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Abstract

We consider the problem of binary prediction with expert advice in settings where
experts have agency and seek to maximize their credibility. This paper makes
three main contributions. First, it defines a model to reason formally about settings
with selfish experts, and demonstrates that “incentive compatible” (IC) algorithms
are closely related to the design of proper scoring rules. Second, we design
IC algorithms with good performance guarantees for the absolute loss function.
Third, we give a formal separation between the power of online prediction with
selfish versus honest experts by proving lower bounds for both IC and non-IC
algorithms. In particular, with selfish experts and the absolute loss function,
there is no (randomized) algorithm for online prediction—IC or otherwise—with
asymptotically vanishing regret.

1 Introduction

In the months leading up to elections and referendums, a plethora of pollsters try to figure out
how the electorate is going to vote. Different pollsters use different methodologies, reach different
people, and may have sources of random errors, so generally the polls don’t fully agree with each
other. Aggregators such as Nate Silver’s FiveThirtyEight, and The Upshot by the New York Times
consolidate these different reports into a single prediction, and hopefully reduce random errors
FiveThirtyEight in particular has a solid track record for their predictions, and as they are transparent
about their methodology we use them as a motivating example. To a first-order approximation, they
operate as follows: first they take the predictions of all the different pollsters, then they assign a
weight to each of the pollsters based on past performance (and other factors), and finally they use the
weighted average of the pollsters to run simulations and make their own prediction)’

But could the presence of an institution that rates pollsters inadvertently create perverse incentives
for pollsters? The FiveThirtyEight pollster ratings are publicly available They can be interpreted
as a reputation, and a low rating can negatively impact future revenue opportunities for a pollster.
Moreover, it has been demonstrated in practice that experts do not always report their true beliefs
about future events. For example, in weather forecasting there is a known “wet bias,” where consumer-
facing weather forecasters deliberately overestimate low chances of rain (e.g. a 5% chance of rain is
reported as a 25% chance of rain) because people don’t like to be surprised by rain [Bickel and Kim,
2008]].

"https://fivethirtyeight.com/, https://www.nytimes.com/section/upshot,

“This is of course a simplification. FiveThirtyEight also uses features like the change in a poll over time,
the state of the economy, and correlations between states. See https://fivethirtyeight.com/features/
how-fivethirtyeight-calculates-pollster-ratings/ for details. Our goal in this paper is not to
accurately model all of the fine details of FiveThirtyEight (which are anyways changing all the time). Rather, it
is to formulate a general model of prediction with experts that clearly illustrates why incentives matter.

*https://projects.fivethirtyeight.com/pollster-ratings/
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These examples motivate the development of models of aggregating predictions that endow agency to
the data sources While there are multiple models in which we can investigate this issue, a natural
candidate is the problem of prediction with expert advice. By focusing on a standard model, we
abstract away from the fine details of FiveThirtyEight (which are anyways changing all the time),
which allows us to formulate a general model of prediction with experts that clearly illustrates why
incentives matter. In the classical model [Littlestone and Warmuth,|1994, Freund and Schapirel |[1997],
at each time step, several experts make predictions about an unknown event. An online prediction
algorithm aggregates experts’ opinions and makes its own prediction at each time step. After this
prediction, the event at this time step is realized and the algorithm incurs a loss as a function of its
prediction and the realization. To compare its performance against individual experts, for each expert
the algorithm calculates what its loss would have been had it always followed the expert’s prediction.
While the problems introduced in this paper are relevant for general online prediction, to focus on
the most interesting issues we concentrate on the case of binary events, and real-valued predictions
in [0, 1]. For different applications, different notions of loss are appropriate, so we parameterize the
model by a loss function ¢. Thus our formal model is: at each time stept = 1,2,...,7"

1. Each expert ¢ makes a prediction p,(»t)

.’ €10, 1], representing advocacy for event “1.”

2. The online algorithm commits to a probability ¢(*) e [0, 1] as a prediction for event “1.”
3. The outcome () € {0, 1} is realized.

