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Abstract

Conditional probabilities are a core concept in machine learning. For example,
optimal prediction of a label Y given an input X corresponds to maximizing the
conditional probability of Y given X . A common approach to inference tasks is
learning a model of conditional probabilities. However, these models are often
based on strong assumptions (e.g., log-linear models), and hence their estimate of
conditional probabilities is not robust and is highly dependent on the validity of
their assumptions.
Here we propose a framework for reasoning about conditional probabilities without
assuming anything about the underlying distributions, except knowledge of their
second order marginals, which can be estimated from data. We show how this
setting leads to guaranteed bounds on conditional probabilities, which can be calcu-
lated efficiently in a variety of settings, including structured-prediction. Finally, we
apply them to semi-supervised deep learning, obtaining results competitive with
variational autoencoders.

1 Introduction

In classification tasks the goal is to predict a label Y for an object X . Assuming that the joint
distribution of these two variables is p∗(x,y) then optimal prediction1 corresponds to returning
the label y that maximizes the conditional probability p∗(y|x). Thus, being able to reason about
conditional probabilities is fundamental to machine learning and probabilistic inference.

In the fully supervised setting, one can sidestep the task of estimating conditional probabilities by
directly learning a classifier in a discriminative fashion. However, in unsupervised or semi-supervised
settings, a reliable estimate of the conditional distributions becomes important. For example, consider
a self-training [17, 31] or active learning setting. In both scenarios, the learner has a set of unlabeled
samples and it needs to choose which ones to tag. Given an unlabeled sample x, if we could reliably
conclude that p∗(y|x) is close to 1 for some label y, we could easily decide whether to tag x or not.
Intuitively, an active learner would prefer not to tag x while a self training algorithm would tag it.

There are of course many approaches to “modelling” conditional distributions, from logistic regression
to conditional random fields. However, these do not come with any guarantees of approximations
to the true underlying conditional distributions of p∗ and thus cannot be used to reliably reason
about these. This is due to the fact that such models make assumptions about the conditionals (e.g.,
conditional independence or parametric), which are unlikely to be satisfied in practice.

As an illustrative example for our motivation and setup, consider a set of n binary variables
X1, ..., Xn whose distribution we are interested in. Suppose we have enough data to obtain
the joint marginals, P [Xi = xi, Xj = xj ], of pairs i, j in a set E. If (1, 2) ∈ E and we con-
cluded that P [X1 = 1|X2 = 1] = 1, this lets us reason about many other probabilities. For ex-
ample, we know that P [X1 = 1|X2 = 1, . . . , Xn = xn] = 1 for any setting of the x3, . . . , xn

1In the sense of minimizing prediction error.
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variables. This is a simple but powerful observation, as it translates knowledge about prob-
abilities over small subsets to robust estimates of conditional probability over large subsets.
Now, what happens when P [X1 = 1|X2 = 1] = 0.99? In other words, what can we say about
P [X1 = 1|X2 = 1, . . . , Xn = xn] given information about probabilities P [Xi = xi, Xj = xj ]. As
we show here, it is still possible to reason about such conditional probabilities even under this partial
knowledge.

Motivated by the above, we propose a novel model-free approach for reasoning about conditional
probabilities. Specifically, we shall show how conditional probabilities can be lower bounded when
the only assumption made is that certain low-order marginals of the distribution are known. One of the
surprising outcomes of our analysis is that these lower bounds can be calculated efficiently, and often
have an elegant closed form. Finally, we show how these bounds can be used in a semi-supervised
setting, obtaining results that are competitive with variational autoencoders [11].

2 Problem Setup

We begin by defining notations to be used in what follows. Let X denote a vector of random variables
X1, . . . , Xn which are the features and Y denote labels. If we have a single label we will denote it by
Y , otherwise, a multivariate label will be denoted by Y1, . . . , Yr. X,Y are generated by an unknown
underlying distribution p∗(X,Y ). All variables are discrete (i.e., can take on a finite set of values).

