Hamming losses, we have
2 2

iik S Hq:'quad’L:Rk (E) S 57167 (15)
where L is the matrix defining a loss. For completeness, in App. E, we compute the exact calibration
functions for the 0-1 and block 0-1 losses. Note that the calibration function for the 0-1 loss equals the
lower bound, illustrating the worst-case scenario. To get some intuition, an example of a conditional
distribution g that gives the (worst case) value to the calibration function (for several losses) is
¢ =7%+5q =3%—5andg. = 0forc¢ {i,j}. See the proof of Proposition 12 in App. E.1.

In what follows, we provide the calibration functions in the cases with constraints on the scores. For
the block 0-1 loss with b equal blocks and under constraints that the scores within blocks are equal,
the calibration function equals (see Proposition 14 of App. E.2)

2
H(I)quad;L(]l,b«,FOl,b(g) = fTbv 0<e<l (16)

A pseudometric is a function d(a, b) satisfying the following axioms: d(z,y) > 0, d(x,2) = 0 (but
possibly d(z,y) = 0 for some z # y), d(z,y) = d(y, z), d(z, z) < d(z,y) + d(y, z).



For the Hamming loss defined over 7" binary variables and under constraints implying separable
scores, the calibration function equals (see Proposition 15 in App. E.3)
52
H(unamLHum,Ta]:Ham,T (8) = 87’]“7 O S € S 1 (17)
The calibration functions (16) and (17) depend on the quantities representing the actual complexities

of the loss (the number of blocks b and the length of the sequence 7") and can be exponentially larger
than the upper bound for the unconstrained case.

In the case of mixed 0-1 and block 0-1 loss, if the scores f are constrained to be equal inside the
blocks, i.e., belong to the subspace Fo1,, = span(Lo1,p) & R¥, then the calibration function is equal
to 0 for ¢ < &, implying inconsistency (and also note that the approximation error can be as big as 7

for Fo1,5). However, for ¢ > 7, the calibration function is of the order %(5 — g)2 See Figure 1b for
the illustration of this calibration function and Proposition 17 of App. E.4 for the exact formulation
and the proof. Note that while the calibration function for the constrained case is inconsistent, its
value can be exponentially larger than the one for the unconstrained case for € big enough and when
the blocks are exponentially large (see Proposition 16 of App. E.4).

Computation of the SGD constants. Applying the learning complexity Theorem 6 requires to
compute the quantity DM where D bounds the norm of the optimal solution and M bounds the
expected square of the norm of the stochastic gradient. In App. F, we provide a way to bound this
quantity for our quadratic surrogate (12) under the simplifying assumption that each conditional g.(x)
(seen as function of x) belongs to the RKHS H (which implies Assumption 4). In particular, we get

DM = L2 &(k(F)VrRQuy), &(2) =22+ 2, (18)

where x(F) is the condition number of the matrix F, R is an upper bound on the RKHS norm of
object feature maps ||¢)(x)||. We define Q.x as an upper bound on Zle lge|l% (can be seen as

the generalization of the inequality Z];:l g. < 1 for probabilities). The constants R and @),,.,x depend
on the data, the constant L., depends on the loss, r and x(F') depend on the choice of matrix F.

We compute the constant D M for the specific losses that we considered in App. F.1. For the 0-1, block
0-1 and Hamming losses, we have DM = O(k), DM = O(b) and DM = O(log3 k), respectively.
These computations indicate that the quadratic surrogate allows efficient learning for structured block
0-1 and Hamming losses, but that the convergence could be slow in the worst case for the 0-1 loss.

5 Related works

Consistency for multi-class problems. Building on significant progress for the case of binary
classification, see, e.g. [5], there has been a lot of interest in the multi-class case. Zhang [49] and
Tewari & Bartlett [46] analyze the consistency of many existing surrogates for the 0-1 loss. Gao &
Zhou [20] focus on multi-label classification. Narasimhan et al. [32] provide a consistent algorithm
for arbitrary multi-class loss defined by a function of the confusion matrix. Recently, Ramaswamy &
Agarwal [39] introduce the notion of convex calibrated dimension, as the minimal dimensionality of
the score vector that is required for consistency. In particular, they showed that for the Hamming loss
on 7 binary variables, this dimension is at most 7'. In our analysis, we use scores of rank (7" + 1),
see (35) in App. D.3, yielding a similar result.

The task of ranking has attracted a lot of attention and [18, 8, 9, 40] analyze different families of
surrogate and task losses proving their (in-)consistency. In this line of work, Ramaswamy et al.
[40] propose a quadratic surrogate for an arbitrary low rank loss which is related to our quadratic
surrogate (12). They also prove that several important ranking losses, i.e., precision@q, expected
rank utility, mean average precision and pairwise disagreement, are of low-rank. We conjecture that
our approach is compatible with these losses and leave precise connections as future work.

