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Abstract

Computationally intensive distributed and parallel computing is often bottlenecked
by a small set of slow workers known as stragglers. In this paper, we utilize the
emerging idea of “coded computation” to design a novel error-correcting-code
inspired technique for solving linear inverse problems under specific iterative
methods in a parallelized implementation affected by stragglers. Example machine-
learning applications include inverse problems such as personalized PageRank and
sampling on graphs. We provably show that our coded-computation technique can
reduce the mean-squared error under a computational deadline constraint. In fact,
the ratio of mean-squared error of replication-based and coded techniques diverges
to infinity as the deadline increases. Our experiments for personalized PageRank
performed on real systems and real social networks show that this ratio can be
as large as 10%. Further, unlike coded-computation techniques proposed thus far,
our strategy combines outputs of all workers, including the stragglers, to produce
more accurate estimates at the computational deadline. This also ensures that the
accuracy degrades “gracefully” in the event that the number of stragglers is large.

1 Introduction

Il

The speed of distributed computing is often affected by a few slow workers known as the “stragglers’
[1-4]. This issue is often addressed by replicating tasks across workers and using this redundancy to
ignore some of the stragglers. Recently, methods from error-correcting codes (ECC) have been used
for speeding up distributed computing [5SH15l], which build on classical works on algorithm-based
fault-tolerance [16]. The key idea is to treat stragglers as “erasures” and use ECC to retrieve the result
after a subset of fast workers have finished. In some cases, (e.g. [6, 18] for matrix multiplications),
techniques that utilize ECC achieve scaling-sense speedups in average computation time compared to
replication. In this work, we propose a novel coding-inspired technique to deal with stragglers in
distributed computing of linear inverse problems using iterative solvers [17]].

Existing techniques that use coding to deal with stragglers treat straggling workers as “erasures”, that
is, they ignore computation results of the stragglers. In contrast, when using iterative methods for
linear inverse problems, even if the computation result at a straggler has not converged, the proposed
algorithm does not ignore the result, but instead combines it (with appropriate weights) with results
from other workers. This is in part because the results of iterative methods often converge gradually
to the true solutions. We use a small example shown in Fig. [T|to illustrate this idea. Suppose we
want to solve two linear inverse problems with solutions x7 and x5. We “encode the computation” by
adding an extra linear inverse problem with solution x7 + x5 (see Section [3), and distribute these
three problems to three workers. Using this method, the solutions x] and x5 can be obtained from
the results of any combination of two fast workers that first return their solutions.

But what if we have a computational deadline, Ty;, by which only one worker converges? The natural
extension of existing strategies (e.g., [6l]) will declare a failure because it needs at least two workers
to respond. However, our strategy does not require convergence: even intermediate results can be
utilized to estimate solutions. In other words, our strategy degrades gracefully as the number of
stragglers increases, or as the deadline is pulled earlier. Indeed, we show that it is suboptimal to
ignore stragglers as erasures, and design strategies that treat the difference from the optimal solution
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Figure 1: A comparison between the existing scheme in [6] and the proposed algorithm.

as “soft” additive noise (see Section[3). We use an algorithm that is similar to weighted least-squares
for decoding, giving each worker a weight based on its proximity to convergence. In this way, we can
expect to fully utilize the computation results from all workers and obtain better speedup.

Theoretically, we show that for a specified deadline time 7y, under certain conditions on worker
speed distributions, the coded linear inverse solver using structured codes has smaller mean squared
error than the replication-based linear solver (Theorem . In fact, under more relaxed conditions
on worker speed distributions, when the computation time 7y, increases, the ratio of the mean-squared
error (MSE) of replication-based and coded linear solvers can get arbitrarily large (Theorem [4.5)!
For validation of our theory, we performed experiments to compare coded and replication-based
computation for a graph mining problem, namely personalized PageRank [18]] using the classical
power-iteration method [[19]. We conduct experiments on the Twitter and Google Plus social networks
under a deadline on computation time using a given number of workers on a real computation cluster
(Section [6). We observe that the MSE of coded PageRank is smaller than that of replication by
a factor of 10* at Ty;; = 2 seconds. From an intuitive perspective, the advantage of coding over
replication is that coding utilizes the diversity of all heterogeneous workers, whereas replication
cannot (see section[7] for details). To compare with existing coded technique in [6]], we adapt it to
inverse problems by inverting only the partial results from the fast workers. However, from our
experiments, if only the results from the fast workers are used, the error amplifies due to inverting an
ill-conditioned submatrix during decoding (Section[6). This ill-conditioning issue of real-number
erasure codes has also been recognized in a recent communication problem [20]. In contrast, our
novel way of combining all the partial results including those from the stragglers helps bypass the
difficulty of inverting an ill-conditioned matrix.