4. The algorithm incurs expected loss £(q(*), r(*)), each expert i is assigned loss £(p\", r(®)).

The standard goal in this problem is to design an online prediction algorithm that is guaranteed to
have expected loss not much larger than that incurred by the best expert in hindsight. The classical
solutions maintain a weight for each expert and make a prediction according to which outcome has
more expert weight behind it. An expert’s weight can be interpreted as a measure of its credibility in
light of its past performance. The (deterministic) Weighted Majority (WM) algorithm always chooses
the outcome with more expert weight. The Randomized Weighted Majority (RWM) algorithm
randomizes between the two outcomes with probability proportional to their total expert weights.

The most common method of updating experts’ weights is via multiplication by 1 — né(pl(-t), r(t))
after each time step ¢, where 7 is the learning rate. We call this the “standard” or “classical” version
of the WM and RWM algorithms.

The classical model instills no agency in the experts. To account for this, in this paper we replace
Step 1 of the classical model by:

la. Each expert ¢ formulates a belief bgt) € [0,1].
1b. Each expert i reports a prediction p!”) € [0, 1] to the algorithm.

i
Each expert now has two types of loss at each time step — the reported loss E(pl(‘t)7 (1)) with respect
to the reported prediction and the true loss ¢ (bgt)7 (1)) with respect to her true beliefs

When experts care about the weight that they are assigned, and with it their reputation and influence
in the algorithm, different loss functions can lead to different expert behaviors. For example, for
the quadratic loss function, in the standard WM and RWM algorithms, experts have no reason to

misreport their beliefs (see Proposition[8). This is not the case for other loss functions, such as the
absolute loss functionﬂ The standard algorithm with the absolute loss function incentivizes extremal

reporting, i.e. an expert reports 1 whenever bgt) > % and 0 otherwise. This follows from a simple

“More generally, one can investigate how the presence of machine learning algorithms affects data-generating
processes, either during learning or deployment. We discuss some of this work in the related work section.

SWhen we speak of the best expert in hindsight, we are always referring to the true losses. Guarantees with
respect to reported losses follow from standard results [Littlestone and Warmuth, |1994, [Freund and Schapire,
1997} |Cesa-Bianchi et al.||2007]], but are not immediately meaningful.

°The loss function is often tied to the particular application. For example, in the current FiveThir-
tyEight pollster rankings, the performance of a pollster is primarily measured according to an absolute
loss function and also whether the candidate with the highest polling numbers ended up winning (see
https://github.com/fivethirtyeight/data/tree/master/pollster-ratings). However, in 2008
FiveThirtyEight used the notion of “pollster introduced error” or PIE, which is the square root of a difference
of squares, as the most important feature in calculating the weights, see https://fivethirtyeight.com/
features/pollster-ratings-v31/.
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derivation or alternatively from results in the property elicitation literature This shows that for the
absolute loss function the standard WM algorithm is not “incentive-compatible” in a sense that we
formalize in Section 2| There are similar examples for the other commonly studied weight update
rules and for the RWM algorithm. We might care about truthful reporting for its own sake, but
additionally the worry is that non-truthful reports will impede our ability to get good regret guarantees
(with respect to experts’ true losses).

We study several fundamental questions about online prediction with selfish experts:

1. What is the design space of “incentive-compatible” online prediction algorithms, where
every expert is incentivized to report her true beliefs?

2. Given a loss function like absolute loss, are there incentive-compatible algorithms with good
regret guarantees?

3. Is online prediction with selfish experts strictly harder than in the classical model with
honest experts?

Our Results. The first contribution of this paper is the development of a model for reasoning
formally about the design and analysis of weight-based online prediction algorithms when experts are
selfish (Section[2), and the definition of an “incentive-compatible” (IC) such algorithm. Intuitively, an
IC algorithm is such that each expert wants to report its true belief at each time step. We demonstrate
that the design of IC online prediction algorithms is closely related to the design of strictly proper
scoring rules. Using this, we show that for the quadratic loss function, the standard WM and RWM
algorithms are IC, whereas these algorithms are not generally IC for other loss functions.