Structured SVM (SSVM) and friends. SSVM [44, 45, 47] is one of the most used convex surrogates
for tasks with structured outputs, thus, its consistency has been a question of great interest. It is
known that Crammer-Singer multi-class SVM [15], which SSVM is built on, is not consistent for
0-1 loss unless there is a majority class with probability at least % [49, 31]. However, it is consistent
for the “abstain” and ordinal losses in the case of 3 classes [39]. Structured ramp loss and probit
surrogates are closely related to SSVM and are consistent [31, 16, 30, 23], but not convex.



Recently, Dogan et al. [17] categorized different versions of multi-class SVM and analyzed them
from Fisher and universal consistency point of views. In particular, they highlight differences between
Fisher and universal consistency and give examples of surrogates that are Fisher consistent, but not
universally consistent and vice versa. They also highlight that the Crammer-Singer SVM is neither
Fisher, not universally consistent even with a careful choice of regularizer.

Quadratic surrogates for structured prediction. Ciliberto et al. [10] and Brouard et al. [7] consider
minimizing Y, ||g(2;) — ¥ (y;)||3, aiming to match the RKHS embedding of inputs g : X — H
to the feature maps of outputs ¢, : J — H. In their frameworks, the task loss is not considered at
the learning stage, but only at the prediction stage. Our quadratic surrogate (12) depends on the loss
directly. The empirical risk defined by both their and our objectives can be minimized analytically with
the help of the kernel trick and, moreover, the resulting predictors are identical. However, performing
such computation in the case of large dataset can be intractable and the generalization properties have
to be taken care of, e.g., by the means of regularization. In the large-scale scenario, it is more natural
to apply stochastic optimization (e.g., kernel ASGD) that directly minimizes the population risk and
has better dependency on the dataset size. When combined with stochastic optimization, the two
approaches lead to different behavior. In our framework, we need to estimate r = rank(L) scalar
functions, but the alternative needs to estimate & functions (if, e.g., 1, (y) = ey € R¥), which results
in significant differences for low-rank losses, such as block 0-1 and Hamming.

Calibration functions. Bartlett et al. [5] and Steinwart [43] provide calibration functions for most
existing surrogates for binary classification. All these functions differ in term of shape, but are
roughly similar in terms of constants. Pedregosa et al. [37] generalize these results to the case of
ordinal regression. However, their calibration functions have at best a 1/k factor if the surrogate is
normalized w.r.t. the number of classes. The task of ranking has been of significant interest. However,
most of the literature [e.g., 11, 14, 24, 1], only focuses on calibration functions (in the form of regret
bounds) for bipartite ranking, which is more akin to cost-sensitive binary classification.

Avila Pires et al. [3] generalize the theoretical framework developed by Steinwart [43] and present
results for the multi-class SVM of Lee et al. [26] (the score vectors are constrained to sum to zero)
that can be built for any task loss of interest. Their surrogate  is of the form > v, L(c, y)a(f.)
where ) y fe =0and a(f) is some convex function with all subgradients at zero being positive.

The recent work by Avila Pires & Szepesvari [2] refines the results, but specifically for the case of
0-1 loss. In this line of work, the surrogate is typically not normalized by k, and if normalized the
calibration functions have the constant 1/x appearing.

Finally, Ciliberto et al. [10] provide the calibration function for their quadratic surrogate. Assuming
that the loss can be represented as L(y,y) = (V¢o(9), ¥o(¥))2,» ¥,y € Y (this assumption can
always be satisfied in the case of a finite number of labels, by taking V' as the loss matrix L and
¥o(y) := e, € R¥ where e, is the y-th vector of the standard basis in R*). In their Theorem 2, they
provide an excess risk bound leading to a lower bound on the corresponding calibration function
Hg 1 rr(e) > % where a constant ca = ||V||2 maxyey ||t (y)]| simply equals the spectral norm
of the loss matrix for the finite-dimensional construction provided above. However, the spectral
norm of the loss matrix is exponentially large even for highly structured losses such as the block 0-1
and Hamming losses, i.e., || Lo1p|l2 = k — %, Luamrll2 = % This conclusion puts the objective
of Ciliberto et al. [10] in line with ours when no constraints are put on the scores.

6 Conclusion

In this paper, we studied the consistency of convex surrogate losses specifically in the context
of structured prediction. We analyzed calibration functions and proposed an optimization-based
normalization aiming to connect consistency with the existence of efficient learning algorithms.
Finally, we instantiated all components of our framework for several losses by computing the
calibration functions and the constants coming from the normalization. By carefully monitoring
exponential constants, we highlighted the difference between tractable and intractable task losses.

