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Abstract

We study implicit regularization when optimizing an underdetermined quadratic
objective over a matrix X with gradient descent on a factorization of X . We
conjecture and provide empirical and theoretical evidence that with small enough
step sizes and initialization close enough to the origin, gradient descent on a full
dimensional factorization converges to the minimum nuclear norm solution.

1 Introduction

When optimizing underdetermined problems with multiple global minima, the choice of optimization
algorithm can play a crucial role in biasing us toward a specific global minima, even though this bias is
not explicitly specified in the objective or problem formulation. For example, using gradient descent
to optimize an unregularized, underdetermined least squares problem would yield the minimum
Euclidean norm solution, while using coordinate descent or preconditioned gradient descent might
yield a different solution. Such implicit bias, which can also be viewed as a form of regularization,
can play an important role in learning.

In particular, implicit regularization has been shown to play a crucial role in training deep models
[14, 13, 18, 11]: deep models often generalize well even when trained purely by minimizing the
training error without any explicit regularization, and when there are more parameters than samples
and the optimization problem is underdetermined. Consequently, there are many zero training error
solutions, all global minima of the training objective, many of which generalize badly. Nevertheless,
our choice of optimization algorithm, typically a variant of gradient descent, seems to prefer solutions
that do generalize well. This generalization ability cannot be explained by the capacity of the
explicitly specified model class (namely, the functions representable in the chosen architecture).
Instead, it seems that the optimization algorithm biases us toward a “simple" model, minimizing
some implicit “regularization measure”, and that generalization is linked to this measure. But what
are the regularization measures that are implicitly minimized by different optimization procedures?

As a first step toward understanding implicit regularization in complex models, in this paper we
carefully analyze implicit regularization in matrix factorization models, which can be viewed as
two-layer networks with linear transfer. We consider gradient descent on the entries of the factor
matrices, which is analogous to gradient descent on the weights of a multilayer network. We show
how such an optimization approach can indeed yield good generalization properties even when the
problem is underdetermined. We identify the implicit regularizer as the nuclear norm, and show that
even when we use a full dimensional factorization, imposing no constraints on the factored matrix,
optimization by gradient descent on the factorization biases us toward the minimum nuclear norm
solution. Our empirical study leads us to conjecture that with small step sizes and initialization close
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to zero, gradient descent converges to the minimum nuclear norm solution, and we provide empirical
and theoretical evidence for this conjecture, proving it in certain restricted settings.

2 Factorized Gradient Descent for Matrix Regression

We consider least squares objectives over matrices X ∈ Rn×n of the form:

min
X�0

F (X) = ‖A(X)− y‖22. (1)

where A : Rn×n → Rm is a linear operator specified by A(X)i = 〈Ai, X〉, Ai ∈ Rn×n, and
y ∈ Rm. Without loss of generality, we consider only symmetric positive semidefinite (p.s.d.)
X and symmetric linearly independent Ai (otherwise, consider optimization over a larger matrix[
W X
X> Z

]
with A operating symmetrically on the off-diagonal blocks). In particular, this setting

covers problems including matrix completion (where Ai are indicators, [5]), matrix reconstruction
from linear measurements [15] and multi-task training (where each column of X is a predictor for a
different task and Ai have a single non-zero column, [2, 1]).

We are particularly interested in the regime where m� n2, in which case (1) is underdetermined
with many global minima satisfying A(X) = y. For such underdetermined problems, merely mini-
mizing (1) cannot ensure recovery (in matrix completion or recovery problems) or generalization (in
prediction problems). For example, in a matrix completion problem (without diagonal observations),
we can minimize (1) by setting all non-diagonal unobserved entries to zero, or to any arbitrary value.

