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Abstract

We propose a general framework for interactively learning models, such as (binary
or non-binary) classifiers, orderings/rankings of items, or clusterings of data points.
Our framework is based on a generalization of Angluin’s equivalence query model
and Littlestone’s online learning model: in each iteration, the algorithm proposes a
model, and the user either accepts it or reveals a specific mistake in the proposal.
The feedback is correct only with probability p > 1

2 (and adversarially incorrect
with probability 1− p), i.e., the algorithm must be able to learn in the presence of
arbitrary noise. The algorithm’s goal is to learn the ground truth model using few
iterations.
Our general framework is based on a graph representation of the models and user
feedback. To be able to learn efficiently, it is sufficient that there be a graph G
whose nodes are the models, and (weighted) edges capture the user feedback, with
the property that if s, s∗ are the proposed and target models, respectively, then any
(correct) user feedback s′ must lie on a shortest s-s∗ path in G. Under this one
assumption, there is a natural algorithm, reminiscent of the Multiplicative Weights
Update algorithm, which will efficiently learn s∗ even in the presence of noise in
the user’s feedback.
From this general result, we rederive with barely any extra effort classic results on
learning of classifiers and a recent result on interactive clustering; in addition, we
easily obtain new interactive learning algorithms for ordering/ranking.

1 Introduction

With the pervasive reliance on machine learning systems across myriad application domains in the real
world, these systems frequently need to be deployed before they are fully trained. This is particularly
true when the systems are supposed to learn a specific user’s (or a small group of users’) personal
and idiosyncratic preferences. As a result, we are seeing an increased practical interest in online and
interactive learning across a variety of domains.

A second feature of the deployment of such systems “in the wild” is that the feedback the system
receives is likely to be noisy. Not only may individual users give incorrect feedback, but even if they
do not, the preferences — and hence feedback — across different users may vary. Thus, interactive
learning algorithms deployed in real-world systems must be resilient to noisy feedback.

Since the seminal work of Angluin [2] and Littlestone [14], the paradigmatic application of (noisy)
interactive learning has been online learning of a binary classifier when the algorithm is provided
with feedback on samples it had previously classified incorrectly. However, beyond (binary or other)
classifiers, there are many other models that must be frequently learned in an interactive manner. Two
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particularly relevant examples are the following: (1) Learning an ordering/ranking of items is a key
part of personalized Web search or other information-retrieval systems (e.g., [12, 18]). The user is
typically presented with an ordering of items, and from her clicks or lack thereof, an algorithm can
infer items that are in the wrong order. (2) Interactively learning a clustering [6, 5, 4] is important
in many application domains, such as interactively identifying communities in social networks or
partitioning an image into distinct objects. The user will be shown a candidate clustering, and can
express that two clusters should be merged, or a cluster should be split into two.

In all three examples — classification, ranking, and clustering — the interactive algorithm proposes
a model4 (a classifier, ranking, or clustering) as a solution. The user then provides — explicitly or
implicitly — feedback on whether the model is correct or needs to be fixed/improved. This feedback
may be incorrect with some probability. Based on the feedback, the algorithm proposes a new
and possibly very different model, and the process repeats. This type of interaction is the natural
generalization of Angluin’s equivalence query model [2, 3]. It is worth noting that in contrast to
active learning, in interactive learning (which is the focus of this work), the algorithm cannot “ask”
direct questions; it can only propose a model and receive feedback in return. The algorithm should
minimize the number of user interactions, i.e., the number of times that the user needs to propose
fixes. A secondary goal is to make the algorithm’s internal computations efficient as well.

The main contribution of this article is a general framework for efficient interactive learning of models
(even with noisy feedback), presented in detail in Section 2. We consider the set of all N models as
nodes of a positively weighted undirected or directed graph G. The one key property that G must
satisfy is the following: (*) If s is a proposed model, and the user (correctly) suggests changing it to
s′, then the graph must contain the edge (s, s′); furthermore, (s, s′) must lie on a shortest path from
s to the target model s∗ (which is unknown to the algorithm).