Here we will assume that although we do not know p∗ we have access to some of its low order
marginals, such as those of a single feature and a label:

µi(xi, y) =
∑

x̄1,...,x̄n:x̄i=xi

p∗(x̄1, . . . , x̄n, y).

Similarly we may have access to the set of pairwise marginals µij(xi, xj , y) for all i, j ∈ E, where
the set E corresponds to edges of a graph G (see also [7]). Denote the set of all such marginals by µ.
For simplicity we assume the marginals are exact. Generally they are of course only approximate, but
concentration bounds can be used to quantify this accuracy as a function of data size. Furthermore,
most of the methods described here can be extended to inexact marginals (e.g., see [6] for an approach
that can be applied here).

Since µ does not uniquely specify a distribution p∗, we will be interested in the set of all distributions
that attain these marginals. Denote this set by P(µ), namely:

P(µ) =

{
p ∈ ∆ :

∑
x̄1,...,x̄n:x̄i=xi

p(x̄1, . . . , x̄n, y) = µi(xi, y) ∀i

}
(1)

where ∆ is the probability simplex of the appropriate dimension.

More generally, one may consider some vector function f : X,Y → Rd and its expected value
according to p∗, denoted by a = Ep∗ [f(X,Y )]. Then the corresponding set of distributions is:

P(a) = {p ∈ ∆ : Ep [f(X,Y )] = a} .
Since marginals are expectations of random variables [30], this generalizes the notation given above.

2.1 The Robust Conditionals Problem

Our approach is to reason about conditional distributions using only the fact that p∗ ∈ P(µ). Our
key goal is to lower bound these conditionals, since this will allow us to conclude that certain labels
are highly likely in cases where the lower bound is large. We shall also be interested in upper and
lower bounding joint probabilities, since these will play a key role in bounding the conditionals.

Our goal is thus to solve the following optimization problems.
min

p∈P(µ)
p(x,y), max

p∈P(µ)
p(x,y), min

p∈P(µ)
p (y | x). (2)

In all three problems, the constraint set is linear in p. However, note that p is specified by an
exponential number of variables (one per assignment x1, . . . , xn,y) and thus it is not feasible to plug
these constraints into an LP solver. In terms of objective, the min and max problems are linear, and
the conditional is fractional linear. In what follows we show how all three problems can be solved
efficiently for tree shaped graphs.
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3 Related Work

The problem of reasoning about a distribution based on its expected values has a long history, with
many beautiful mathematical results. An early example is the classical Chebyshev inequality, which
bounds the tail of a distribution given its first and second moments. This was significantly extended
in the Chebyshev Markov Stieltjes inequality [2]. More recently, various generalized Chebyshev
inequalities have been developed [4, 22, 27] and some further results tying moments with bounds on
probabilities have been shown (e.g. [18]). A typical statement of these is that several moments are
given, and one seeks the minimum measure of some set S under any distribution that agrees with
the moments. As [4] notes, most of these problems are NP hard, with isolated cases of tractability.
Such inequalities have been used to obtain minimax optimal linear classifiers in [14]. The moment
problems we consider here are very different from those considered previously, in terms of the finite
support we require, our focus on bounding probabilities and conditional probabilities of assignments.

The above approaches consider worst case bounds on probabilities of events for distributions in P(a).
A different approach is to pick a particular distribution in P(a) as an approximation (or model) of p∗.
The most common choice here is the maximum entropy distribution in P(a). Such log-linear models
have found widespread use in statistics and machine learning. In particular, most graphical models
can be viewed as distributions of this type (e.g., see [12, 13]). However, probabilities given by these
models cannot be related to the true probabilities in any sense (e.g., upper or lower bound). This is
where our approach markedly differs from entropy based assumptions. Another approach to reduce
modeling assumptions is robust optimization, where data and certain model parameters are assumed
not to be known precisely, and optimality is sought in a worst case adversarial setting. This approach
has been applied to machine learning in various settings (e.g, see [32, 16]), establishing close links to
regularization. None of these approaches considers bounding probabilities as is our focus here.