The focus of this work is on utilizing computations to deliver the minimal MSE in solving linear
inverse problems. Our algorithm does not reduce the communication cost. However, because each
worker performs sophisticated iterative computations in our problem, such as the power-iteration
computations, the time required for computation dominates that of communication (Section [5.2).
This is unlike some recent works (e.g.[21424]) where communication costs are observed to dominate
because the per-processor computation is smaller.

Finally, we summarize our main contributions in this paper:

e We propose a coded computing algorithm for multiple instances of a linear inverse problem;

o We theoretically analyze the mean-squared error of coded, uncoded and replication-based
iterative linear solvers under a deadline constraint, and show scaling sense advantage of
coded solvers in theory and orders of magnitude smaller error in data experiments.

e This is the first work that treats stragglers as soft errors instead of erasures, which leads to
graceful degradation in the event that the number of stragglers is large.

2 System Model and Problem Formulation

2.1 Preliminaries on Solving Linear Systems using Iterative Methods

Consider the problem of solving k inverse problems with the same linear transform matrix M and
different inputs r;: Mx; =r;,i = 1,2,... k. When M is a square matrix, the closed-form solution
is x; = M~ !r;. When M is a non-square matrix, the regularized least-square solution is x; =
(M™™ + A\I)"'M "r;,i = 1,2,... k, with an appropriate regularization parameter \. Since matrix
inversion is hard, iterative methods are often used. We now look at two ordinary iterative methods,
namely the Jacobian method [[17]] and the gradient descent method. For a square matrix M = D + L,

where D is diagonal, the Jacobian iteration is written as xElH) =D (r; - Lxgl)). Under certain
conditions of D and L (17, p.115]), the computation result converges to the true solution. One

example is the PageRank algorithm discussed in Section For the ¢5-minimization problem with a
non-square M, the gradient descent method has the form x{ = (1=NI- eMTM)xZ(.l) +eMr;,

)



where € is an appropriate step-size. We can see that both the Jacobian iteration and the gradient
descent iteration mentioned above have the form

x = Bx 4 Kry i =1,2,.. k, (1)

for two appropriate matrices B and K, which solves the following equation with true solution x;:
x; =Bx; +Kr;,i=1,2,...k. 2)

Therefore, subtracting (2)) from (IJ), we have that the computation error egl) = xgl) — X satisfies

eElH) = Begl). 3)
For the iterative method to converge, we always assume the spectral radius p(B) < 1 (see [17,
p.115]). We will study iterative methods that have the form (TJ) throughout this paper.

2.2 Motivating Applications of Linear Inverse Problems

Our coded computation technique requires solving multiple inverse problems with the same linear
transform matrix M. One such problem is personalized PageRank. For a directed graph, the
PageRank algorithm [19]] aims to measure the nodes’ importance by solving the linear problem
X = %1 ~ + (1 — d)Ax, where d = 0.15 is called the “teleport” probability, IV is the number of
nodes and A is the column-normalized adjacency matrix. The personalized PageRank problem [18]]
considers a more general equation x = dr + (1 — d) Ax, for any possible vector r € R¥ that satisfies
1"r = 1. Compared to PageRank [[19], personalized PageRank [18] incorporates r as the preference
of different users or topics. A classical method to solve PageRank is power-iteration, which iterates
the computation x(!*1) = dr + (1 — d) Ax(") until convergence. This iterative method is the same
as (I), which is essentially the Jacobian method mentioned above. Another example application is
the sampling and recovery problem in the emerging field of graph signal processing [25} 26] as a
non-square system, which is discussed in Supplementary section 8.1}

2.3 Problem Formulation: Distributed Computing and the Straggler Effect

Consider solving k linear inverse problems Mx; = r;,7 = 1,2,...k in n > k workers using the
iterative method (), where each worker solves one inverse problem. Due to the straggler effect, the
computation at different workers can have different speeds. The goal is to obtain minimal MSE in
solving linear inverse problems before a deadline time Ty. Suppose after Ty, the i-th worker has
completed [; iterations in (I)). Then, from (3), the residual error at the i-th worker is

el) = Bliel”. (4)

For our theoretical results, we sometimes need the following assumption.
Assumption 1. We assume that the optimal solutions x},¢ = 1,2,...k, are i.i.d.

