
SVD-Softmax: Fast Softmax Approximation on Large
Vocabulary Neural Networks

Kyuhong Shim, Minjae Lee, Iksoo Choi, Yoonho Boo, Wonyong Sung
Department of Electrical and Computer Engineering

Seoul National University, Seoul, Korea
skhu20@snu.ac.kr, {mjlee, ischoi, yhboo}@dsp.snu.ac.kr, wysung@snu.ac.kr

Abstract

We propose a fast approximation method of a softmax function with a very large
vocabulary using singular value decomposition (SVD). SVD-softmax targets fast
and accurate probability estimation of the topmost probable words during infer-
ence of neural network language models. The proposed method transforms the
weight matrix used in the calculation of the output vector by using SVD. The ap-
proximate probability of each word can be estimated with only a small part of
the weight matrix by using a few large singular values and the corresponding ele-
ments for most of the words. We applied the technique to language modeling and
neural machine translation and present a guideline for good approximation. The
algorithm requires only approximately 20% of arithmetic operations for an 800K
vocabulary case and shows more than a three-fold speedup on a GPU.

1 Introduction

Neural networks have shown impressive results for language modeling [1–3]. Neural network-based
language models (LMs) estimate the likelihood of a word sequence by predicting the next word wt+1

by previous words w1:t. Word probabilities for every step are acquired by matrix multiplication
and a softmax function. Likelihood evaluation by an LM is necessary for various tasks, such as
speech recognition [4, 5], machine translation, or natural language parsing and tagging. However,
executing an LM with a large vocabulary size is computationally challenging because of the softmax
normalization. Softmax computation needs to access every word to compute the normalization factor
Z, where softmax(zk) = exp(zk)/

∑
V exp(zi) = exp(zk)/Z. V indicates the vocabulary size of

the dataset. We refer the conventional softmax algorithm as the "full-softmax."

The computational requirement of the softmax function frequently dominates the complexity of
neural network LMs. For example, a Long Short-Term Memory (LSTM) [6] RNN with four layers
of 2K hidden units requires roughly 128M multiply-add operations for one inference. If the LM
supports an 800K vocabulary, the evaluation of the output probability computation with softmax
normalization alone demands approximately 1,600M multiply-add operations, far exceeding that of
the RNN core itself.

Although we should compute the output vector of all words to evaluate the denominator of the soft-
max function, few applications require the probability of every word. For example, if an LM is used
for rescoring purposes as in [7], only the probabilities of one or a few given words are needed. Fur-
ther, for applications employing beam search, the most probable top-5 or top-10 values are usually
required. In speech recognition, since many states need to be pruned for efficient implementations,
it is not demanded to consider the probabilities of all the words. Thus, we formulate our goal: to ob-
tain accurate top-K word probabilities with considerably less computation for LM evaluation, where
the K considered is from 1 to 500.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

In this paper, we present a fast softmax approximation for LMs, which does not involve alternative
neural network architectures or additional loss during training. Our method can be directly applied
to full-softmax, regardless of how it is trained. This method is different from those proposed in other
papers, in that it is aimed to reduce the evaluation complexity, not to minimize the training time or
to improve the performance.

The proposed technique is based on singular value decomposition (SVD) [8] of the softmax weight
matrix. Experimental results show that the proposed algorithm provides both fast and accurate
evaluation of the most probable top-K word probabilities.

The contributions of this paper are as follows.

• We propose a fast and accurate softmax approximation, SVD-softmax, applied for calcu-
lating the top-K word probabilities.

• We provide a quantitative analysis of SVD-softmax with three different datasets and two
different tasks.

• We show through experimental results that the normalization term of softmax can be ap-
proximated fairly accurately by computing only a fraction of the full weight matrix.

This paper is organized as follows. In Section 2, we review related studies and compare them to our
study. We introduce SVD-softmax in Section 3. In Section 4, we provide experimental results. In
Section 5, we discuss more details about the proposed algorithm. Section 6 concludes the paper.