These were first steps in advancing our theoretical understanding of consistent structured prediction.
Further steps include analyzing more losses such as the low-rank ranking losses studied by Ra-
maswamy et al. [40] and, instead of considering constraints on the scores, one could instead put
constraints on the set of distributions to investigate the effect on the calibration function.



Acknowledgements

We would like to thank Pascal Germain for useful discussions. This work was partly supported
by the ERC grant Activia (no. 307574), the NSERC Discovery Grant RGPIN-2017-06936 and the
MSR-INRIA Joint Center.

References

[1] Agarwal, Shivani. Surrogate regret bounds for bipartite ranking via strongly proper losses.
Journal of Machine Learning Research (JMLR), 15(1):1653-1674, 2014.

[2] Avila Pires, Bernardo and Szepesviri, Csaba. Multiclass classification calibration functions.
arXiv, 1609.06385v1, 2016.

[3] Avila Pires, Bernardo, Ghavamzadeh, Mohammad, and Szepesvari, Csaba. Cost-sensitive
multiclass classification risk bounds. In /ICML, 2013.

[4] Bakir, Gokhan, Hofmann, Thomas, Scholkopf, Bernhard, Smola, Alexander J., Taskar, Ben,
and Vishwanathan, S.V.N. Predicting Structured Data. MIT press, 2007.

[5] Bartlett, Peter L., Jordan, Michael 1., and McAuliffe, Jon D. Convexity, classification, and risk
bounds. Journal of the American Statistical Association, 101(473):138—156, 2006.

[6] Bousquet, Olivier and Bottou, Léon. The tradeoffs of large scale learning. In NIPS, 2008.

[7] Brouard, Céline, Szafranski, Marie, and d’ Alché-Buc, Florence. Input output kernel regression:
Supervised and semi-supervised structured output prediction with operator-valued kernels.
Journal of Machine Learning Research (JMLR), 17(176):1-48, 2016.

[8] Buffoni, David, Gallinari, Patrick, Usunier, Nicolas, and Calauzenes, Clément. Learning scoring
functions with order-preserving losses and standardized supervision. In /ICML, 2011.

[9] Calauzenes, Clément, Usunier, Nicolas, and Gallinari, Patrick. On the (non-)existence of convex,
calibrated surrogate losses for ranking. In NIPS, 2012.

[10] Ciliberto, Carlo, Rudi, Alessandro, and Rosasco, Lorenzo. A consistent regularization approach
for structured prediction. In NIPS, 2016.

[11] Clémencon, Stéphan, Lugosi, Gdbor, and Vayatis, Nicolas. Ranking and empirical minimization
of U-statistics. The Annals of Statistics, pp. 844-874, 2008.

[12] Collins, Michael. Discriminative training methods for hidden Markov models: Theory and
experiments with perceptron algorithms. In EMNLP, 2002.

[13] Cortes, Corinna, Kuznetsov, Vitaly, Mohri, Mehryar, and Yang, Scott. Structured prediction
theory based on factor graph complexity. In NIPS, 2016.

[14] Cossock, David and Zhang, Tong. Statistical analysis of bayes optimal subset ranking. IEEE
Transactions on Information Theory, 54(11):5140-5154, 2008.

[15] Crammer, Koby and Singer, Yoram. On the algorithmic implementation of multiclass kernel-
based vector machines. Journal of Machine Learning Research (JMLR), 2:265-292, 2001.

[16] Do, Chuong B., Le, Quoc, Teo, Choon Hui, Chapelle, Olivier, and Smola, Alex. Tighter bounds
for structured estimation. In NIPS, 2009.

[17] Dogan, Uriin, Glasmachers, Tobias, and Igel, Christian. A unified view on multi-class support
vector classification. Journal of Machine Learning Research (JMLR), 17(45):1-32, 2016.

[18] Duchi, John C., Mackey, Lester W., and Jordan, Michael I. On the consistency of ranking
algorithms. In ICML, 2010.

[19] Durbin, Richard, Eddy, Sean, Krogh, Anders, and Mitchison, Graeme. Biological sequence
analysis: probabilistic models of proteins and nucleic acids. Cambridge university press, 1998.

10



[20] Gao, Wei and Zhou, Zhi-Hua. On the consistency of multi-label learning. In COLT, 2011.

[21] Gimpel, Kevin and Smith, Noah A. Softmax-margin CRFs: Training loglinear models with cost
functions. In NAACL, 2010.

[22] Hazan, Tamir and Urtasun, Raquel. A primal-dual message-passing algorithm for approximated
large scale structured prediction. In NIPS, 2010.

[23] Keshet, Joseph. Optimizing the measure of performance in structured prediction. In Advanced
Structured Prediction. MIT Press, 2014.

[24] Kotlowski, Wojciech, Dembczynski, Krzysztof, and Huellermeier, Eyke. Bipartite ranking
through minimization of univariate loss. In ICML, 2011.