Our second contribution is the design of IC prediction algorithms for the absolute loss function with
non-trivial performance guarantees. For example, our best result for deterministic algorithms is: the
WM algorithm, with experts’ weights evolving according to the spherical proper scoring rule (see
Section%b, is IC and has loss at most 2 + v/2 times the loss of best expert in hindsight (in the limit as
T — o0). A variant of the RWM algorithm with the Brier scoring rule is IC and has expected loss at
most 2.62 times that of the best expert in hindsight (also in the limit, see Section [3)).

Our third and most technical contribution is a formal separation between online prediction with
selfish experts and the traditional setting with honest experts. Recall that with honest experts, the
classical (deterministic) WM algorithm has loss at most twice that of the best expert in hindsight (as
T — o0) [Littlestone and Warmuth| [1994]. We prove in Section[d that the worst-case loss of every
(deterministic) IC algorithm, and every (deterministic) non-IC algorithm satisfying mild technical
conditions, is bounded away from twice that of the best expert in hindsight (even as 7' — 00).
A consequence of our lower bound is that, with selfish experts, there is no natural (randomized)
algorithm for online prediction—IC or otherwise—with asymptotically vanishing regret.

Finally, in Section [6] we show simulations that indicate that different IC methods show similar regret
behavior, and that their regret is substantially better than that of the non-IC standard algorithms,
suggesting that the worst-case characterization we prove holds more generally.

Related Work. We believe that our model of online prediction over time with selfish experts is
novel. We next survey the multiple other ways in which online learning and incentive issues have
been blended, and the other efforts to model incentive issues in machine learning.

There is a large literature on prediction and decision markets (e.g./Chen and Pennock [2010], Horn
et al. [2014]), which also aim to aggregate information over time from multiple parties and make use
of proper scoring rules to do it. However, prediction markets provide incentives through payments,
rather than influence, and lack the feedback mechanism to select among experts. While there are
strong mathematical connections between cost function-based prediction markets and regularization-
based online learning algorithms in the standard (non-IC) model [Abernethy et al.,[2013], there does
not appear to be any interesting implications for online prediction with selfish experts.

There is also an emerging literature on “incentivizing exploration” in partial feedback models such as
the bandit model (e.g. [Frazier et al. [2014], Mansour et al. [2016]). Here, the incentive issues concern
the learning algorithm itself, rather than the experts (or “arms”) that it makes use of.

"The absolute loss function is known to elicit the median [Bonin, |1976][Thomson,|1979], and since we have
binary realizations, the median is either O or 1.



The question of how an expert should report beliefs has been studied before in the literature on strictly
proper scoring rules [Brier, 1950, McCarthy| |1956,|Savage, 1971, |Gneiting and Raftery, |2007], but
this literature typically considers the evaluation of a single prediction, rather than low-regret learning.
Bayarri and DeGroot| [1989] look at correlated settings where strictly proper scoring rules don’t
suffice, though they also do not consider how an aggregator can achieve low regret.

Finally, there are many works that fall under the broader umbrella of incentives in machine learning.
Roughly, work in this area can be divided into two genres: incentives during the learning stage, e.g.
[Cai et al., 2015} |Shah and Zhou|[2015} |Liu and Chen, 2016/ |Dekel et al.l 2010], or incentives during
the deployment stage, e.g. Briickner and Scheffer|[2011]], (Hardt et al. [2016]. Finally, |[Babaioff et al.
[2010] consider the problem of no-regret learning with selfish experts in an ad auction setting, where
the incentives come from the allocations and payments of the auction, rather than from weights as in
our case.