2 Related work

Many methods have been developed to reduce the computational burden of the softmax function.
The most successful approaches include sampling-based softmax approximation, hierarchical soft-
max architecture, and self-normalization techniques. Some of these support very efficient training.
However, the methods listed below must search the entire vocabulary to find the top-K words.

Sampling-based approximations choose a small subset of possible outputs and train only with
those. Importance sampling (IS) [9], noise contrastive estimation (NCE) [10], negative sampling
(NEG) [11], and Blackout [12] are included in this category. These approximations train the net-
work to increase the possibilities of positive samples, which are usually labels, and to decrease the
probabilities of negative samples, which are randomly sampled. These strategies are beneficial for
increasing the training speed. However, their evaluation does not show any improvement in speed.

Hierarchical softmax (HS) unifies the softmax function and output vector computation by con-
structing a tree structure of words. Binary HS [13, 14] uses the binary tree structure, which is
log(V) in depth. However, the binary representation is heavily dependent on each word’s position,
and therefore, a two-layer [2] or three-layer [15] hierarchy is also introduced. In particular, in the
study in [15] several clustered words were arranged in a "short-list," where the outputs of the second
level hierarchy were the words themselves, not the classes of the third hierarchy. Adaptive softmax
[16] extends the idea and allocates the short-list to the first layer, with a two-layer hierarchy. Adap-
tive softmax achieves both a training time speedup and a performance gain. HS approaches have
advantages for quickly gathering probability of a certain word or predetermined words. However,
HS should also visit every word to find the topmost likely words, where the merit of the tree structure
is not useful.

Self-normalization approaches [17, 18] employ an additional training loss term, which leads a
normalization factor Z close to 1. The evaluation of selected words can be achieved significantly
faster than by using full-softmax if the denominator is trained well. However, the method cannot
ensure that the denominator always appears correctly, and should also consider every word for top-K
estimation.

Differentiated Softmax (D-softmax) [19] restricts the effective parameters, using the fraction of
the full output matrix. The matrix allocates higher dimensional representation to frequent words
and only a lower dimensional vector to rare words. From this point of view, there is a commonality
between our method and D-softmax in that the length of vector used in the output vector compu-
tation varies among words. However, the determination of the length of each portion is somewhat
heuristic and requires specified training procedures in D-softmax. The word representation learned

2

𝐴 𝑈Σ

𝑽 𝑽 𝑽

(a) Base (b) After SVD (c) Preview window (d) Additional full-view vectors

|𝑉|

|𝐷| |𝐷| |𝑊|

|𝑁|

Figure 1: Illustration of the proposed SVD-softmax algorithm. The softmax weight matrix is de-
composed by singular value decomposition (b). Only a part of the columns is used to compute the
preview outputs (c). Selected rows, which are chosen by sorting the preview outputs, are recomputed
with full-width (d). For simplicity, the bias vector is omitted.

by D-softmax is restricted from the start, and may therefore be lacking in terms of expressiveness.
In contrast, our algorithm first trains words with a full-length vector and dynamically limits the
dimension during evaluation. In SVD-softmax, the importance of each word is also dynamically
determined during the inference.

3 SVD-softmax

The softmax function transforms a D-dimensional real-valued vector h to a V -dimensional proba-
bility distribution. The probability calculation consists of two stages. First, we acquire the output
vector of size V , denoted as z, from h by matrix multiplication as

z = Ah + b (1)

where A ∈ RV×D is a weight matrix, h ∈ RD is an input vector, b ∈ RV is a bias vector, and
z ∈ RV is the computed output vector. Second, we normalize the output vector to compute the
probability yk of each word as

yk = softmax(zk) =
exp(Akh+ bk)∑V
i=1 exp(Aih+ bi)

=
exp(zk)∑V
i=1 exp(zi)

=
exp(zk)

Z
(2)

The computational complexity of calculating the probability distribution over all classes and only
one class is the same, because the normalization factor Z requires every output vector elements to
be computed.