Instead of working on X directly, we will study a factorization X = UU>. We can write (1)
equivalently as optimization over U as,

min
U∈Rn×d

f(U) =
∥∥A(UU>)− y

∥∥2
2
. (2)

When d < n, this imposes a constraint on the rank of X , but we will be mostly interested in the
case d = n, under which no additional constraint is imposed on X (beyond being p.s.d.) and (2) is
equivalent to (1). Thus, if m � n2, then (2) with d = n is similarly underdetermined and can be
optimized in many ways – estimating a global optima cannot ensure generalization (e.g. imputing
zeros in a matrix completion objective). Let us investigate what happens when we optimize (2) by
gradient descent on U .

To simulate such a matrix reconstruction problem, we generated m � n2 random measurement
matrices and set y = A(X∗) according to some planted X∗ � 0. We minimized (2) by perform-
ing gradient descent on U to convergence, and then measured the relative reconstruction error
‖X −X∗‖F /‖X∗‖F for X = UU>. Figure 1 shows the normalized training objective and recon-
struction error as a function of the dimensionality d of the factorization, for different initialization
and step-size policies, and three different planted X∗.

First, we see that (for sufficiently large d) gradient descent indeed finds a global optimum, as
evidenced by the training error (the optimization objective) being zero. This is not surprising since
with large enough d this non-convex problem has no spurious local minima [4, 9] and gradient
descent converges almost surely to a global optima [12]; there has also been recent work establishing
conditions for global convergence for low d [3, 7].

The more surprising observation is that in panels (a) and (b), even when d > m/n, indeed even for
d = n, we still get good reconstructions from the solution of gradient descent with initialization U0

close to zero and small step size. In this regime, (2) is underdetermined and minimizing it does not
ensure generalization. To emphasize this, we plot the reference behavior of a rank unconstrained
global minimizer Xgd obtained via projected gradient descent for (1) on the X space. For d < n we
also plot an example of an alternate “bad" rank d global optima obtained with an initialization based
on SVD of Xgd (‘SVD Initialization’).

When d < m/n, we understand how the low-rank structure can guarantee generalization [16] and
reconstruction [10, 3, 7]. What ensures generalization when d � m/n? Is there a strong implicit
regularization at play for the case of gradient descent on factor space and initialization close to zero?

Observing the nuclear norm of the resulting solutions plotted in Figure 2 suggests that gradient descent
implicitly induces a low nuclear norm solution. This is the case even for d = n when the factorization
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Figure 1: Reconstruction error of the global optima for 50×50 matrix reconstruction. (Left)X∗ is of rank r = 2
and m = 3nr; (Center) X∗ has a spectrum decaying as O(1/k1.5) normalized to have ‖X∗‖∗ =

√
r‖X∗‖F

for r = 2 and m = 3nr, and (Right) is a non-reconstructable setting where the number of measurements
m = nr/4 is much smaller than the requirement to reconstruct a rank r = 2 matrix. The plots compare the
reconstruction error of gradient descent on U for different choices initialization U0 and step size η, including
fixed step-size and exact line search clipped for stability (ηELS). Additonally, the orange dashed reference
line represents the performance of Xgd – a rank unconstrained global optima obtained by projected gradient
descent for (1) on X space, and ‘SVD-Initialization’ is an example of an alternate rank d global optima, where
initialization U0 is picked based on SVD of Xgd and gradient descent is run on factor space with small stepsize.
Training error behaves similarly in all these settings (zero for d ≥ 2) and is plotted for reference. Results are
averaged across 3 random initialization and (near zero) errorbars indicate the standard deviation.
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Figure 2: Nuclear norm of the solutions from Figure 1. In addition to the reference of Xgd from Figure 1, the
magenta dashed line (almost overlapped by the plot of ‖U‖F = 10−4, η = 10−3) is added as a reference for
the (rank unconstrained) minimum nuclear norm global optima. The error bars indicate the standard deviation
across 3 random initializations. We have dropped the plot for ‖U‖F = 1, η = 10−3 to reduce clutter.

imposes no explicit constraints. Furthermore, we do not include any explicit regularization and
optimization is run to convergence without any early stopping. In fact, we can see a clear bias toward
low nuclear norm even in problems where reconstruction is not possible: in panel (c) of Figure 2 the
number of samples m = nr/4 is much smaller than those required to reconstruct a rank r ground
truth matrix X∗. The optimization in (2) is highly underdetermined and there are many possible
zero-error global minima, but gradient descent still prefers a lower nuclear norm solution. The
emerging story is that gradient descent biases us to a low nuclear norm solution, and we already know
how having low nuclear norm can ensure generalization [17, 6] and minimizing the nuclear norm
ensures reconstruction [15, 5].