We show that this single property is enough to learn the target model s∗ using at most logN queries5

to the user, in the absence of noise. When the feedback is correct with probability p > 1
2 , the required

number of queries gracefully deteriorates to O(logN); the constant depends on p. We emphasize
that the assumption (*) is not an assumption on the user. We do not assume that the user somehow
“knows” the graph G and computes shortest paths in order to find a response. Rather, (*) states that
G was correctly chosen to model the underlying domain, so that correct answers by the user must
in fact have the property (*). To illustrate the generality of our framework, we apply it to ordering,
clustering, and classification:

1. For ordering/ranking, each permutation is a node in G; one permutation is the unknown
target. If the user can point out only adjacent elements that are out of order, then G is an
adjacent transposition “BUBBLE SORT” graph, which naturally has the property (*). If the
user can pick any element and suggest that it should precede an entire block of elements
it currently follows, then we can instead use an “INSERSION SORT” graph; interestingly,
to ensure the property (*), this graph must be weighted. On the other hand, as we show in
Section 3, if the user can propose two arbitrary elements that should be swapped, there is no
graph G with the property (*).
Our framework directly leads to an interactive algorithm that will learn the correct ordering
of n items in O(log(n!)) = O(n log n) queries; we show that this bound is optimal under
the equivalence query model.

2. For learning a clustering of n items, the user can either propose merging two clusters, or
splitting one cluster. In the interactive clustering model of [6, 5, 4], the user can specify
that a particular cluster C should be split, but does not give a specific split. We show in
Section 4 that there is a weighted directed graph with the property (*); then, if each cluster
is from a “small” concept class of size at most M (such as having low VC-dimension), there
is an algorithm finding the true clustering in O(k logM) queries, where k is number of the
clusters (known ahead of time).

3. For binary classification, G is simply an n-dimensional hypercube (where n is the number
of sample points that are to be classified). As shown in Section 5, one immediately recovers
a close variant of standard online learning algorithms within this framework. An extension
to classification with more than two classes is very straightforward.

4We avoid the use of the term “concept,” as it typically refers to a binary function, and is thus associated
specifically with a classifier.

5 Unless specified otherwise, all logarithms are base 2.
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Due to space limits, all proofs and several other details and discussions are omitted. A full version is
available on the arXiv at https://arxiv.org/abs/1710.05422.

2 Learning Framework

We define a framework for query-efficient interactive learning of different types of models. Some
prototypical examples of models to be learned are rankings/orderings of items, (unlabeled) clusterings
of graphs or data points, and (binary or non-binary) classifiers. We denote the set of all candidate
models (permutations, partitions, or functions from the hypercube to {0, 1}) by Σ, and individual
models6 by s, s′, s∗, etc. We write N = |Σ| for the number of candidate models.

We study interactive learning of such models in a natural generalization of the equivalence query
model of Angluin [2, 3]. This model is equivalent to the more widely known online learning model of
Littlestone [14], but more naturally fits the description of user interactions we follow here. It has also
served as the foundation for the interactive clustering model of Balcan and Blum [6] and Awasthi et
al. [5, 4].

In the interactive learning framework, there is an unknown ground truth model s∗ to be learned. In
each round, the learning algorithm proposes a model s to the user. In response, with probability
p > 1

2 , the user provides correct feedback. In the remaining case (i.e., with probability 1− p), the
feedback is arbitrary; in particular, it could be arbitrarily and deliberately misleading.

Correct feedback is of the following form: if s = s∗, then the algorithm is told this fact in the form of
a user response of s. Otherwise, the user reveals a model s′ 6= s that is “more similar” to s∗ than
s was. The exact nature of “more similar,” as well as the possibly restricted set of suggestions s′
that the user can propose, depend on the application domain. Indeed, the strength of our proposed
framework is that it provides strong query complexity guarantees under minimal assumptions about
the nature of the feedback; to employ the framework, one merely has to verify that the the following
assumption holds.