[25] Lafferty, John, McCallum, Andrew, and Pereira, Fernando. Conditional random fields: Proba-
bilistic models for segmenting and labeling sequence data. In /CML, 2001.

[26] Lee, Yoonkyung, Lin, Yi, and Wahba, Grace. Multicategory support vector machines: Theory
and application to the classification of microarray data and satellite radiance data. Journal of
the American Statistical Association, 99(465):67-81, 2004.

[27] Lin, Yi. A note on margin-based loss functions in classification. Statistics & Probability Letters,
68(1):73-82, 2004.

[28] London, Ben, Huang, Bert, and Getoor, Lise. Stability and generalization in structured prediction.
Journal of Machine Learning Research (JMLR), 17(222):1-52, 2016.

[29] Long, Phil and Servedio, Rocco. Consistency versus realizable H-consistency for multiclass
classification. In ICML, 2013.

[30] McAllester, D. A. and Keshet, J. Generalization bounds and consistency for latent structural
probit and ramp loss. In NIPS, 2011.

[31] McAllester, David. Generalization bounds and consistency for structured labeling. In Predicting
Structured Data. MIT Press, 2007.

[32] Narasimhan, Harikrishna, Ramaswamy, Harish G., Saha, Aadirupa, and Agarwal, Shivani.
Consistent multiclass algorithms for complex performance measures. In ICML, 2015.

[33] Nemirovski, A., Juditsky, A., Lan, G., and Shapiro, A. Robust stochastic approximation
approach to stochastic programming. SIAM Journal on Optimization, 19(4):1574-1609, 2009.

[34] Nowozin, Sebastian and Lampert, Christoph H. Structured learning and prediction in computer
vision. Foundations and Trends in Computer Graphics and Vision, 6(3—4):185-365, 2011.

[35] Nowozin, Sebastian, Gehler, Peter V., Jancsary, Jeremy, and Lampert, Christoph H. Advanced
Structured Prediction. MIT Press, 2014.

[36] Orabona, Francesco. Simultaneous model selection and optimization through parameter-free
stochastic learning. In NIPS, 2014.

[37] Pedregosa, Fabian, Bach, Francis, and Gramfort, Alexandre. On the consistency of ordinal
regression methods. Journal of Machine Learning Research (JMLR), 18(55):1-35, 2017.

[38] Pletscher, Patrick, Ong, Cheng Soon, and Buhmann, Joachim M. Entropy and margin maxi-
mization for structured output learning. In ECML PKDD, 2010.

[39] Ramaswamy, Harish G. and Agarwal, Shivani. Convex calibration dimension for multiclass
loss matrices. Journal of Machine Learning Research (JMLR), 17(14):1-45, 2016.

[40] Ramaswamy, Harish G., Agarwal, Shivani, and Tewari, Ambuj. Convex calibrated surrogates
for low-rank loss matrices with applications to subset ranking losses. In NIPS, 2013.

[41] Shi, Qinfeng, Reid, Mark, Caetano, Tiberio, van den Hengel, Anton, and Wang, Zhenhua. A
hybrid loss for multiclass and structured prediction. /EEE transactions on pattern analysis and
machine intelligence (TPAMI), 37(1):2-12, 2015.

11



[42] Smith, Noah A. Linguistic structure prediction. Synthesis lectures on human language tech-
nologies, 4(2):1-274, 2011.

[43] Steinwart, Ingo. How to compare different loss functions and their risks. Constructive Approxi-
mation, 26(2):225-287, 2007.

[44] Taskar, Ben, Guestrin, Carlos, and Koller, Daphne. Max-margin markov networks. In NIPS,
2003.

[45] Taskar, Ben, Chatalbashev, Vassil, Koller, Daphne, and Guestrin, Carlos. Learning structured
prediction models: a large margin approach. In ICML, 2005.

[46] Tewari, Ambuj and Bartlett, Peter L. On the consistency of multiclass classification methods.
Journal of Machine Learning Research (JMLR), 8:1007-1025, 2007.

[47] Tsochantaridis, 1., Joachims, T., Hofmann, T., and Altun, Y. Large margin methods for
structured and interdependent output variables. Journal of Machine Learning Research (JMLR),
6:1453-1484, 2005.

[48] Williamson, Robert C., Vernet, Elodie, and Reid, Mark D. Composite multiclass losses. Journal
of Machine Learning Research (JMLR), 17(223):1-52, 2016.

[49] Zhang, Tong. Statistical analysis of some multi-category large margin classification methods.
Journal of Machine Learning Research (JMLR), 5:1225-1251, 2004.

[50] Zhang, Tong. Statistical behavior and consistency of classification methods based on convex
risk minimization. Annals of Statistics, 32(1):56—134, 2004.

12