Finally, another elegant moment approach is that based on kernel mean embedding [23, 24]. In this
approach, one maps a distribution into a set of expected values of a set of functions (possibly infinite).
The key observation is that this mean embedding lies in an RKHS, and hence many operations can be
done implicitly. Most of the applications of this idea assume that the set of functions is rich enough to
fully specify the distribution (i.e., characteristic kernels [25]). The focus is thus different from ours,
where moments are not assumed to be fully informative, and the set P(a) contains many possible
distributions. It would however be interesting to study possible uses of RKHS in our setting.

4 Calculating Robust Conditional Probabilities

The optimization problems in Eq. (2) are linear programs (LP) and fractional LPs, where the number
of variables scales exponentially with n. Yet, as we show in this section and Section 5, it turns
out that in many non-trivial cases, they can be efficiently solved. Our focus below is on the case
where the set of edges E corresponding to the pairwise marginals forms a tree structured graph.
The tree structure assumption is common in literature on Graphical Models, only here we do not
make an inductive assumption on the generating distribution (i.e., we make none of the conditional
independence assumptions that are implied by tree-structured graphical models). In the following
sections we study solutions of robust conditional probabilities under the tree assumption. We will
also discuss some extensions to the cyclic case. Finally, note that although the derivations here are
for pairwise marginals, these can be extended to the non-pairwise case by considering clique-trees
[e.g., see 30]. Pairs are used here to allow a clearer presentation.

In what follows, we show that the conditional lower bound has a simple structure as stated in Theorem
4.1. This result does not immediately suggest an efficient algorithm since its denominator includes an
exponentially sized LP. Next, in Section 4.2 we show how this LP can be reduced to polynomial sized,
resulting in an efficient algorithm for the lower bound. Finally, in Section 5 we show that in certain
cases there is no need to use a general purpose LP solver and the problem can be solved either in
closed form or via combinatorial algorithms. Detailed proofs are provided in the supplementary file.

4.1 From Conditional Probabilities To Maximum Probabilities with Exclusion

The main result of this section will reduce calculation of the robust conditional probability for
p(y | x), to one of maximizing the probability of all labels other than y. This reduction by itself will
not allow for efficient calculation of the desired conditional probabilities, as the new problem is also
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a large LP that needs to be solved. Still the result will take us one step further towards a solution, as
it reveals the probability mass a minimizing distribution p will assign to x,y.

This part of the solution is related to a result from [8], where the authors derive the solution of
minp∈P(µ) p(x,y). They prove that under the tree assumption this problem has a simple closed form
solution, given by the functional I(x,y ; µ):

I(x, y ; µ) =

∑
i

(1− di)µi(xi, y) +
∑
ij∈E

µij(xi, xj , y)


+

. (3)

Here [·]+ denotes the ReLU function [z]+ = max{z, 0} and di is the degree of node i in G.

It turns out that robust conditional probabilities will assign the event x,y its minimal possible
probability as given in Eq. (3). Moreover, it will assign all other labels their maximum possible
probability. This is indeed a behaviour that may be expected from a robust bound, we formalize it in
the main result for this part:

Theorem 4.1 Let µ be a vector of tree-structured pairwise marginals, then

min
p∈P(µ)

p (y | x) =
I(x,y ;µ)

I(x,y ;µ) + maxp∈P(µ)

∑
ȳ 6=y p(x, ȳ)

. (4)

The proof of this theorem is rather technical and we leave it for the supplementary material.

We note that the above result also applies to the “structured-prediction” setting where y is multivariate
and we also assume knowledge of marginals µ(yi, yj). In this case, the expression for I(x,y ; µ)
will also include edges between yi variables, and incorporate their degrees in the graph.

The important implication of Theorem 4.1 is that it reduces the minimum conditional problem to that
of probability maximization with an assignment exclusion. Namely:

max
p∈P(µ)

∑
ȳ 6=y

p(x, ȳ). (5)

Although this is still a problem with an exponential number of variables, we show in the next section
that it can be solved efficiently.