Definition 2.1 (Graph Model for Feedback) Define a weighted graph G (directed or undirected)
that contains one node for each model s ∈ Σ, and an edge (s, s′) with arbitrary positive edge length
ω(s,s′) > 0 if the user is allowed to propose s′ in response to s. (Choosing the lengths of edges is an
important part of using the framework.) G may contain additional edges not corresponding to any
user feedback. The key property that G must satisfy is the following: (*) If the algorithm proposes
s and the ground truth is s∗ 6= s, then every correct user feedback s′ lies on a shortest path from s
to s∗ in G with respect to the lengths ωe. If there are multiple candidate nodes s′, then there is no
guarantee on which one the algorithm will be given by the user.

2.1 Algorithm and Guarantees

Our algorithms are direct reformulations and slight generalizations of algorithms recently proposed
by Emamjomeh-Zadeh et al. [10], which itself was a significant generalization of the natural “Halving
Algorithm” for learning a classifier (e.g., [14]). They studied the search problem as an abstract
problem they termed “Binary Search in Graphs,” without discussing any applications. Our main
contribution here is the application of the abstract search problem to a large variety of interactive
learning problems, and a framework that makes such applications easy. We begin with the simplest
case p = 1, i.e., when the algorithm only receives correct feedback.

Algorithm 1 gives essentially best-possible general guarantees [10]. To state the algorithm and its
guarantees, we need the notion of an approximate median node of the graph G. First, we denote by

N(s, s′) :=

{
{s} if s′ = s

{ŝ | s′ lies on a shortest path from s to ŝ} if s′ 6= s

the set of all models ŝ that are consistent with a user feedback of s′ to a model s. In anticipation
of the noisy case, we allow models to be weighted7, and denote the node weights or likelihoods by

6When considering specific applications, we will switch to notation more in line with that used for the
specific application.

7Edge lengths are part of the definition of the graph, but node weights will be assigned by our algorithm;
they basically correspond to likelihoods.
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µ(s) ≥ 0. If feedback is not noisy (i.e., p = 1), all the non-zero node weights are equal. For every
subset of models S, we write µ(S) :=

∑
s∈S µ(s) for the total node weight of the models in S. Now,

for every model s, define

Φµ(s) :=
1

µ(Σ)
· max
s′ 6=s,(s,s′)∈G

µ(N(s, s′))

to be the largest fraction (with respect to node weights) of models that could still be consistent with a
worst-case response s′ to a proposed model of s. For every subset of models S, we denote by µS
the likelihood function that assigns weight 1 to every node s ∈ S and 0 elsewhere. For simplicity of
notation, we use ΦS(s) when the node weights are µS .

The simple key insight of [10] can be summarized and reformulated as the following proposition:

Proposition 2.1 ([10], Proofs of Theorems 3 and 14) Let G be a (weighted) directed graph in
which each edge e with length ωe is part of a cycle of total edge length at most c · ωe. Then,
for every node weight function µ, there exists a model s such that Φµ(s) ≤ c−1

c .

When G is undirected (and hence c = 2), for every node weight function µ, there exists an s such that
Φµ(s) ≤ 1

2 .

In Algorithm 1, we always have uniform node weight for all the models which are consistent with
all the feedback received so far, and node weight 0 for models that are inconsistent with at least one
response. Prior knowledge about candidates for s∗ can be incorporated by providing the algorithm
with the input Sinit 3 s∗ to focus its search on; in the absence of prior knowledge, the algorithm can
be given Sinit = Σ.

Algorithm 1 LEARNING A MODEL WITHOUT FEEDBACK ERRORS (Sinit)

1: S ← Sinit.
2: while |S| > 1 do
3: Let s be a model with a “small” value of ΦS(s).
4: Let s′ be the user’s feedback model.
5: Set S ← S ∩N(s, s′).
6: return the only remaining model in S.