3.1 Singular value decomposition

SVD is a factorization method that decomposes a matrix into two unitary matrices U,V with sin-
gular vectors in columns and one diagonal matrix Σ with non-negative real singular values in de-
scending order. SVD is applied to the weight matrix A as

A = UΣVT (3)

where U ∈ RV×D,Σ ∈ RD×D, and V ∈ RD×D. We multiply Σ and U to factorize the original
matrix into two parts: UΣ and VT. Note that U×Σ multiplication is negligible in evaluation time
because we can keep the result as a single matrix.

Larger singular values in Σ are multiplied to the leftmost columns of U. As a result, the elements
of the B(= UΣ) matrix are statistically arranged in descending order of magnitude, from the first
column to the last. The leftmost columns of B are more influential than the rightmost columns.

3

Algorithm 1 Algorithm of the proposed SVD-softmax.

1: input: trained weight matrix A, input vector h, bias vector b
2: hyperparameter: width of preview window W , number of full-view vectors N .
3: initialize: decompose A = UΣVT , B = UΣ
4: h̃ = VT × h
5: z̃ = B[:, : W]× h̃[: W] + b compute preview outputs with only W dimensions
6: Sort z̃ in descending order select N words of largest preview outputs
7: CN = Top-N word indices of z̃
8: for all id in CN do
9: z̃[id] = B[id, :]× h̃ + b[id] update selected words by full-view vector multiplication

10: end for
11: Z̃ =

∑
V exp z̃i

12: ỹ = exp(z̃)/Z̃ compute probability distribution using softmax
13: return ỹ

3.2 Softmax approximation

Algorithm 1 shows the softmax approximation procedure, which is also illustrated in Figure 1.
Previous methods needed to compare every output vector elements to find the top-K words. Instead
of using the full-length vector, we consult every word with a window of restricted length W . We
call this the "preview window" and the results the "preview outputs." Note that adding the bias b
in preview outputs computation is crucial for the performance. Since larger singular values are
multiplied to several leftmost columns, it is reasonable to assume that the most important portion of
the output vector is already computed with the preview window.

However, we find that the preview outputs do not suffice to obtain accurate results. To increase the
accuracy, N largest candidates CN are selected by sorting V preview outputs. The selected candi-
dates are recomputed with the full-length window. We call the candidates the "full-view" vectors. As
a result, N outputs are computed exactly while (V − N) outputs are only an approximation based
on the preview outputs. In other words, only the selected indices use the full window for output
vector computation. Finally, the softmax function is applied to the output vector to normalize the
probability distribution. The modified output vector z̃k is formulated as

z̃k =

{
Bkh̃+ bk, if k ∈ CN

Bk[: W]h̃[: W] + bk, otherwise
(4)

where B ∈ RV×D and h̃ = V Th ∈ RD. Note that if k ∈ CN , z̃k is equal to zk. The computational
complexity is reduced from O(V ×D) to O(V ×W +N ×D).

3.3 Metrics

To observe the accuracy of every word probability, we use Kullback-Leibler divergence (KLD) as a
metric. KLD shows the closeness of the approximated distribution to the actual one. Perplexity, or
negative log-likelihood (NLL), is a useful measurement for likelihood estimation. The gap between
full-softmax and SVD-softmax NLL should be small. For the evaluation of a given word, the
accuracy of probability depends only on the normalization factor Z, and therefore we monitor also
the denominator of the softmax function.

We define "top-K coverage," which represents how many top-K words of full-softmax are included
in the top-K words of SVD-softmax. For the beam-search purpose, it is important to correctly select
the top-K words, as beam paths might change if the order is mingled.

4 Experimental results

The experiments were performed on three datasets and two different applications: language model-
ing and machine translation. The WikiText-2 [20] and One Billion Word benchmark (OBW) [21]

4

Table 1: Effect of the number of hidden units on the WikiText-2 language model. The number of
full-view vectors is fixed to 3,300 for the table, which is about 10% of the size of the vocabulary.
Top-K denotes top-K coverage defined in 3.3. The values are averaged.