Can we more explicitly characterize this bias? We see that we do not always converge precisely
to the minimum nuclear norm solution. In particular, the choice of step size and initialization
affects which solution gradient descent converges to. Nevertheless, as we formalize in Section 3, we
argue that when U is full dimensional, the step size becomes small enough, and the initialization
approaches zero, gradient descent will converge precisely to a minimum nuclear norm solution, i.e. to
argminX�0 ‖X‖∗ s.t. A(X) = y.

3 Gradient Flow and Main Conjecture

The behavior of gradient descent with infinitesimally small step size is captured by the differential
equation U̇t := dUt

dt = −∇f(Ut) with an initial condition for U0. For the optimization in (2) this is

U̇t = −A∗(A(UtU
>
t )− y)Ut, (3)
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where A∗ : Rm → Rn×n is the adjoint of A and is given by A∗(r) =
∑
i riAi. Gradient descent

can be seen as a discretization of (3), and approaches (3) as the step size goes to zero.

The dynamics (3) define the behavior of the solution Xt = UtU
>
t and using the chain rule we can

verify that Ẋt = U̇tU
>
t + UtU̇

>
t = −A∗(rt)Xt − XtA∗(rt), where rt = A(Xt) − y is a vector

of the residual. That is, even though the dynamics are defined in terms of specific factorization
Xt = UtU

>
t , they are actually independent of the factorization and can be equivalently characterized

as
Ẋt = −A∗(rt)Xt −XtA∗(rt). (4)

We can now define the limit point X∞(Xinit) := limt→∞Xt for the factorized gradient flow (4)
initialized at X0 = Xinit. We emphasize that these dynamics are very different from the standard
gradient flow dynamics of (1) on X , corresponding to gradient descent on X , which take the form
Ẋt = −∇F (Xt) = −A∗(rt).

Based on the preliminary experiments in Section 2 and a more comprehensive numerical study
discussed in Section 5, we state our main conjecture as follows:

Conjecture. For any full rank Xinit, if X̂ = limα→0X∞(αXinit) exists and is a global optima for
(1) with A(X̂) = y, then X̂ ∈ argminX�0 ‖X‖∗ s.t. A(X) = y.

Requiring a full-rank initial point demands a full dimensional d = n factorization in (2). The
assumption of global optimality in the conjecture is generally satisfied: for almost all initializations,
gradient flow will converge to a local minimizer [12], and when d = n any such local minimizer is
also global minimum [9]. Since we are primarily concerned with underdetermined problems, we
expect the global optimum to achieve zero error, i.e. satisfy A(X) = y. We already know from
these existing literature that gradient descent (or gradient flow) will generally converge to a solution
satisfying A(X) = y; the question we address here is which of those solutions will it converge to.

The conjecture implies the same behavior for asymmetric factorization as X = UV > with gradient
flow on (U, V ), since this is equivalent to gradient flow on the p.s.d. factorization of

[
W X
X> Z

]
.

4 Theoretical Analysis

We will prove our conjecture for the special case where the matrices Ai commute, and discuss
the more challenging non-commutative case. But first, let us begin by reviewing the behavior of
straight-forward gradient descent on X for the convex problem in (1).