Line 3 is underspecified as “small.” Typically, an algorithm would choose the s with smallest ΦS(s).
But computational efficiency constraints or other restrictions (see Sections 2.2 and 5) may preclude
this choice and force the algorithm to choose a suboptimal s. The guarantee of Algorithm 1 is
summarized by the following Theorem 2.2. It is a straightforward generalization of Theorems 3 and
14 from [10]

Theorem 2.2 Let N0 = |Sinit| be the number of initial candidate models. If each model s chosen in
Line 3 of Algorithm 1 has ΦS(s) ≤ β, then Algorithm 1 finds s∗ using at most log1/β N0 queries.

Corollary 2.3 When G is undirected and the optimal s is used in each iteration, β = 1
2 and

Algorithm 1 finds s∗ using at most log2N0 queries.

In the presence of noise, the algorithm is more complicated. The algorithm and its analysis are given
in the full version. The performance of the robust algorithm is summarized in Theorem 2.4.

Theorem 2.4 Let β ∈ [ 12 , 1), define τ = βp + (1 − β)(1 − p), and let N0 = |Sinit|. Assume that
log(1/τ) > H(p) where H(p) = −p log p− (1− p) log(1− p) denotes the entropy. (When β = 1

2 ,
this holds for every p > 1

2 .)

If in each iteration, the algorithm can find a model s with Φµ(s) ≤ β, then with probability at least
1− δ, the robust algorithm finds s∗ using at most (1−δ)

log(1/τ)−H(p) logN0 + o(logN0) +O(log2(1/δ))

queries in expectation.

Corollary 2.5 When the graph G is undirected and the optimal s is used in each iteration, then with
probability at least 1− δ, the robust algorithm finds s∗ using at most (1−δ)

1−H(p) log2N0 + o(logN0) +

O(log2(1/δ)) queries in expectation.
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2.2 Computational Considerations and Sampling

Corollaries 2.3 and 2.5 require the algorithm to find a model s with small Φµ(s) in each iteration. In
most learning applications, the number N of candidate models is exponential in a natural problem
parameter n, such as the number of sample points (classification), or the number of items to rank or
cluster. If computational efficiency is a concern, this precludes explicitly keeping track of the set S or
the weights µ(s). It also rules out determining the model s to query by exhaustive search over all
models that have not yet been eliminated.

In some cases, these difficulties can be circumvented by exploiting problem-specific structure. A
more general approach relies on Monte Carlo techniques. We show that the ability to sample models
s with probability (approximately) proportional to µ(s) (or approximately uniformly from S in the
case of Algorithm 1) is sufficient to essentially achieve the results of Corollaries 2.3 and 2.5 with a
computationally efficient algorithm. Notice that both in Algorithm 1 and the robust algorithm with
noisy feedback (omitted from this version), the node weights µ(s) are completely determined by all
the query responses the algorithm has seen so far and the probability p.

Theorem 2.6 Let n be a natural measure of the input size and assume that logN is polynomial in n.
Assume that G = (V,E) is undirected8, all edge lengths are integers, and the maximum degree and
diameter (both with respect to the edge lengths) are bounded by poly(n). Also assume w.l.o.g. that µ
is normalized to be a distribution over the nodes9 (i.e., µ(Σ) = 1).

Let 0 ≤ ∆ < 1
4 be a constant, and assume that there is an oracle that — given a set of query

responses — runs in polynomial time in n and returns a model s drawn from a distribution µ′ with
dTV(µ, µ′) ≤ ∆. Also assume that there is a polynomial-time algorithm that, given a model s,
decides whether or not s is consistent with every given query response or not.

Then, for every ε > 0, in time poly(n, 1ε ), an algorithm can find a model s with Φµ(s) ≤ 1
2 + 2∆ + ε,

with high probability.