D W Z̃/Z KLD NLL (full/SVD) Top-10 Top-100 Top-1000

256
16 0.9813 0.03843 4.408 / 4.518 9.97 99.47 952.71
32 0.9914 0.01134 4.408 / 4.441 10.00 99.97 986.94

512
32 0.9906 0.01453 3.831 / 3.907 10.00 99.89 974.87
64 0.9951 0.00638 3.831 / 3.852 10.00 99.99 993.35

1024
64 0.9951 0.00656 3.743 / 3.789 10.00 99.99 992.62
128 0.9971 0.00353 3.743 / 3.761 10.00 100.00 998.28

datasets were used for language modeling. The neural machine translation (NMT) from German to
English was trained with a dataset provided by the OpenNMT toolkit [22].

We first analyzed the extent to which the preview window size W and the number of full-view
vectors N affect the overall performance and searched the best working combination.

4.1 Effect of the number of hidden units on preview window size

To find the relationship between the preview window’s width and the approximation quality, three
LMs trained with WikiText-2 were tested. WikiText is a text dataset, which was recently intro-
duced [20]. The WikiText-2 dataset contains 33,278-word vocabulary and approximately 2M train-
ing tokens. An RNN with a single LSTM layer [6] was used for language modeling. Traditional
full-softmax was used for the output layer. The number of LSTM units was the same as the input
embedding dimension. Three models were trained on WikiText-2 with the number of hidden units
D being 256, 512, and 1,024.

The models were trained with stochastic gradient descent (SGD) with an initial learning rate of 1.0
and momentum of 0.95. The batch size was set to 20, and the network was unrolled for 35 timesteps.
Dropout [23] was applied to the LSTM output with a drop ratio of 0.5. Gradient clipping [24] of
maximum norm value 5 was applied.

The preview window widths W selected were 16, 32, 64, and 128 and the number of full-view
candidates N were 5% and 10% of the full vocabulary size for all three models. One thousand
sequential frames were used for the evaluation. Table 1 shows the results of selected experiments,
which indicates that the sufficient preview window size is proportional to the hidden layer dimension
D. In most cases, 1/8 of D is an adequate window width, which costs 12.5% of multiplications.
Over 99% of the denominator is covered. KLD and NLL show that the approximation produces
almost the same results as the original. The top-K words are also computed precisely. We also
checked the order of the top-K words that were preserved. The result showed that using too short
window width affects the performance badly.

4.2 Effect of the vocabulary size on the number of full-view vectors

The OBW dataset was used to analyze the effect of vocabulary size on SVD-softmax. This bench-
mark is a huge dataset with a 793,472-word vocabulary. The model used 256-dimension word em-
bedding, an LSTM layer of 2,048 units, and a full-softmax output layer. The RNN LM was trained
with SGD with an initial learning rate of 1.0.

We explored multiple models by employing a vocabulary size of 8,004, 80,004, 401,951, and
793,472, abbreviated as 8K, 80K, 400K, and 800K below. The 800K model follows the prepro-
cessing consensus, keeping words that appear more than three times. The 400K vocabulary follows
the same process as the 800K but without case sensitivity. The 8K and 80K data models were cre-
ated by choosing the topmost frequent 8K and 80K words, respectively. Because of the limitation
of GPU memory, the 800K model was trained with half-precision parameters. We used the full data
for training.

5

Table 2: Effect of the number of full-view vector size N on One Billion Word benchmark language
model. The preview window width is fixed to 256 in this table. We omitted the ratio of approximated
Z̃ and real Z, because the ratio is over 0.997 for all cases in the table. The multiplication ratio is to
full-softmax, including the overhead of VT × h.