4.2 Minimizing and Maximizing Probabilities

To provide an efficient solution for Eq. (5), we turn to a class of joint probability bounding problems.
Assume we constrain each variable Xi and Yj to a subset X̄i, Ȳj of its domain and would like to
reason about the probability of this constrained set of joint assignments:

U =
{
x,y | xi ∈ X̄i, yj ∈ Ȳj ∀i ∈ [n], j ∈ [r]

}
. (6)

Under this setting, an efficient algorithm for solving

max
p∈P(µ)

∑
u∈U\(x,y)

p(u),

will also solve Eq. (5). By the results of last section, we will then also have an algorithm calculates
robust conditional probabilities. To see this is indeed the case, assume we are given an assignment
(x,y). Then setting X̄i = {xi} for all features and Ȳj = {1, . . . , |Yj |} for labels (i.e. U does not
restrict labels), gives exactly Eq. (5).

To derive the algorithm, we will find a compact representation of the LP, with a polynomial number of
variables and constraints. The result is obtained by using tools from the literature on Graphical Models.
It shows how to formulate probability maximisation problems over U as problems constrained by the
local marginal polytope [30]. Its definition in our setting slightly deviates from its standard definition,
as it does not require that probabilities sum up to 1:

Definition 1 The set of locally consistent pseudo marginals over U is defined as:

ML(U) = {µ̃ |
∑

xi∈X̄i

µ̃ij(xi, xj) = µ̃j(xj) ∀(i, j) ∈ E, xj ∈ X̄j}.

The partition function of µ̃, Z(µ̃), is given by
∑

xi∈X̄i
µ̃i(xi).
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The following theorem states that solving Eq. (5) is equivalent to solving an LP overML(U) with
additional constraints.

Theorem 4.2 Let U be a universe of assignments as defined in Eq. (6), x ∈ U and µ a vector of
tree-structured pairwise marginals, then the values of the following problems:

max
p∈P(µ)

∑
u∈U

p(u), max
p∈P(µ)

∑
u∈U\(x,y)

p(u),

are equal (respectively) to:

max
µ̃∈ML(U),µ̃≤µ

Z(µ̃), max
µ̃∈ML(U),µ̃≤µ

I(x,y ; µ̃)≤0

Z(µ̃). (7)

These LPs involve a polynomial number of constraints and variables, thus can be solved efficiently.

Proofs of this result can be obtained by exploiting properties of functions that decompose over trees.
In the supplementary material, we provide a proof similar to that given in [30] to show equality of the
marginal and local-marginal polytopes in tree models.

To conclude this section, we restate the main result: the robust conditional probability problem Eq. (2)
can be solved in polynomial time by combining Theorems 4.1 and 4.2. As a by-product of this
derivation we also presented efficient tools for bounding answers to a large class of probabilistic
queries. While this is not the focus of the current paper, these tools may be a useful in probabilistic
modelling, where we often combine estimates of low order marginals with assumptions on the data
generating process. Bounds like the ones presented in this section give a quantitative estimate of the
uncertainty that is induced by data and circumvented by our assumptions.

5 Closed Form Solutions and Combinatorial Algorithms

The results of the previous section imply that the minimum conditional can be found by solving a
poly-sized LP. Although this results in polynomial runtime, it is interesting to improve as much as
possible on the complexity of this calculation. One reason is that application of the bounds might
require solving them repeatedly within some larger learning probelm. For instance, in classification
tasks it may be necessary to solve Eq. (4) for each sample in the dataset. An even more demanding
procedure will come up in our experimental evaluation, where we learn features that result in high
confidence under our bounds. There, we need to solve Eq. (4) over mini-batches of training data
only to calculate a gradient at each training iteration. Since using an LP solver in these scenarios is
impractical, we next derive more efficient solutions for some special cases of Eq. (4).