3 Application I: Learning a Ranking

As a first application, we consider the task of learning the correct order of n elements with supervision
in the form of equivalence queries. This task is motivated by learning a user’s preference over web
search results (e.g., [12, 18]), restaurant or movie orders (e.g., [9]), or many other types of entities.
Using pairwise active queries (“Do you think that A should be ranked ahead of B?”), a learning
algorithm could of course simulate standard O(n log n) sorting algorithms; this number of queries is
necessary and sufficient. However, when using equivalence queries, the user must be presented with
a complete ordering (i.e., a permutation π of the n elements), and the feedback will be a mistake in
the proposed permutation. Here, we propose interactive algorithms for learning the correct ranking
without additional information or assumptions.10 We first describe results for a setting with simple
feedback in the form of adjacent transpositions; we then show a generalization to more realistic
feedback as one is wont to receive in applications such as search engines.

3.1 Adjacent Transpositions

We first consider “BUBBLE SORT” feedback of the following form: the user specifies that elements
i and i + 1 in the proposed permutation π are in the wrong relative order. An obvious correction
for an algorithm would be to swap the two elements, and leave the rest of π intact. This algorithm
would exactly implement BUBBLE SORT, and thus require Θ(n2) equivalence queries. Our general
framework allows us to easily obtain an algorithm with O(n log n) equivalence queries instead. We
define the undirected and unweighted graph GBS as follows:

• GBS contains N = n! nodes, one for each permutation π of the n elements;
• it contains an edge between π and π′ if and only if π′ can be obtained from π by swapping

two adjacent elements.
8It is actually sufficient that for every node weight function µ : V → R+, there exists a model s with

Φµ(s) ≤ 1
2

.
9For Algorithm 1, µ is uniform over all models consistent with all feedback up to that point.

10For example, [12, 18, 9] map items to feature vectors and assume linearity of the target function(s).
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Lemma 3.1 GBS satisfies Definition 2.1 with respect to BUBBLE SORT feedback.

Hence, applying Corollary 2.3 and Theorem 2.4, we immediately obtain the existence of learning
algorithms with the following properties:

Corollary 3.2 Assume that in response to each equivalence query on a permutation π, the user
responds with an adjacent transposition (or states that the proposed permutation π is correct).

1. If all query responses are correct, then the target ordering can be learned by an interactive
algorithm using at most logN = log n! ≤ n log n equivalence queries.

2. If query responses are correct with probability p > 1
2 , the target ordering can be learned

by an interactive algorithm with probability at least 1− δ using at most (1−δ)
1−H(p)n log n+

o(n log n) +O(log2(1/δ)) equivalence queries in expectation.

Up to constants, the bound of Corollary 3.2 is optimal: Theorem 3.3 shows that Ω(n log n) equiva-
lence queries are necessary in the worst case. Notice that Theorem 3.3 does not immediately follow
from the classical lower bound for sorting with pairwise comparisons: while the result of a pairwise
comparison always reveals one bit, there are n − 1 different possible responses to an equivalence
query, so up to O(log n) bits might be revealed. For this reason, the proof of Theorem 3.3 explicitly
constructs an adaptive adversary, and does not rely on a simple counting argument.

Theorem 3.3 With adversarial responses, any interactive ranking algorithm can be forced to ask
Ω(n log n) equivalence queries. This is true even if the true ordering is chosen uniformly at random,
and only the query responses are adversarial.

3.2 Implicit Feedback from Clicks

In the context of search engines, it has been argued (e.g., by [12, 18, 1]) that a user’s clicking behavior
provides implicit feedback of a specific form on the ranking. Specifically, since users will typically
read the search results from first to last, when a user skips some links that appear earlier in the
ranking, and instead clicks on a link that appears later, her action suggests that the later link was more
informative or relevant.

Formally, when a user clicks on the element at index i, but did not previously click on any elements at
indices j, j+ 1, . . . , i−1, this is interpreted as feedback that element i should precede all of elements
j, j + 1, . . . , i− 1. Thus, the feedback is akin to an “INSERSION SORT” move. (The BUBBLE SORT
feedback model is the special case in which j = i− 1 always.)