V N NLL (full/SVD) Top-10 Top-50 Top-100 Top-500 Mult. ratio

8K
1024 2.685 / 2.698 9.98 49.81 99.36 469.48 0.493
2048 2.685 / 2.687 9.99 49.99 99.89 496.05 0.605

80K
4096 3.589 / 3.6051 10.00 49.94 99.85 497.73 0.195
8192 3.589 / 3.591 10.00 49.99 99.97 499.56 0.240

400K
16384 3.493 / 3.495 10.00 50.00 100.00 499.90 0.171
32768 3.493 / 3.495 10.00 50.00 100.00 499.98 0.201

800K
32768 4.688 / 4.718 10.00 49.99 99.96 499.99 0.168
65536 4.688 / 4.690 10.00 49.99 99.96 499.89 0.200

Table 3: SVD-softmax on machine translation task. The baseline perplexity and BLEU score are
10.57 and 21.98, respectively.

W N Perplexity BLEU

200
5000 10.57 21.99
2500 10.57 21.99
1000 10.58 22.00

100
5000 10.58 22.00
2500 10.59 22.00
1000 10.65 22.01

50
5000 10.60 22.00
2500 10.68 21.99
1000 11.04 22.00

The preview window width and the number of full-view vectors were selected in the powers of 2.
The results were computed on randomly selected 2,000 consecutive frames.

Table 2 shows the experimental results. With a fixed hidden dimension of 2,048, the required pre-
view window width does not change significantly, which is consistent with the observations in Sec-
tion 4.1. However, the number of full-view vectors N should increase as the vocabulary size grows.
In our experiments, using 5% to 10% of the total vocabulary size as candidates sufficed to achieve a
successful approximation. The results prove that the proposed method is scalable and more efficient
when applied to large vocabulary softmax.

4.3 Result on machine translation

NMT is based on neural networks and contains an internal softmax function. We applied SVD-
softmax to a German to English NMT task to evaluate the actual performance of the proposed
algorithm.

The baseline network, which employs the encoder-decoder model with an attention mechanism
[25, 26], was trained using the OpenNMT toolkit. The network was trained with concatenated
data which contained a WMT 2015 translation task [27], Europarl v7 [28], common crawl [29],
and news commentary v10 [30], and evaluated with newstest 2013. The training and evaluation
data were tokenized and preprocessed by following the procedures in previous studies [31, 32] to
conduct case-sensitive translation with 50,004 frequent words. The baseline network employed 500-
dimension word embedding, encoder- and decoder-networks with two unidirectional LSTM layers
with 500 units each, and a full-softmax output layer. The network was trained with SGD with
an initial learning rate of 1.0 while applying dropout [23] with ratio 0.3 between adjacent LSTM
layers. The rest of the training settings followed the OpenNMT training recipe, which is based on

6

0

10

20

30

40

50

60

70

0 128 256 384 512 640 768 896 1024

S(256) S(512) S(1024)

0

10

20

30

40

50

60

70

0.00 0.20 0.40 0.60 0.80 1.00

S(256) S(512) S(1024)

0.125

Figure 2: Singular value plot of three WikiText-2 language models that differ in hidden vector
dimension D ∈ {256, 512, 1024}. The left hand side figure represents the singular value for each
element, while the right hand side figure illustrates the value proportional to D. The dashed line
implies 0.125 = 1/8 point. Both are from the same data.

previous studies [31, 33]. The performance of the network was evaluated according to perplexity
and the case-sensitive BLEU score [34], which was computed with the Moses toolkit [35]. During
translation, a beam search was conducted with beam width 5.

To evaluate our algorithm, the preview window widths W selected were 25, 50, 100, and 200, and
the numbers of full-view candidates N chosen were 1,000, 2,500, and 5,000.

Table 3 shows the experimental results for perplexity and the BLEU score with respect to the preview
window dimension W and the number of full-view vectors N . The full-softmax layer in the baseline
model employed a hidden dimension D of 500 and computed the probability for V = 50,004 words.
The experimental results show that a speed up can be achieved with preview width W = 100, which
is 1/5 of D, and the number of full-view vectors N = 2,500 or 5,000, which is 1/5 or 1/10 of
V . The parameters chosen did not affect the translation performance in terms of perplexity. For a
wider W , it is possible to use a smaller N . The experimental results show that SVD-softmax is also
effective when applied to NMT tasks.

5 Discussion

In this section, we provide empirical evidence of the reasons why SVD-softmax operates efficiently.
We also present the results of an implementation on a GPU.