5.1 Closed Form for Multiclass Problems

The multiclass setting is a special case of Eq. (4) when y is a single label variable (e.g., a digit label
in MNIST with values y ∈ {0, . . . , 9}). The solution of course depends on the type of marginals
provided in P(µ). Here we will assume that we have access to joint marginals of the label y and pairs
of feature xi, xj corresponding to edges ij ∈ E of a graph G. We note that we can obtain similar
results for the cases where some additional “unlabeled” statistics µij(xi, xj) are known.

It turns out that in both cases Eq. (5) has a simple solution. Here we write it for the case without
unlabeled statistics. The following lemma is based on a result that states maxp∈P(µ) p(x) =
minij µij(xi, xj), which we prove in the supplementary material.

Lemma 5.1 Let x ∈ X and µ a vector of tree-structured pairwise marginals, then

min
p∈P(µ)

p (y | x) =
I(x, y ; µ)

I(x, y ; µ) +
∑

ȳ 6=y minij µij(xi, xj , ȳ)
. (8)

5.2 Combinatorial Algorithms and Connection to Maximum Flow Problems

In some cases, fast algorithms for the optimization problem in Eq. (5) can be derived by exploiting a
tight connection of our problems to the Max-Flow problem. The problems are also closely related
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to the weighted Set-Cover problem. To observe the connection to the latter, consider an instance of
Set-Cover defined as follows. The universe is all assignments x. Sets are defined for each i, j, xi, xj
and are denoted by Sij,xi,xj . The set Sij,xi,xj contains all assignments x̄ whose values at i, j are
xi, xj . Moreoever, the set Sij,xi,xj

has weight w(Sij,xi,xj
) = µij(xi, xj). Note that the number of

items in each set is exponential, but the number of sets is polynomial. Now consider using these sets
to cover some set of assignments U with the minimum possible weight. It turns out that under the
tree structure assumption, this problem is closely related to the problem of maximizing probabilities.

Lemma 5.2 Let U be a set of assignments and µ a vector of tree-structured marginals. Then:

max
p∈P(µ)

∑
u∈U

p(u), (9)

has the same value as the standard LP relaxation [28] of the Set-Cover problem above.

The connection to Set-Cover may not give a path to efficient algorithms, but it does illuminate some
of the results presented earlier. It is simple to verify that minij µij(xi, xj , ȳ) is a weight of a cover
of x, ȳ, while Eq. (3) equals one minus the weight of a set that covers all assignments but x,y. A
connection that we may exploit to obtain more efficient algorithms is to Max-Flow. When the graph
defined by E is a chain, we show in the supplementary material that the value of Eq. (9) can be found
by solving a flow problem on a simple network. We note that using the same construction, Eq. (5)
turns out to be Max Flow under a budget constraint [1]. This may prove very beneficial for our goals,
as it allows for efficient calculation of the robust conditionals we are interested in. Our conjecture
is that this connection goes beyond chain graphs, but leave this for exploration in future work. The
proofs for results in this section may also be found in the supplementary material.

6 Experiments

To evaluate the utility of our bounds, we consider their use in settings of semi-supervised deep
learning and structured prediction. For the bounds to be useful, the marginal distributions need to
be sufficiently informative. In some datasets, the raw features already provide such information, as
we show in Section 6.3. In other cases, such as images, a single raw feature (i.e., a pixel) does not
provide sufficient information about the label. These cases are addressed in Section 6.1 where we
show how to learn new features which do result in meaningful bounds. Using deep networks to learn
these features turns out to be an effective method for semi-supervised settings, reaching results close
to those demonstrated by Variational Autoencoders [11]. It would be interesting to use such feature
learning methods for structured prediction too; however this requires incorporation of the max-flow
algorithm into the optimization loop, and we defer this to future work.

6.1 Deep Semi-Supervised Learning

A well known approach to semi-supervised learning is to optimize an empirical loss, while adding
another term that measures prediction confidence on unlabeled data [9, 10]. Let us describe one such
method and how to adapt it to use our bounds.