To model this more informative feedback, the new graph GIS has more edges, and the edge lengths
are non-uniform. It contains the same N nodes (one for each permutation). For a permutation π and
indices 1 ≤ j < i ≤ n, πj←i denotes the permutation that is obtained by moving the ith element in
π before the jth element (and thus shifting elements j, j + 1, . . . , i− 1 one position to the right). In
GIS, for every permutation π and every 1 ≤ j < i ≤ n, there is an undirected edge from π to πj←i
with length i− j. Notice that for i > j + 1, there is actually no user feedback corresponding to the
edge from πj←i to π; however, additional edges are permitted, and Lemma 3.4 establishes that GIS
does in fact satisfy the “shortest paths” property.

Lemma 3.4 GIS satisfies Definition 2.1 with respect to INSERSION SORT feedback.

As in the case of GBS, by applying Corollary 2.3 and Theorem 2.4, we immediately obtain the
existence of interactive learning algorithms with the same guarantees as those of Corollary 3.2.

Corollary 3.5 Assume that in response to each equivalence query, the user responds with a pair of
indices j < i such that element i should precede all elements j, j + 1, . . . , i− 1.

1. If all query responses are correct, then the target ordering can be learned by an interactive
algorithm using at most logN = log n! ≤ n log n equivalence queries.

2. If query responses are correct with probability p > 1
2 , the target ordering can be learned

by an interactive algorithm with probability at least 1− δ using at most (1−δ)
1−H(p)n log n+

o(n log n) +O(log2(1/δ)) equivalence queries in expectation.
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3.3 Computational Considerations

While Corollaries 3.2 and 3.5 imply interactive algorithms using O(n log n) equivalence queries,
they do not guarantee that the internal computations of the algorithms are efficient. The naı̈ve
implementation requires keeping track of and comparing likelihoods on all N = n! nodes.

When p = 1, i.e., the algorithm only receives correct feedback, it can be made computationally
efficient using Theorem 2.6. To apply Theorem 2.6, it suffices to show that one can efficiently sample
a (nearly) uniformly random permutation π consistent with all feedback received so far. Since the
feedback is assumed to be correct, the set of all pairs (i, j) such that the user implied that element i
must precede element j must be acyclic, and thus must form a partial order. The sampling problem is
thus exactly the problem of sampling a linear extension of a given partial order.

This is a well-known problem, and a beautiful result of Bubley and Dyer [8, 7] shows that the
Karzanov-Khachiyan Markov Chain [13] mixes rapidly. Huber [11] shows how to modify the Markov
Chain sampling technique to obtain an exactly (instead of approximately) uniformly random linear
extension of the given partial order. For the purpose of our interactive learning algorithm, the sampling
results can be summarized as follows:

Theorem 3.6 (Huber [11]) Given a partial order over n elements, let L be the set of all linear
extensions, i.e., the set of all permutations consistent with the partial order. There is an algorithm
that runs in expected time O(n3 log n) and returns a uniformly random sample from L.

The maximum node degree in GBS is n− 1, while the maximum node degree in GIS is O(n2). The
diameter of both GBS and GIS is O(n2). Substituting these bounds and the bound from Theorem 3.6
into Theorem 2.6, we obtain the following corollary:

Corollary 3.7 Both under BUBBLE SORT feedback and INSERSION SORT feedback, if all feedback is
correct, there is an efficient interactive learning algorithm using at most log n! ≤ n log n equivalence
queries to find the target ordering.

The situation is significantly more challenging when feedback could be incorrect, i.e., when p < 1.
In this case, the user’s feedback is not always consistent and may not form a partial order. In fact, we
prove the following hardness result.

Theorem 3.8 There exists a p (depending on n) for which the following holds. Given a set of user
responses, let µ(π) be the likelihood of π given the responses, and normalized so that

∑
π µ(π) = 1.

Let 0 < ∆ < 1 be any constant. There is no polynomial-time algorithm to draw a sample from a
distribution µ′ with dTV(µ, µ′) ≤ 1−∆ unless RP = NP.

It should be noted that the value of p in the reduction is exponentially close to 1. In this range,
incorrect feedback is so unlikely that with high probability, the algorithm will always see a partial
order. It might then still be able to sample efficiently. On the other hand, for smaller values of p
(e.g., constant p), sampling approximately from the likelihood distribution might be possible via a
metropolized Karzanov-Khachiyan chain or a different approach. This problem is still open.