2 Preliminaries and Model

Standard Model. At each time step ¢ € 1,...,7 we want to predict a binary realization r(*) €
{0, 1}. To help in the prediction, we have access to n experts that for each time step report a prediction

pl(-t) € [0, 1] about the realization. The realizations are determined by an oblivious adversary, and
the predictions of the experts may or may not be accurate. The goal is to use the predictions of the
experts in such a way that the algorithm performs nearly as well as the best expert in hindsight. Most

of the algorithms proposed for this problem fall into the following framework.
Definition 1 (Weight-update Online Prediction Algorithm). A weight-update online prediction algo-
Z@ for each expert and makes its prediction ¢ based on 3", wgt) pl(»t)

and ) wgt) (1- pgt)). After the algorithm makes its prediction, the realization r(*) is revealed, and
the algorithm updates the weights of experts using the rule

wl = g (", r®) - wl?, M

where f : [0,1] x {0,1} — R is a positive function on its domain.

rithm maintains a weight w

The standard WM algorithm has f(pgt), r) =1-— nﬂ(pgt), r()) where ) € (0, 1) is the learning
rate, and predicts ¢ = 1if and only it 37 w(”p{? > S 1" (1 —p{"). Let the total loss of the al-

gorithm be M™) = ST ¢(¢®, r() and let the total loss of expert i be m™) = S>7 ¢(p?, r1).

The MW algorithm has the property that M () < 2(1 + T])ml(»T) + 21,% for each expert ¢, and

RWM —where the algorithm picks 1 with probability proportional to Y " wgt)pgt)— satisfies

MDD < (14 n)ml(-T) + 1“7” for each expert ¢ [Littlestone and Warmuth| |1994][Freund and Schapire|
1997]. The notion of “no a-regret” [Kakade et al.| [2009] captures the idea that the per time-step loss
of an algorithm is « times that of the best expert in hindsight, plus a term that goes to 0 as 1" grows:

Definition 2 (a-regret). An algorithm is said to have no a-regret if M(T) < o min; mET) +o(T).

By taking 7 = O(1/+/T), MW is a no 2-regret algorithm, and RWM is a no 1-regret algorithm.

Selfish Model. We consider a model in which experts have agency about the prediction they report,
and care about the weight that they are assigned. In the selfish model, at time ¢ the expert formulates

a private belief bgt) about the realization, but she is free to report any prediction pl(-t) to the algorithm.
Let Bern(p) be a Bernoulli random variable with parameter p. For any non-negative weight update

function f,

maxByo[uf V] = max, o [f (o)l = wf?- (m;?XEmBem(bg”)[f ® T”)'

()

So expert ¢ will report whichever p,” will maximize the expectation of the weight update function.

Performance of an algorithm with respect to the reported loss of experts follows from the standard
analysis [Littlestone and Warmuth, [1994]. However, the true loss may be worse (in SectionE we



show this for the standard update rule, Sectiond shows it more generally). Unless explicitly stated
otherwise, in the remainder of this paper m{T) = Z;l E(bz(-t), r(t)) refers to the true loss of expert 7.

i
For now this motivates restricting the weight update rule f to functions where reporting pgt) = bl@
maximizes the expected weight of experts. We call these weight-update rules Incentive Compatible
(IC).

Definition 3 (Incentive Compatibility). A weight-update function f is incentive compatible (IC) if
reporting the true belief bz(-t) is always a best response for every expert at every time step. It is strictly
IC when pgt) = bl(.t) is the only best response.

By a “best response,” we mean an expected utility-maximizing report, where the expectation is with
respect to the expert’s beliefs.

Collusion. The definition of IC does not rule out the possibility that experts can collude to jointly
misreport to improve their weights. We therefore also consider a stronger notion of incentive
compatibility for groups with transferable utility

Definition 4 (IC for Groups with Transferable Utility). A weight-update function f is IC for groups
with transferable utility (TU-GIC) if for every subset S of players, the total expected weight of the
group > ;o E ) [wftﬂ)} is maximized by each reporting their private belief bgt).

Proper Scoring Rules. Incentivizing truthful reporting of beliefs has been studied extensively, and

the set of functions that do this is called the set of proper scoring rules. Since we focus on predicting
a binary event, we restrict our attention to this class of functions.