5.1 Analysis of W , N , and D

We first explain the reason the required preview window width W is proportional to the hidden
vector size D. Figure 2 shows the singular value distribution of WikiText-2 LM softmax weights.
We observed that the distributions are similar for all three cases when the singular value indices are
scaled with D. Thus, it is important to preserve the ratio between W and D. The ratio of singular
values in a D/8 window over the total sum of singular values for 256, 512, and 1,024 hidden vector
dimensions is 0.42, 0.38, and 0.34, respectively.

Furthermore, we explore the manner in which W and N affect the normalization term, i.e., the
denominator. Figure 3 shows how the denominator is approximated while changing W or N . Note
that the leftmost column of Figure 3 represents that no full-view vectors were used.

5.2 Computational efficiency

The modeled number of multiplications in Table 2 shows that the computation required can be
decreased to 20%. After factorization, the overhead of matrix multiplication VT , which is O(D2),
is a fixed cost. In most cases, especially with a very large vocabulary, V is significantly larger than
D, and the additional computation cost is negligible. However, as V decreases, the portion of the
overhead increases.

7

Figure 3: Heatmap of approximated normalization factor ratio Z̃/Z. The x and y axis represent
N and W , respectively. The WikiText-2 language model with D = 1,024 was used. Note that the
maximum values of N and W are 1,024 and 33,278, respectively. The gray line separates the area
by 0.99 as a threshold. Best viewed in color.

Table 4: Measured time (ms) of full-softmax and SVD-softmax on a GPU and CPU. The experiment
was conducted on a NVIDIA GTX Titan-X (Pascal) GPU and Intel i7-6850 CPU. The second col-
umn indicates the full-softmax, while the other columns represent each step of SVD-softmax. The
cost of the sorting, exponential, and sum is omitted, as their time consumption is negligible.

Full-softmax SVD-softmax
A× h VT × h Preview window Full-view vectors Sum (speedup)

Device
(262k, 2k) (2k, 2k) (262k, 256) (16k, 2k)

-
×2k ×2k ×256 ×2k

GPU 14.12 0.33 2.98 1.12 4.43 (×3.19)
CPU 1541.43 25.32 189.27 88.98 303.57 (×5.08)

We provide an example of time consumption on a CPU and GPU. Assume the weight A is a 262K
(V = 218) by 2K (D = 211) matrix and SVD-softmax is applied with preview window width of
256 and the number of full-view vectors is 16K (N = 214). This corresponds to W/D = 1/8 and
N/V = 1/16. The setting well simulates the real LM environment and the use of the recommended
SVD-softmax hyperparameters discussed above. We used our highly optimized custom CUDA ker-
nel for the GPU evaluation. The matrix B was stored in row-major order for convenient full-view
vector evaluation.

As observed in Table 4, the time consumption is reduced by approximately 70% on the GPU and
approximately 80% on the CPU. Note that the GPU kernel is fully parallelized while the CPU code
employs a sequential logic. We also tested various vocabulary sizes and hidden dimensions on the
custom kernel, where a speedup is mostly observed, although it is less effective for small vocabulary
cases.

5.3 Compatibility with other methods

The proposed method is compatible with a neural network trained with sampling-based softmax
approximations. SVD-softmax is also applicable to hierarchical softmax and adaptive softmax,
especially when the vocabulary is large. Hierarchical methods need large weight matrix multipli-
cation to gather every word probability, and SVD-softmax can reduce the computation. We tested
SVD-softmax with various softmax approximations and observed that a significant amount of mul-
tiplication is removed while the performance is not significantly affected as it is by full softmax.

8

6 Conclusion

We present SVD-softmax, an efficient softmax approximation algorithm, which is effective for com-
puting top-K word probabilities. The proposed method factorizes the matrix by SVD, and only part
of the SVD transformed matrix is previewed to determine which words are worth preserving. The
guideline for hyperparameter selection was given empirically. Language modeling and NMT exper-
iments were conducted. Our method reduces the number of multiplication operations to only 20% of
that of the full-softmax with little performance degradation. The proposed SVD-softmax is a simple
yet powerful computation reduction technique.