4 Application II: Learning a Clustering

Many traditional approaches for clustering optimize an (explicit) objective function or rely on
assumptions about the data generation process. In interactive clustering, the algorithm repeatedly
proposes a clustering, and obtains feedback that two proposed clusters should be merged, or a
proposed cluster should be split into two. There are n items, and a clustering C is a partition of the
items into disjoint sets (clusters) C1, C2, . . .. It is known that the target clustering has k clusters, but
in order to learn it, the algorithm can query clusterings with more or fewer clusters as well. The user
feedback has the following semantics, as proposed by Balcan and Blum [6] and Awasthi et al. [5, 4].

1. MERGE(Ci, Cj): Specifies that all items in Ci and Cj belong to the same cluster.

2. SPLIT(Ci): Specifies that cluster Ci needs to be split, but not into which subclusters.
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Notice that feedback that two clusters be merged, or that a cluster be split (when the split is known),
can be considered as adding constraints on the clustering (see, e.g., [21]); depending on whether
feedback may be incorrect, these constraints are hard or soft.

We define a weighted and directed graph GUC on all clusterings C. Thus, N = Bn ≤ nn is the nth
Bell number. When C′ is obtained by a MERGE of two clusters in C, GUC contains a directed edge
(C, C′) of length 2. If C = {C1, C2, . . .} is a clustering, then for each Ci ∈ C, the graph GUC contains
a directed edge of length 1 from C to C \ {Ci} ∪ {{v} | v ∈ Ci}. That is, GUC contains an edge from
C to the clustering obtained from breaking Ci into singleton clusters of all its elements. While this
may not be the “intended” split of the user, we can still associate this edge with the feedback.

Lemma 4.1 GUC satisfies Definition 2.1 with respect to MERGE and SPLIT feedback.

GUC is directed, and every edge makes up at least a 1
3n fraction of the total length of at least one cycle

it participates in. Hence, Proposition 2.1 gives an upper bound of 3n−1
3n on the value of β in each

iteration. A more careful analysis exploiting the specific structure of GUC gives us the following:

Lemma 4.2 In GUC, for every non-negative node weight function µ, there exists a clustering C with
Φµ(C) ≤ 1

2 .

In the absence of noise in the feedback, Lemmas 4.1 and 4.2 and Theorem 2.2 imply an algorithm
that finds the true clustering using logN = logB(n) = Θ(n log n) queries. Notice that this is worse
than the “trivial” algorithm, which starts with each node as a singleton cluster and always executes
the merge proposed by the user, until it has found the correct clustering; hence, this bound is itself
rather trivial.

Non-trivial bounds can be obtained when clusters belong to a restricted set, an approach also followed
by Awasthi and Zadeh [5]. If there are at most M candidate clusters, then the number of clusterings is
N0 ≤Mk. For example, if there is a set system F of VC dimension at most d such that each cluster
is in the range space of F , then M = O(nd) by the Sauer-Shelah Lemma [19, 20]. Combining
Lemmas 4.1 and 4.2 with Theorems 2.2 and 2.4, we obtain the existence of learning algorithms with
the following properties:

Corollary 4.3 Assume that in response to each equivalence query, the user responds with MERGE
or SPLIT. Also, assume that there are at most M different candidate clusters, and the clustering has
(at most) k clusters.

1. If all query responses are correct, then the target clustering can be learned by an interactive
algorithm using at most logN = O(k logM) equivalence queries. Specifically when
M = O(nd), this bound is O(kd log n). This result recovers the main result of [5].11

2. If query responses are correct with probability p > 1
2 , the target clustering can be learned

with probability at least 1 − δ using at most (1−δ)k logM
1−H(p) + o(k logM) + O(log2(1/δ))

equivalence queries in expectation. Our framework provides the noise tolerance “for free;”
[5] instead obtain results for a different type of noise in the feedback.