Warm up: Consider gradient descent updates on the original problem (1) in X space, ignoring
the p.s.d. constraint. The gradient direction∇F (X) = A∗(A(X)− y) is always spanned by the m
matrices Ai. Initializing at Xinit = 0, we will therefore always remain in the m-dimensional subspace
L = {X = A∗(s)|s ∈ Rm}. Now consider the optimization problem minX ‖X‖2F s.t. A(X) = y.
The KKT optimality conditions for this problem are A(X) = y and ∃ν s.t. X = A∗(ν). As long as
we are in L, the second condition is satisfied, and if we converge to a zero-error global minimum,
then the first condition is also satisfied. Since gradient descent stays on this manifold, this establishes
that if gradient descent converges to a zero-error solution, it is the minimum Frobenius norm solution.

Getting started: m = 1 Consider the simplest case of the factorized problem when m = 1 with
A1 = A and y1 = y. The dynamics of (4) are given by Ẋt = −rt(AXt +XtA), where rt is simply
a scalar, and the solution for Xt is given by, Xt = exp (stA)X0 exp (stA) where sT = −

∫ T
0
rtdt.

Assuming X̂ = limα→0X∞(αX0) exists and A(X̂) = y, we want to show X̂ is an optimum for the
following problem

min
X�0
‖X‖∗ s.t. A(X) = y. (5)

The KKT optimality conditions for (5) are:

∃ν ∈ Rm s.t. A(X) = y X � 0 A∗(ν) � I (I −A∗(ν))X = 0 (6)

We already know that the first condition holds, and the p.s.d. condition is guaranteed by the factoriza-
tion of X . The remaining complementary slackness and dual feasibility conditions effectively require
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that X̂ is spanned by the top eigenvector(s) of A. Informally, looking to the gradient flow path above,
for any non-zero y, as α→ 0 it is necessary that |s∞| → ∞ in order to converge to a global optima,
thus eigenvectors corresponding to the top eigenvalues of A will dominate the span of X∞(αXinit).

What we can prove: Commutative {Ai}i∈[m] The characterization of the the gradient flow path
from the previous section can be extended to arbitrary m in the case that the matrices Ai commute,
i.e. AiAj = AjAi for all i, j. Defining sT = −

∫ T
0
rtdt – a vector integral, we can verify by

differentiating that solution of (4) is

Xt = exp (A∗(st))X0 exp (A∗(st)) (7)

Theorem 1. In the case where matrices {Ai}mi=1 commute, if X̂ = limα→0X∞(αI) exists and is a
global optimum for (1) with A(X̂) = y, then X̂ ∈ argminX�0 ‖X‖∗ s.t. A(X) = y.

Proof. It suffices to show that such a X̂ satisfies the complementary slackness and dual feasibility
KKT conditions in (6). Since the matrices Ai commute and are symmetric, they are simultaneously
diagonalizable by a basis v1, .., vn, and so is A∗(s) for any s ∈ Rm. This implies that for any α,
X∞(αI) given by (7) and its limit X̂ also have the same eigenbasis. Furthermore, since X∞(αI)

converges to X̂ , the scalars v>k X∞(αI)vk → v>k X̂vk for each k ∈ [n]. Therefore, λk(X∞(αI))→
λk(X̂), where λk(·) is defined as the eigenvalue corresponding to eigenvector vk and not necessarily
the kth largest eigenvalue.

Let β = − logα, then using X0 = e−βI in (7), λk(X∞(αI)) = exp(2λk(A∗(s∞(β)))− 2β). For
all k such that λk(X̂) > 0, by the continuity of log, we have

2λk(A∗(s∞(β)))− 2β − log λk(X̂)→ 0 =⇒ λk

(
A∗
(s∞(β)

β

))
− 1− log λk(X̂)

2β
→ 0. (8)

Defining ν(β) = s∞(β)/β, we conclude that for all k such that λk(X̂) 6= 0, limβ→∞ λk(A∗(ν(β))) =

1. Similarly, for each k such that λk(X̂) = 0,

exp(2λk(A∗(s∞(β)))− 2β)→ 0 =⇒ exp(λk(A∗(ν(β)))− 1)
2β → 0. (9)

Thus, for every ε ∈ (0, 1], for sufficiently large β

exp(λk(A∗(ν(β)))− 1) < ε
1
2β < 1 =⇒ λk(A∗(ν(β))) < 1. (10)

Therefore, we have shown that limβ→∞A∗(ν(β)) � I and limβ→∞A∗(ν(β))X̂ = X̂ establishing
the optimality of X̂ for (5).