Acknowledgments

This work was supported in part by the Brain Korea 21 Plus Project and the Na-
tional Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP)
(No.2015R1A2A1A10056051).

References
[1] Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan Cernockỳ, and Sanjeev Khudanpur, “Re-

current neural network based language model,” in Interspeech, 2010, vol. 2, p. 3.

[2] Tomáš Mikolov, Stefan Kombrink, Lukáš Burget, Jan Černockỳ, and Sanjeev Khudanpur, “Ex-
tensions of recurrent neural network language model,” in Acoustics, Speech and Signal Pro-
cessing (ICASSP), 2011 IEEE International Conference on. IEEE, 2011, pp. 5528–5531.

[3] Yann N Dauphin, Angela Fan, Michael Auli, and David Grangier, “Language modeling with
gated convolutional networks,” arXiv preprint arXiv:1612.08083, 2016.

[4] William Chan, Navdeep Jaitly, Quoc Le, and Oriol Vinyals, “Listen, attend and spell: A
neural network for large vocabulary conversational speech recognition,” in Acoustics, Speech
and Signal Processing (ICASSP), 2016 IEEE International Conference on. IEEE, 2016, pp.
4960–4964.

[5] Kyuyeon Hwang and Wonyong Sung, “Character-level incremental speech recognition with
recurrent neural networks,” in Acoustics, Speech and Signal Processing (ICASSP), 2016 IEEE
International Conference on. IEEE, 2016, pp. 5335–5339.

[6] Sepp Hochreiter and Jürgen Schmidhuber, “Long short-term memory,” Neural Computation,
vol. 9, no. 8, pp. 1735–1780, 1997.

[7] Xunying Liu, Yongqiang Wang, Xie Chen, Mark JF Gales, and Philip C Woodland, “Efficient
lattice rescoring using recurrent neural network language models,” in Acoustics, Speech and
Signal Processing (ICASSP), 2014 IEEE International Conference on. IEEE, 2014, pp. 4908–
4912.

[8] Gene H Golub and Christian Reinsch, “Singular value decomposition and least squares solu-
tions,” Numerische Mathematik, vol. 14, no. 5, pp. 403–420, 1970.

[9] Yoshua Bengio, Jean-Sébastien Senécal, et al., “Quick training of probabilistic neural nets by
importance sampling.,” in AISTATS, 2003.

[10] Andriy Mnih and Yee Whye Teh, “A fast and simple algorithm for training neural probabilistic
language models,” arXiv preprint arXiv:1206.6426, 2012.

[11] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean, “Distributed repre-
sentations of words and phrases and their compositionality,” in Advances in Neural Information
Processing Systems, 2013, pp. 3111–3119.

[12] Shihao Ji, SVN Vishwanathan, Nadathur Satish, Michael J Anderson, and Pradeep Dubey,
“Blackout: Speeding up recurrent neural network language models with very large vocabular-
ies,” arXiv preprint arXiv:1511.06909, 2015.

9

[13] Frederic Morin and Yoshua Bengio, “Hierarchical probabilistic neural network language
model,” in AISTATS. Citeseer, 2005, vol. 5, pp. 246–252.

[14] Andriy Mnih and Geoffrey E Hinton, “A scalable hierarchical distributed language model,” in
Advances in Neural Information Processing Systems, 2009, pp. 1081–1088.

[15] Hai-Son Le, Ilya Oparin, Alexandre Allauzen, Jean-Luc Gauvain, and François Yvon, “Struc-
tured output layer neural network language model,” in Acoustics, Speech and Signal Process-
ing (ICASSP), 2011 IEEE International Conference on. IEEE, 2011, pp. 5524–5527.

[16] Edouard Grave, Armand Joulin, Moustapha Cissé, David Grangier, and Hervé Jégou, “Effi-
cient softmax approximation for GPUs,” arXiv preprint arXiv:1609.04309, 2016.