Entropy Regularizer: Consider training a deep neural network where the last layer has n neurons
z1, . . . , zn connected to a softmax layer of size |Y | (i.e. the number of labels), and the loss we use is
a cross entropy loss. Denote the weights of the softmax layer by W ∈ Rn×|Y |. Given an input x,
define the softmax distribution at the output of the network as:

p̃y = softmaxy(〈Wy, z〉) , (10)

where Wy is the y’th row of W . The min-entropy regularizer [9] adds an entropy term βH(p̃y) to
the loss, for each unlabeled x in the training set.

Plugging in Robust Conditional Probabilities: We suggest a simple adaptation of this method that
uses our bounds. Let us remove the softmax layer and set the activations of the neurons z1, . . . , zn to
a sigmoid activation. Let Z1, . . . , Zn denote random variables that take on the values of the output
neurons, these variables will be used as features in our bounds (in previous sections we refer to
features as Xi. Here we switch to Zi since Xi are understood as the raw features of the problem. e.g.,
the pixel values in the image). Since our bounds apply to discrete variables, while z1, . . . , zn are real
values, we use a smoothed version of our bounds.
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Loss Function and Smoothed Bounds: A smoothed version of the marginals µ is calculated by
considering Zi as an indicator variable (e.g., the probability p(Zi = 1) would just be the average of
the Zi values). Then the smoothed marginal µ̄(zi = 1, y) is the average of zi values over all training
data labeled with y. In our experiments we used all the labeled data to estimate µ̄ at each iteration.
The smoothed version of I(z, y;µ), which we shall call Ī(z, y;µ), is then calculated with Eq. (3)
when switching µ with µ̄ and the ReLU operator with a softplus.

To define a loss function we take a distribution over all labels:

p̃y = softmaxy(
Ī(z, y ; µ̄)

Ī(z, y ; µ̄) +
∑

ȳ 6=y minij µ̄ij(zi, zj , ȳ)
) , (11)

This is very similar to the standard distribution taken in a neural net, but it uses our bounds to make a
more robust estimate of the conditionals. Then we use the exact same loss as the entropy regularizer,
a cross entropy loss for labeled data with an added entropy term for unlabeled instances.

6.1.1 Algorithm Settings and Baselines

We implemented the min-entropy regularizer and our proposed method using a multilayer perceptron
(MLP) with fully connected layers and a ReLU activation at each layer (except a sigmoid at the last
layer for our method). In our experiments we used hidden layers of sizes 1000, 500, 50 (so we learn
50 features Z1, . . . , Z50). We also add `2 regularization on the weights of the soft-max layer for the
entropy regularizer, since otherwise entropy can always be driven to zero in the separable case. We
also experimented with adding a hinge loss as a regularizer (as in Transductive SVM [10]), but omit
it from the comparison because it did not yield significant improvement over the entropy regularizer.

We also compare our results with those obtained by Variational Autoencoders and Ladder Networks.
Although we do not expect to get accuracies as high as these methods, getting comparable numbers
with a simple regularizer (compared to the elaborate techniques used in these works) like the one we
suggest, shows that the use of our bounds results in a very powerful method.

6.2 MNIST Dataset

We trained the above models on the MNIST dataset, using 100 and 1000 labeled samples (see [11]
for a similar setup). We set the two regularization parameters required for the entropy regularizer and
the one required for our minimum probability regularizer with five fold cross validation. We used
10% of the training data as a validation set and compared error rates on the 104 samples of the test set.
Results are shown in Figure 1. They show that on the 1000 sample case we are slightly outperformed
by VAE and for 100 samples we lose by 1%. Ladder networks outperform other baselines.

N Ladder [21] VAE [11] Robust Probs Entropy MLP+Noise
100 1.06(±0.37) 3.33(±0.14) 4.44(±0.22) 18.93(±0.54) 21.74(±1.77)
1000 0.84(±0.08) 2.40(±0.02) 2.48(±0.03) 3.15(±0.03) 5.70(±0.20)

Figure 1: Error rates of several semi-supervised learning methods on the MNIST dataset with few
training samples.