Interestingly, and similarly to gradient descent on X , this proof does not exploit the particular form
of the “control" rt and only relies on the fact that the gradient flow path stays within the manifold

M = {X = exp (A∗(s))Xinit exp (A∗(s)) | s ∈ Rm} . (11)

Since the Ai’s commute, we can verify that the tangent space of M at a point X is given by
TXM = Span {AiX +XAi}i∈[m], thus gradient flow will always remain inM. For any control
rt such that following Ẋt = −A∗(rt)Xt − XtA∗(rt) leads to a zero error global optimum, that
optimum will be a minimum nuclear norm solution. This implies in particular that the conjecture
extends to gradient flow on (2) even when the Euclidean norm is replaced by certain other norms, or
when only a subset of measurements are used for each step (such as in stochastic gradient descent).

However, unlike gradient descent on X , the manifoldM is not flat, and the tangent space at each
point is different. Taking finite length steps, as in gradient descent, would cause us to “fall off" of the
manifold. To avoid this, we must take infinitesimal steps, as in the gradient flow dynamics.

In the case that Xinit and the measurements Ai are diagonal matrices, gradient descent on (2) is
equivalent to a vector least squares problem, parametrized in terms of the square root of entries:

Corollary 2. Let x∞(xinit) be the limit point of gradient flow on minu∈Rn ‖Ax(u)− y‖22 with
initialization xinit, where x(u)i = u2i , A ∈ Rm×n and y ∈ Rm. If x̂ = limα→0 x∞(α~1) exists and
Ax̂ = y, then x̂ ∈ argminx∈Rm+ ‖x‖1 s.t. Ax = y.
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The plot thickens: Non-commutative {Ai}i∈[m] Unfortunately, in the case that the matrices Ai
do not commute, analysis is much more difficult. For a matrix-valued function F , d

dt exp(Ft) is equal
to Ḟt exp(Ft) only when Ḟt and Ft commute. Therefore, (7) is no longer a valid solution for (4).
Discretizing the solution path, we can express the solution as the “time ordered exponential":

Xt = lim
ε→0

 1∏
τ=t/ε

exp (−εA∗(rτε))

X0

 t/ε∏
τ=1

exp (−εA∗(rτε))

 , (12)

where the order in the products is important. If Ai commute, the product of exponentials is equal to
an exponential of sums, which in the limit evaluates to the solution in (7). However, since in general
exp(A1) exp(A2) 6= exp(A1 +A2), the path (12) is not contained in the manifoldM defined in
(11).

It is tempting to try to construct a new manifoldM′ such that Span {AiX +XAi}i∈[m] ⊆ TXM′
and X0 ∈ M′, ensuring the gradient flow remains inM′. However, since Ai’s do not commute,
by combining infinitesimal steps along different directions, it is possible to move (very slowly) in
directions that are not of the form A∗(s)X + XA∗(s) for any s ∈ Rm. The possible directions
of movements indeed corresponds to the Lie algebra defined by the closure of {Ai}mi=1 under the
commutator operator [Ai, Aj ] := AiAj − AjAi. Even when m = 2, this closure will generally
encompass all of Rn×n, allowing us to approach any p.s.d. matrix X with some (wild) control
rt. Thus, we cannot hope to ensure the KKT conditions for an arbitrary control as we did in the
commutative case — it is necessary to exploit the structure of the residuals A(Xt)− y in some way.