5 Application III: Learning a Classifier

Learning a binary classifier is the original and prototypical application of the equivalence query
model of Angluin [2], which has seen a large amount of follow-up work since (see, e.g., [16, 17]).
Naturally, if no assumptions are made on the classifier, then n queries are necessary in the worst case.
In general, applications therefore restrict the concept classes to smaller sets, such as assuming that
they have bounded VC dimension. We use F to denote the set of all possible concepts, and write
M = |F|; when F has VC dimension d, the Sauer-Shelah Lemma [19, 20] implies that M = O(nd).

Learning a binary classifier for n points is an almost trivial application of our framework12. When
the algorithm proposes a candidate classifier, the feedback it receives is a point with a corrected label
(or the fact that the classifier was correct on all points).

11In fact, the algorithm in [5] is implicitly computing and querying a node with small Φ in GUC
12The results extend readily to learning a classifier with k ≥ 2 labels.
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We define the graph GCL to be the n-dimensional hypercube13 with unweighted and undirected edges
between every pair of nodes at Hamming distance 1. Because the distance between two classifiers C,
C ′ is exactly the number of points on which they disagree, GCL satisfies Definition 2.1. Hence, we
can apply Corollary 2.3 and Theorem 2.4 with Sinit equal to the set of all M candidate classifiers,
recovering the classic result on learning a classifier in the equivalence query model when feedback is
perfect, and extending it to the noisy setting.

Corollary 5.1 1. With perfect feedback, the target classifier is learned using logM queries14.

2. When each query response is correct with probability p > 1
2 , there is an algorithm learning

the true binary classifier with probability at least 1−δ using at most (1−δ) logM
1−H(p) +o(logM)+

O(log2(1/δ)) queries in expectation.

6 Discussion and Conclusions

We defined a general framework for interactive learning from imperfect responses to equivalence
queries, and presented a general algorithm that achieves a small number of queries. We then showed
how query-efficient interactive learning algorithms in several domains can be derived with practically
no effort as special cases; these include some previously known results (classification and clustering)
as well as new results on ranking/ordering.

Our work raises several natural directions for future work. Perhaps most importantly, for which
domains can the algorithms be made computationally efficient (in addition to query-efficient)? We
provided a positive answer for ordering with perfect query responses, but the question is open
for ordering when feedback is imperfect. For classification, when the possible clusters have VC
dimension d, the time is O(nd), which is unfortunately still impractical for real-world values of d.
Maass and Turán [15] show how to obtain better bounds specifically when the sample points form a
d-dimensional grid; to the best of our knowledge, the question is open when the sample points are
arbitrary. The Monte Carlo approach of Theorem 2.6 reduces the question to the question of sampling
a uniformly random hyperplane, when the uniformity is over the partition induced by the hyperplane
(rather than some geometric representation). For clustering, even less appears to be known.

It should be noted that our algorithms may incorporate “improper” learning steps: for instance, when
trying to learn a hyperplane classifier, the algorithm in Section 5 may propose intermediate classifiers
that are not themselves hyperplanes (though the final output is of course a hyperplane classifier). At
an increase of a factor O(log d) in the number of queries, we can ensure that all steps are proper for
hyperplane learning. An interesting question is whether similar bounds can be obtained for other
concept classes, and for other problems (such as clustering).

Finally, our noise model is uniform. An alternative would be that the probability of an incorrect
response depends on the type of response. In particular, false positives could be extremely likely, for
instance, because the user did not try to classify a particular incorrectly labeled data point, or did not
see an incorrect ordering of items far down in the ranking. Similarly, some wrong responses may be
more likely than others; for example, a user proposing a merge of two clusters (or split of one) might
be “roughly” correct, but miss out on a few points (the setting that [5, 4] studied). We believe that
several of these extensions should be fairly straightforward to incorporate into the framework, and
would mostly lead to additional complexity in notation and in the definition of various parameters.
But a complete and principled treatment would be an interesting direction for future work.
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