Definition 5 (Binary Proper Scoring Rule, [Schervish, [1989]). A function f : [0,1] x {0,1} —
R U {£o0} is a binary proper scoring rule if it is finite except possibly on its boundary and whenever
for p € [0, 1] it holds that p € max,cpo11p - f(¢,1) + (1 —p) - f(g,0).

A function f is a strictly proper scoring rule if p is the only value that maximizes the expectation.
The first and perhaps most well-known proper scoring rule is the Brier scoring rule.

Example 6 (Brier Scoring Rule, [Brier, 1950]). The Brier score is Br(p,r) = 2p, — (p*> + (1 — p)?)
where p, = pr + (1 — p)(1 — r) is the report for the event that materialized.

We will use the Brier scoring rule in Section [5]to construct an incentive-compatible randomized
algorithm with good guarantees. The following proposition follows directly from Definitions [3|and [5]

Proposition 7. Weight-update rule f is (strictly) IC if and only if f is a (strictly) proper scoring rule.

Surprisingly, this result remains true even when experts can collude. While the realizations are
obviously correlated, linearity of expectation causes the sum to be maximized exactly when each
expert maximizes their own expected weight.

Proposition 8. A weight-update rule f is (strictly) incentive compatible for groups with transferable
utility if and only if f is a (strictly) proper scoring rule.

Thus, for online prediction with selfish experts, we get TU-GIC “for free.” It is quite uncommon for
problems in non-cooperate game theory to admit good TU-GIC solutions. For example, results for
auctions (either for revenue or welfare) break down once bidders collude, see e.g. [[Goldberg and
Hartline, [2005]. In the remainder of the paper we will simply use IC to refer to IC and TU-GIC, as
strictly proper scoring rules yield algorithms that satisfy both definitions.

Thus, for IC algorithms we are restricted to considering (bounded) proper scoring rules as weight-
update rules. Conversely, any bounded scoring rule can be used, possibly after an affine transformation
(which preserve proper-ness). Are there any proper scoring rules that give an online prediction
algorithm with a good performance guarantee? The standard algorithm for quadratic losses yields a
weight-update function that is equivalent to the Brier strictly proper scoring rule, and thus is IC. The
standard algorithm with absolute losses is not IC, so in the remainder of this paper we discuss this
setting in more detail.

8Note that TU-GIC is a strictly stronger concept than IC and group IC with nontransferable utility (NTU-GIC)
[Moulin, |1999]|[Jain and Mahdian, [2007|).



3 Deterministic Algorithms for Selfish Experts

This section studies the question if there are good online prediction algorithms with selfish experts
for the absolute loss function. We restrict our attention here to deterministic algorithms; SectionE
gives a randomized algorithm with good guarantees.

Proposition [7)tells us that for selfish experts to have a strict incentive to report truthfully, the weight-
update rule must be a strictly proper scoring rule. This section gives a deterministic algorithm based
on the spherical strictly proper scoring rule that has no (2 + v/2)-regret (Theorem . Additionally,
we consider the question if the non-truthful reports from experts in using the standard (non-IC) WM
algorithm are harmful. We show that this is the case by proving it is not a no (4 — O(1))-regret
algorithm for any constant smaller than 4 (Proposition [IT). This shows that, when experts are selfish,
the IC online prediction algorithm with the spherical rule outperforms the standard WM algorithm
(in the worst case).

Online Prediction using a Spherical Rule. We next give an algorithm that uses a strictly proper
scoring rule that is based on the spherical rule scoring ruleﬂ Consider the following weight-update
rule:

fsp(pi”,<>)—1n<1( o = @) /o5 + pgt))~(1—p§t))>. @)

The following proposition establishes that this is in fact a strictly proper scoring rule. Due to space
constraints, all proofs appear in Appendix[A of the supplementary material.

Proposition 9. The spherical weight-update rule in (2) is a strictly proper scoring rule.

In addition to incentivizing truthful reporting, the WM algorithm with the update rule f, does not do
much worse than the best expert in hindsight.

Theorem 10. WM with weight-update rule @)) forn = O(1/V/T) < 1 has no (2 + /2)-regret.