[17] Jacob Devlin, Rabih Zbib, Zhongqiang Huang, Thomas Lamar, Richard M Schwartz, and John
Makhoul, “Fast and robust neural network joint models for statistical machine translation,” in
ACL (1). Citeseer, 2014, pp. 1370–1380.

[18] Jacob Andreas, Maxim Rabinovich, Michael I Jordan, and Dan Klein, “On the accuracy of
self-normalized log-linear models,” in Advances in Neural Information Processing Systems,
2015, pp. 1783–1791.

[19] Welin Chen, David Grangier, and Michael Auli, “Strategies for training large vocabulary neural
language models,” arXiv preprint arXiv:1512.04906, 2015.

[20] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher, “Pointer sentinel mix-
ture models,” arXiv preprint arXiv:1609.07843, 2016.

[21] Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge, Thorsten Brants, Phillipp Koehn, and
Tony Robinson, “One billion word benchmark for measuring progress in statistical language
modeling,” arXiv preprint arXiv:1312.3005, 2013.

[22] Guillaume Klein, Yoon Kim, Yuntian Deng, Jean Senellart, and Alexander M Rush, “Open-
NMT: Open-source toolkit for neural machine translation,” arXiv preprint arXiv:1701.02810,
2017.

[23] Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdi-
nov, “Dropout: a simple way to prevent neural networks from overfitting,” Journal of Machine
Learning Research, vol. 15, no. 1, pp. 1929–1958, 2014.

[24] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio, “On the difficulty of training recurrent
neural networks,” ICML (3), vol. 28, pp. 1310–1318, 2013.

[25] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio, “Learning phrase representations using RNN encoder-
decoder for statistical machine translation,” arXiv preprint arXiv:1406.1078, 2014.

[26] Ilya Sutskever, Oriol Vinyals, and Quoc V Le, “Sequence to sequence learning with neural
networks,” in Advances in Neural Information Processing Systems, 2014, pp. 3104–3112.

[27] Ondrej Bojar, Rajen Chatterjee, Christian Federmann, Barry Haddow, Matthias Huck, Chris
Hokamp, Philipp Koehn, Varvara Logacheva, Christof Monz, Matteo Negri, Matt Post, Car-
olina Scarton, Lucia Specia, and Marco Turchi, “Findings of the 2015 workshop on statistical
machine translation,” in Proceedings of the Tenth Workshop on Statistical Machine Transla-
tion, 2015, pp. 1–46.

[28] Philipp Koehn, “Europarl: A parallel corpus for statistical machine translation,” in MT Summit,
2005, vol. 5, pp. 79–86.

[29] Common Crawl Foundation, “Common crawl,” http://commoncrawl.org, 2016, Accessed:
2017-04-11.

[30] Jorg Tiedemann, “Parallel data, tools and interfaces in OPUS,” in LREC, 2012, vol. 2012, pp.
2214–2218.

10

http://commoncrawl.org

[31] Minh-Thang Luong, Hieu Pham, and Christopher D Manning, “Effective approaches to
attention-based neural machine translation,” arXiv preprint arXiv:1508.04025, 2015.

[32] Sébastien Jean, Kyunghyun Cho, Roland Memisevic, and Yoshua Bengio, “On using very large
target vocabulary for neural machine translation,” arXiv preprint arXiv:1412.2007, 2014.

[33] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio, “Neural machine translation by
jointly learning to align and translate,” arXiv preprint arXiv:1409.0473, 2014.

[34] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu, “Bleu: a method for au-
tomatic evaluation of machine translation,” in Proceedings of the 40th annual meeting on
Association for Computational Linguistics. Association for Computational Linguistics, 2002,
pp. 311–318.

[35] Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico,
Nicola Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard Zens, et al., “Moses:
Open source toolkit for statistical machine translation,” in Proceedings of the 45th Annual
Meeting of the Association for Computational Linguistics on Interactive Poster and Demon-
stration Sessions. Association for Computational Linguistics, 2007, pp. 177–180.

11