Nevertheless, in order to make finite progress moving along a commutator direction like [Ai, Aj ]Xt+
Xt[Ai, Aj ]

>, it is necessary to use an extremely non-smooth control, e.g., looping 1/ε2 times between
ε steps in the directions Ai, Aj ,−Ai,−Aj , each such loop making an ε2 step in the desired direction.
We expect the actual residuals rt to behave much more smoothly and that for smooth control the
non-commutative terms in the expansion of the time ordered exponential (12) are asymptotically
lower order then the direct term A∗(s) (as Xinit → 0). This is indeed confirmed numerically, both for
the actual residual controls of the gradient flow path, and for other random controls.

5 Empirical Evidence

Beyond the matrix reconstruction experiments of Section 2, we also conducted experiments with
similarly simulated matrix completion problems, including problems where entries are sampled from
power-law distributions (thus not satisfying incoherence), as well as matrix completion problem on
non-simulated Movielens data. In addition to gradient descent, we also looked more directly at the
gradient flow ODE (3) and used a numerical ODE solver provided as part of SciPy [8] to solve
(3). But we still uses a finite (non-zero) initialization. We also emulated staying on a valid “steering
path" by numerically approximating the time ordered exponential of 12 — for a finite discretization
η, instead of moving linearly in the direction of the gradient ∇f(U) (like in gradient descent), we
multiply Xt on right and left by e−ηA

∗(rt). The results of these experiments are summarized in
Figure 3.

In these experiments, we again observe trends similar to those in Section 2. In some panels in
Figure 3, we do see a discernible gap between the minimum nuclear norm global optima and the
nuclear norm of the gradient flow solution with ‖U0‖F = 10−4. This discrepancy could either be
due to starting at a non-limit point of U0, or numerical issue arising from approximations to the ODE,
or it could potentially suggest a weakening of the conjecture. Even if the later case were true, the
experiments so far provide strong evidence for atleast approximate versions of our conjecture being
true under a wide range of problems.

6



(a) Low rank X ∗ (b) Low nuclear norm X ∗ (c) Low rank X∗ , m= nr
4

0.0
0.5
1.0
1.5
2.0
2.5
3.0

N
uc

le
ar

 n
or

m

min
A(X) = y

‖X‖ ∗
ODE approx.
‖U0‖F = 10−4
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‖U0‖F = 10−4, η= 0. 1

Gradient descent
‖U0‖F = 10−4, η= 10−3 Xgd

(i) Gaussian random measurements. We report the nuclear norm of the gradient flow solutions from three
different approximations to (3) – numerical ODE solver (ODE approx.), time ordered exponential specified in
(12) (Time ordered exp.) and standard gradient descent with small step size (Gradient descent). The nuclear
norm of the solution from gradient descent on X space – Xgd and the minimum nuclear norm global minima
are provided as references. In (a) X∗ is rank r and m = 3nr, in (b) X∗ has a decaying spectrum with
‖X∗‖∗ =

√
r‖X∗‖F and m = 3nr, and in (c) X∗ is rank r with m = nr/4, where n = 50, r = 2.
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(ii) Uniform matrix completion: ∀i, Ai measures a uniform random entry of X∗. Details on X∗, number of
measurements, and the legends follow Figure3-(i).
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(iii) Power law matrix completion: ∀i, Ai measures a random entry of X∗ chosen according to a power law
distribution. Details on X∗, number of measurements, and the legends follow Figure3-(i).

argminA(X)=y ‖X‖∗
Gradient descent
‖U0‖F = 10−3 , η = 10−2

Xgd

Test Error 0.2880 0.2631 1.000
Nuclear norm 8391 8876 20912

(iv) Benchmark movie recommendation dataset — Movielens 100k. The dataset contains ∼ 100k ratings from
n1 = 943 users on n2 = 1682 movies. In this problem, gradient updates are performed on the asymmetric
matrix factorization space X = UV > with dimension d = min (n1, n2). The training data is completely fit to
have <10−2 error. Test error is computed on a held out data of 10 ratings per user. Here we are not interested in
the recommendation performance (test error) itself but on observing the bias of gradient flow with initialization
close to zero to return a low nuclear norm solution — the test error is provided merely to demonstrate the
effectiveness of such a bias in this application. Also, due to the scale of the problem, we only report a coarse
approximation of the gradient flow 3 from gradient descent with ‖U0‖F = 10−3, η = 10−2.