True Loss of the Non-IC Standard Rule. It is instructive to compare the guarantee in Theorem |[10]
with the performance of the standard (non-IC) WM algorithrn WM with the standard weight update

function f(p{”, r®) =1 —y[pi" — r®] for n € (0, 1) has no 2-regret with respect to the reported
loss of experts However this algorithm incentivizes extremal reports (for details see Appendix [B]in
the supplementary material), and in the worst case, this algorithm’s loss can be as bad as 4 times the
true loss of the best expert in hindsight. Theorem [I0 shows that a suitable IC algorithm obtains a
superior worst-case guarantee.

Proposition 11. The standard WM algorithm with weight-update rule f (pl@, r(t)> 77|p(t)

)| results in a total worst-case loss no better than M(T) > 4 - min; mET) —o(1).

4 The Cost of Selfish Experts

We now address the third fundamental question: whether or not online prediction with selfish experts
is strictly harder than with honest experts. As there exists a deterministic algorithm for honest experts
with no 2-regret, showing a separation between honest and selfish experts boils down to proving that
there exists a constant § > 0 such that best possible no a-regret algorithm has o = 2 + §. In this
section we show that such a ¢ exists, and that it is independent of the learning rate. Hence the lower
bound also holds for algorithms that, like the classical prediction algorithms, use a time-varying
learning rate. Due to space considerations, this section only states the main results, for details
and proofs refer to the supplementary materials where in Appendix [D we give the results for IC
algorithms, and in Appendix [E] we give the results for the non-IC algorithms. We extend these results
to randomized algorithms in Section[5, where we rule out the existence of a (possibly randomized)
no-regret algorithm for selfish experts.

°In Appendixin the supplementary materials we give an intuition for why this rule yields better results
than other natural candidates, such as the Brier scoring rule.



IC Algorithms. To prove the lower bound, we have to be specific about which set of algorithms
we consider. To cover algorithms that have a decreasing learning parameter, we first show that any
positive proper scoring rule can be interpreted as having a learning parameter 7.

Proposition 12. Ler f be any strictly proper scoring rule. We can write f as f(p,r) = a+bf'(p,r)
witha € R, b € R" and f' a strictly proper scoring rule with min(f’(0,1), f’(1,0)) = 0 and
max(f/(07 0), f/(la 1)) =1

We call f':[0,1] x {0,1} — [0, 1] a normalized scoring rule. Using normalized scoring rules, we
can define a family of scoring rules with different learning rates 7). Define F as the following family
of proper scoring rules generated by normalized strictly proper scoring rule f:

F={f(p.r)=al+n(f(p,r)—1)) :a>0andn € (0,1)}

By Proposition [I2] the union of families generated by normalized strictly proper scoring rules cover
all strictly proper scoring rules. Using this we can now formulate the class of deterministic algorithms
that are incentive compatible.

Definition 13 (Deterministic IC Algorithms). Let A, be the set of deterministic algorithms that
update weights by wl(“'l) =a(l+ n(f(pgt), r1) — 1))w§t), for a normalized strictly proper scoring
rule f and 7 € (0, 1) with 5 possibly decreasing over time. For g = "I, wgt)pgt)/ > wgt), A
picks ¢ = 0if ¢ < 1, ¢ = 1if ¢ > 1 and uses any deterministic tie breaking rule for ¢ = 1.
Using this definition we can now state our main lower bound result for IC algorithms:

Theorem 14. For the absolute loss function, there does not exists a deterministic and incentive-
compatible algorithm A € Ay with no 2-regret.

Of particular interest are symmetric scoring rules, which occur often in practice, and which have a
relevant parameter that drives the lower bound results:

Definition 15 (Scoring Rule Gap). The scoring rule gap v of family F with generator f is v =
1 1 1 1

f(2) = 5(F0)+ f(1) = f(3) — 5

By definition, the scoring rule gap for strictly proper scoring rules is strictly positive, and it drives the

lower bound for symmetric functions:

Lemma 16. Let F be a family of scoring rules generated by a symmetric strictly proper scoring rule
f, and let v be the scoring rule gap of F. In the worst case, MW with any scoring rule [’ from F

with 1) € (0, 3) can do no better than MT > (2 + qu) . mET).