Denote by p and Cg respectively the mean and the covariance of each x. Note that Assumption
is equivalent to the assumption that the inputs r;,¢ = 1,2, ...k are i.i.d., because r; and x; are
related by the linear equation (2). For the personalized PageRank problem discussed above, this

assumption is reasonable because queries from different users or topics are unrelated. Assume we
(0)

have estimated the mean pr beforehand and we start with the initial estimate x,
el(-o) = XZ(-O) — x; has mean Oy and covariance Cg. We also try to extend our results for the case
when x;’s (or equivalently, r;’s) are correlated. Since the extension is rather long and may hinder the

understanding of the main paper, we provide it in supplementary section[8.2]and section

= pg. Then,

2.4 Preliminaries on Error Correcting Codes

We will use “encode” and “decode” to denote preprocessing and post-processing before and after
parallel computation. In this paper, the encoder multiplies the inputs to the parallel workers with a
“generator matrix” G and the decoder multiplies the outputs of the workers with a “decoding matrix”
L (see Algorithm E]) We call a code an (n, k) code if the generator matrix has size & x n. We often
use generator matrices G with orthonormal rows, which means GanGIX & = L. An example of
such a matrix is the submatrix formed by any k£ rows of an n x n orthonormal matrix (e.g., a Fourier

matrix). Under this assumption, G, can be augmented to form an n X n orthonormal matrix using

another matrix H,, 1), i.€. the square matrix Fy,x, = [ ] satisfies FTF = I,,.



3 Coded Distributed Computing of Linear Inverse Problems

The proposed coded linear inverse algorithm (Algorithm 1)) has three stages: (1) preprocessing
(encoding) at the central controller, (2) parallel computing at n > k parallel workers, and (3) post-
processing (decoding) at the central controller. As we show later in the analysis of computing error,
the entries trace(C(l;)) in the diagonal matrix A are the expected MSE at each worker prior to
decoding. The decoding matrix Ly, in the decoding step (7)) is chosen to be (GA™!GT)"!GA~!
to reduce the mean-squared error of the estimates of linear inverse solutions by assigning different
weights to different workers based on the estimated accuracy of their computation (which is what A
provides). This particular choice of A is inspired from the weighted least-square solution.

Algorithm 1 Coded Distributed Linear Inverse

Input: Input vectors [rq,ra, ..., k], generator matrix Gy, the linear system matrices B and K
defined in ().
Initialize (Encoding): Encode the input vectors and the initial estimates by multiplying G:
[S1,82,...,8,] = [r1,r2,...,1Tk] - G. (5)
0 0 0 0 0
[y§)7yg)7..., ;0)]:[xg),xé),...,x,(c)]-G. (6)

Parallel Computing:
for i = 1 to n (in parallel) do

Send s; and y§°) to the i-th worker. Execute the iterative method (I)) with initial estimate y
and input s; at each worker.

end for

After a deadline time Ty, collect all linear inverse results y<

(L) '

%

(0)

%

L) from these n workers. The

represents that the i-th worker finished /; iterations. Denote by Y (7#) the

collection of all results YJ(\P}FQ)” = [ygll), yéb), e ,yg")}.

Post Processing (decoding at the central controller):
Compute an estimate of the linear inverse solutions using the following matrix multiplication:

superscript [; in y

X' =L (YT .= (GA'GT)tGA (YT T, (7)
where the estimate X xx; = [X1,X2, ..., X, the matrix A is
A = diag [trace(C(l1)), . .., trace(C(l,))], (8)
where the matrices C(l;),7 = 1,...,n are defined as
C(l;) =BlCg(B)". 9)

In computation of A, if trace(C(l;)) are not available, one can use precomputed estimates of this
trace as discussed in Supplementary Section [8.9] with negligible computational complexity and
theoretically guaranteed accuracy.

3.1 Bounds on Performance of the Coded Linear Inverse Algorithm

Define 1 = [l1, 13, .. .1,] as the vector of the number of iterations at all workers. E[-|1] denotes the
conditional expectation taken with respect to the randomness of the optimal solution x; (see As-
sumption [I) conditioned on fixed iteration number /; at each worker, i.e., E[X (1] = E[X |1, 15, ... L,].
Define X7, . = [X}, %35, ...x}] as the matrix composed of all the true solutions.

Theorem 3.1. Define E = X — X*, i.e., the error of the decoding result . Assuming that the
solutions for each linear inverse problem are chosen i.i.d. (across all problems) according to a
distribution with covariance Cg. Then, the error covariance of E satisfies

E[|E[? 1] < omx(G T G)trace [(GATIGT)™!], (10)

where the norm ||-|| is the Frobenius norm, o (G T G) is the maximum eigenvalue of G T G and
the matrix A is defined in @]) Further, when G has orthonormal rows,

E[|E[?|1] < trace [(GAT'GT)7], (11)



Proof overview. See supplementary Section [8.3|for the complete proof. Here we provide the main
intuition by analyzing a “scalar version” of the linear inverse problem, in which case the matrix B is
equal to a scalar a. For B = a, the inputs and the initial estimates in () and (6] are vectors instead
of matrices. As we show in Supplementary Section[8.3] if we encode both the inputs and the initial
estimates using (3)) and (6)), we also “encode” the error