Accuracy vs. Coverage Curves: In self-training and co-training methods, a classifier adds its
most confident predictions to the training set and then repeats training. A crucial factor in the success
of such methods is the error in the predictions we add to the training pool. Classifiers that use
confidence over unlabelled data as a regularizer are natural choices for base classifiers in such a
setting. Therefore an interesting comparison to make is the accuracy we would get over the unlabeled
data, had the classifier needed to choose its k most confident predictions.

We plot this curve as a function of k for the entropy regularizer and our min-probabilities regularizer.
Samples in the unlabelled training data are sorted in descending order according to confidence.
Confidence for a sample in entropy regularized MLP is calculated based on the value of the logit that
the predicted label received in the output layer. For the robust probabilities classifier, the confidence
of a sample is the minimum conditional probability the predicted label received. As can be observed
in Figure 6.2, our classifier ranks its predictions better than the entropy based method. We attribute
this to our classifier being trained to give robust bounds under minimal assumptions.
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Figure 2: Accuracy for k most confident samples in unlabelled data. Blue curve shows results for
the Robust Probabilities Classifier, green for the Entropy Regularizer. Confidence is measured by
conditional probabilities and logits accordingly.

6.3 Multilabel Structured Prediction

As mentioned earlier, in the structured prediction setting it is more difficult to learn features that
yield high certainty. We therefore provide a demonstration of our method on a dataset where the raw
features are relatively informative. The Genbase dataset taken from [26], is a protein classification
multilabel dataset. It has 662 instances, divided into a training set of 463 samples and a test set of
199, each sample has 1185 binary features and 27 binary labels. We ran a structured-SVM algorithm,
taken from [19] to obtain a classifier that outputs a labelling ŷ for each x in the dataset (the error
of the resulting classifier was 2%). We then used our probabilistic bounds to rank the classifier’s
predictions by their robust conditional probabilities. The bounds were calculated based on the set of
marginals µij(xi, yj), estimated from the data for each pair of a feature and a label Xi, Yj . The graph
corresponding to these marginals is not a tree and we handled it as discussed in Section 7. The value
of our bounds was above 0.99 for 85% of the samples, indicating high certainty that the classifier is
correct. Indeed only 0.59% of these 85% were actually errors. The remaining errors made by the
classifier were assigned a robust probability of 0 by our bounds, indicating low level of certainty.

7 Discussion

We presented a method for bounding conditional probabilities of a distribution based only on
knowledge of its low order marginals. Our results can be viewed as a new type of moment problem,
bounding a key component of machine learning systems, namely the conditional distribution. As we
show, calculating these bounds raises many challenging optimization questions, which surprisingly
result in closed form expressions in some cases.

While the results were limited to the tree structured case, some of the methods have natural extensions
to the cyclic case that still result in robust estimations. For instance, the local marginal polytope in
Eq. (7) can be taken over a cyclic structure and still give a lower bound on maximum probabilities.
Also in the presence of the cycles, it is possible to find the spanning tree that induces the best bound
on Eq. (3) using a maximum spanning tree algorithm. Plugging these solutions into Eq. (4) results in
a tighter approximation which we used in our experiments.

Our method can be extended in many interesting directions. Here we addressed the case of discrete
random variables, although we also showed in our experiments how these can be dealt with in the
context of continuous features. It will be interesting to calculate bounds on conditional probabilities
given expected values of continuous random variables. In this case, sums-of-squares characterizations
play a key role [15, 20, 3], and their extension to the conditional case is an exciting challenge. It will
also be interesting to study how these bounds can be used in the context of unsupervised learning. One
natural approach here would be to learn constraint functions such that the lower bound is maximized.

Finally, we plan to study the implications of our approach to diverse learning settings, from self-
training to active learning and safe reinforcement learning.
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