As a consequence of Lemma(T6, we can calculate lower bounds for specific strictly proper scoring
rules. For example, the spherical rule used in Section [3]is a symmetric strictly proper scoring rule
with a gap parameter v = g — 2, and hence 1/[y71] = %

Non-IC Algorithms. What about non-incentive-compatible algorithms? Could it be that, even
with experts reporting strategically instead of honestly, there is a deterministic algorithm with loss at
most twice that of the best expert in hindsight (or a randomized algorithm with vanishing regret), to
match the classical results for honest experts? Under mild technical conditions, the answer is no. The
following definition captures how players are incentivized to report differently from their beliefs.

Definition 17 (Rationality Function). For a weight update function f, let py : [0, 1] — [0, 1] be the
function from beliefs to predictions, such that reporting p ¢ (b) is rational for an expert with belief b.

Under mild technical conditions on the rationality function, we show our main lower bound for
(potentially non-IC) algorithms.

Theorem 18. For a weight update function f with continuous or non-strictly increasing rationality
function py, there is no deterministic no 2-regret algorithm.

Note that Theorem [I8 covers the standard algorithm, as well as other common update rules such

as the Hedge update rule fiedge (pgt), r(t)) = e‘"‘p?)_r(t)| [Freund and Schapirel [1997], and all IC

methods, since they have the identity rationality function (though the bounds in Thm[T4]are stronger).



S Randomized Algorithms: Upper and Lower Bounds

Impossibility of Vanishing Regret. We now consider randomized online learning algorithms,
which can typically achieve better worst-case guarantees than deterministic algoritms. For example,
with honest experts, there are randomized algorithms no 1-regret. Unfortunately, the lower bounds in
Section[]imply that no such result is possible for randomized algorithms (more details in Appendix|[F).

Corollary 19. Any incentive compatible randomized weight-update algorithm or non-IC randomized
algorithm with continuous or non-strictly increasing rationality function cannot be no 1-regret.

An IC Randomized Algorithm. While we cannot hope to achieve a no-regret algorithm for online
prediction with selfish experts, we can do better than the deterministic algorithm from Section [3.
Consider the following class of randomized algorithms:

Definition 20 (f-randomized weighted majority). Let A, be the class of algorithms that maintains

w®
expert weights as in Deﬁnrtron Let ) = S pgt) be the weighted predictions. For

0 ife® <o
parameter ¢ € [0, 3] the algorithm chooses 1 with probability p = ¢ b® if 6 < b®) <1 4.
1 otherwise

We call algorithms in A, -RWM algorithms. We’ll use the Brier rule fg, (]z)gt)7 rt)) =1- n((pgt) )2+
(1 -2 +1)/2 — (1 - i) with 51 = |p{? — r(®)].

Theorem 21. Let A € A, be a -RWM algorithm with the Brier weight update rule fg, and
0 = 0.382 and withn = O(1/V/T) € (0, 3). A has no 2.62-regret.

6 Simulations

The theoretical results presented so far indicate that when faced with selfish experts, one should
use an IC weight update rule, and ones with smaller scoring rule gap are better. Two objections to
these conclusions are: first, the presented results are worst-case, and may not represent behavior on
a typical input. It is of particular interest to see if on non-worst-case inputs, the non-IC standard
weight-update rule does better or worse than the IC methods proposed in this paper. Second, there
is a gap between our upper and lower bounds for IC rules, so it’s interesting to see what numerical
regret is obtained.