Figure 3: Additional matrix reconstruction experiments

Exhaustive search Finally, we also did experiments on an exhaustive grid search over small
problems, capturing essentially all possible problems of this size. We performed an exhaustive grid
search for matrix completion problem instances in symmetric p.s.d. 3× 3 matrices. With m = 4,
there are 15 unique masks or {Ai}i∈[4]’s that are valid symmetric matrix completion observations.
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For each mask, we fill the m = 4 observations with all possible combinations of 10 uniformly spaced
values in the interval [−1, 1]. This gives us a total of 15× 104 problem instances. Of these problems
instances, we discard the ones that do not have a valid PSD completion and run the ODE solver on
every remaining instance with a random U0 such that ‖U0‖F = ᾱ, for different values of ᾱ. Results
on the deviation from the minimum nuclear norm are reported in Figure 4. For small ᾱ = 10−5, 10−3,
most of instances of our grid search algorithm returned solutions with near minimal nuclear norms,
and the deviations are within the possibility of numerical error. This behavior also decays for ᾱ = 1.
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Figure 4: Histogram of relative sub-optimality of nuclear norm of X∞ in grid search experiments. We plot the
histogram of ∆(X∞) =

‖X∞‖∗−‖Xmin‖∗
‖Xmin‖∗

, where ‖Xmin‖∗ = min
A(X)=y

‖X‖∗. The panels correspond to different

values of norm of initialization ᾱ = ‖U0‖F . (Left) ᾱ = 10−5, (Center) ᾱ = 10−3, and (Right) ᾱ = 1.

6 Discussion

It is becoming increasingly apparent that biases introduced by optimization procedures, especially
for under-determined problems, are playing a key role in learning. Yet, so far we have very little
understanding of the implicit biases associated with different non-convex optimization methods. In
this paper we carefully study such an implicit bias in a two-layer non-convex problem, identify it, and
show how even though there is no difference in the model class (problems (1) and (2) are equivalent
when d = n, both with very high capacity), the non-convex modeling induces a potentially much
more useful implicit bias.

We also discuss how the bias in the non-convex case is much more delicate then in convex gradient
descent: since we are not restricted to a flat manifold, the bias introduced by optimization depends
on the step sizes taken. Furthermore, for linear least square problems (i.e. methods based on the
gradients w.r.t. X in our formulation), any global optimization method that uses linear combination
of gradients, including conjugate gradient descent, Nesterov acceleration and momentum methods,
remains on the manifold spanned by the gradients, and so leads to the same minimum norm solution.
This is not true if the manifold is curved, as using momentum or passed gradients will lead us to
“shoot off” the manifold.

Much of the recent work on non-convex optimization, and matrix factorization in particular, has
focused on global convergence: whether, and how quickly, we converge to a global minima. In
contrast, we address the complimentary question of which global minima we converge to. There has
also been much work on methods ensuring good matrix reconstruction or generalization based on
structural and statistical properties. We do not assume any such properties, nor that reconstruction is
possible or even that there is anything to reconstruct—for any problem of the form (1) we conjecture
that (4) leads to the minimum nuclear norm solution. Whether such a minimum nuclear norm solution
is good for reconstruction or learning is a separate issue already well addressed by the above literature.

We based our conjecture on extensive numerical simulations, with random, skewed, reconstructible,
non-reconstructible, incoherent, non-incoherent, and and exhaustively enumerated problems, some
of which is reported in Section 5. We believe our conjecture holds, perhaps with some additional
technical conditions or corrections. We explain how the conjecture is related to control on manifolds
and the time ordered exponential and discuss a possible approach for proving it.
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