Results. In our first simulation, experts are represented by a simple two-state hidden Markov model
(HMM) with a “good” state and a “bad” state. Realization 7(*) is given by a fair coin. For r(*) =0

(otherwise beliefs are reversed), in the good state expert i believes b(t) ~ min{Exp(1)/5,1}, in the

bad state bgt) ~ U[ 1]. The probability to exit a state is -5 for both states. This data generating
process models that experts that have information about the event are more accurate than experts
who lack the information. Figure [l1ashows the regret as a function of time for the standard (non-
10) algorithm and IC scoring rules including one from the Beta family [Buja et al.| [2005] with

a=0= 2 For the IC methods, experts report p = b(t) for the standard algorithm p( )= 1if

b(t) and p(t) = 0 otherwise. The y axis is the ratio of the total loss of each of the algorithms to
the performance of the best expert at that time. The plot is for 10 experts, T = 10,000, n = 1072,
and the randomized . versions of the algorithms, averaged over 30 runs. Varying model parameters
and the deterministic version show similar results.

Each of the IC methods does significantly better than the standard weight-update algorithm, and
even at T' = 200, 000 (not shown in the graph), the IC methods have a regret factor of about 1.003,
whereas the standard algorithm still has 1.14. This gives credence to the notion that failing to account
for incentive issues is problematic beyond the worst-case bounds presented earlier. Moreover, while
there is a worst-case lower bound that rules out no-regret, for natural synthetic data, the loss of all the
IC algorithms approaches that of the best expert in hindsight, while the standard algorithm fails to do

""Here we use the regular RWM algorithm, so in the notation of Section we have 6 = 0.
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Figure 1: Regret for different data-generating processes.

Table 1: Comparison of lower bound results with simulation. The simulation is run for 7' =

10,000, = 10~ and we ort the average of 30 runs. For the lower bounds, the first number is the
1

lower bound from Lemma , ie. 2+ H—L] the second number (in parentheses) is 2 + .
[ [ Beta.l | Beta.5 [ Beta.7 [ Beta.9 [ Brier [ Spherical |
Greedy LB 2.3708 2.2983 2.2758 2.2584 2.2507 2.2071
LB Sim 2.4414 2.3186 2.2847 2.2599 2.2502 2.2070
Lem[I6LB | 2.33 (2.441) | 2.25 (2.318) | 2.25 (2.285) | 2.25 (2.260) | 2.25 | 2.2 (2.207)

this. This seems to indicate that eliciting the truthful beliefs of the experts is more important than the
exact weight-update rule.

Comparison of LB Instances. We consider both the lower bound instance described the proof of

Lemma , and a greedy version that punishes the algorithm every time w((,t) is “sufficiently” large

Figure[1b]shows the regret for different algorithms on the greedy lower bound instance. Table[T|shows
that it very closely traces 2 + -, as do the numerical results for the lower bound from Lemma|[16] In
fact, for the analysis, we needed to use [y~1] when determining the first phase of the instance. When
we use 7 instead numerically, the regret seems to trace 2 +  quite closely, rather than the weaker
proven lower bound of 2 + ,y%l Table |l shows that the analysis of Lemma(16 is essentially tight

(up to the rounding of ~). Closing the gap between the lower and upper bound requires finding a
different lower bound instance, or a better analysis for the upper bound.

7 Open Problems

There area number of interesting questions that this work raises. First of all, our utility model
effectively causes experts to optimize their weight independently of other experts. |Bayarri and
DeGroot [[1989] discuss different objective functions for experts, including optimizing relative weight
among experts under different informational assumptions. These would impose different constraints
as to which algorithms would lead to truthful reporting, and it would be interesting to see if no-regret
learning is possible in this setting.

It also remains an open problem to close the gap between the best known upper and lower bounds that
we presented in this paper. The simulations showed that the analysis for the lower bound instances is
almost tight, so this requires a novel upper bound and/or a different lower bound instance.

Finally, strictly proper scoring rules are also well-defined beyond binary outcomes. It would be
interesting to see what bounds can be proved for predictions over more than two outcomes.

"When wét) is sufficiently large we make eg (and thus the algorithm) wrong twice: b(()t) =0, bgﬂ =1,

b;t) =1, r® =1, and bét‘H) =0, bgt) =1, bét) =1,r® = 1. “Sufficiently” here means that weight of e is
high enough for the algorithm to follow its advice during both steps.
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