[ e, D] = [, e, e G = EoG, (12)
where EEO) = yi(o) — y; is the initial error at the i-th worker, ez(-o) = xgo) — 7 is the initial error of
the i-th linear inverse problem, and E( := [6(10), ego), e eéo)]. Suppose var[ego)] = ¢, which is a

scalar version of Cg after Assumption[I] From (@), the error satisfies:

) =ghie =12 .. .n. (13)

3

Denote by D = diag{a'*,a’2,...a'"}. Therefore, from (I2) and (T3)), the error before the decoding
step (7) can be written as

[egll), eéZQ), el :[ego), ego), ...e9].D = E,GD. (14)

We can show (see Supplementary Section [8.3|for details) that after the decoding step ([7), the error
vector is also multiplied by the decoding matrix L = (GA™!GT)"1GA~!:

.
E’ =L [egl”, ) .egfﬂ] ~LD'GE/. (15)
Thus,

E[||E|? 1] =E[trace[E " E]|I] = trace[LD ' G "E[E] Eo|I]GDL]

©trace[LDTG ¢, I,GDLT] = c,trace[LD T GTGDL]

(®) (16)
< CeOmax (G T G)trace[LD "DL | = 00x (G " G)trace[L(c,D "D)L ]

D rmax (G T G)trace[LALT] 2 0 (G T G trace[(GA~1GT) 1],

where (a) holds because Eq := [ego) , ego), e egco)] and var[ego)] = ¢e, (b) holds because G "G =
Omax (G T G)I,,, (c) holds because ¢, D" D = A, which is from the fact that for a scalar linear system
matrix B = a, the entries in the A matrix in @]) satisfy

trace(C(l;)) = a'ic.(a’ )l = c.a?, (17
which is the same as the entries in the diagonal matrix ¢, D" D. Finally, (d) is obtained by di-

rectly plugging in L := (GA~'G")"'GA~"'. Finally, inequality[11|holds because when G has
orthonormal rows, 0(G T G) = 1.

Additionally, we note that in @]) the term trace [(GAflGT)’l] resembles the MSE of ordinary
weighted least-square solution, and the term 0. (G T G) represents the “inaccuracy” due to using
the weighted least-square solution as the decoding result, because the inputs to different workers
become correlated by multiplying the i.i.d. inputs with matrix G (see (3)). O

4 Comparison with Uncoded Schemes and Replication-based Schemes

Here, we often assume (we will state explicitly in the theorem) that the number of iterations [; at
different workers are i.i.d.. We use E[-] to denote expectation on randomness of both the linear
inverse solutions x; and the number of iterations /; (this is different from the notation E[-|1]).
Assumption 2. Within time Tg, the number of iterations of linear inverse computations (see (I)) at
each worker follows an i.i.d. distribution I; ~ f(1).

4.1 Comparison between the coded and uncoded linear inverse before a deadline

First, we compare the coded linear inverse scheme with an uncoded scheme, in which case we use
the first £ workers to solve k linear inverse problems in (2)) without coding. The following theorem
quantifies the overall mean-squared error of the uncoded scheme given Iy, lo, ..., ;. The proof is in

Supplementary Section
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Theorem 4.1. In the uncoded scheme, the error E [||Eumoded||2 \l} =K {H[egll) . ,e,(cl"')]H ‘ 1] =
Zle trace (C(l;)). Further, when the i.i.d. Assumptionholds,
Ef [”EuncodedHQ} = kE s [trace(C(11))]. (18)

Then, we compare the overall mean-squared error of coded and uncoded linear inverse algorithms.
Note that this comparison is not fair because the coded algorithm uses more workers than uncoded.
However, we still include Theorem[.2because we need it for the fair comparison between coded and
replication-based linear inverse. The proof is in Supplementary section [8.4]

Theorem 4.2. (Coded linear inverse beats uncoded) Suppose the i.i.d. Assumptions|[I]and 2]hold and
suppose G is a k X n submatrix of an n x n Fourier transform matrix F, i.e., F,, «,, = H( kx)” ] .

n—k)xn

Then, expected error of the coded linear inverse is strictly less than that of uncoded:

Es [ Buncodeal*| — By | [Beosea|*] > Elirace(3235 137, (19)

Ji Js
3T,
(@®). Thatis, (J1)xxk is GAGT, (J2)kx(n—k) is GAHT, and (J4) (n—k)x (n—k) is HAHT.

where J5 and J 4 are the submatrices of FAF T := [ ] and the matrix A is defined in
nxmn

4.2 Comparison between the replication-based and coded linear inverse before a deadline

Consider an alternative way of doing linear inverse using n > k workers. In this paper, we only
consider the case when n — k& < k, i.e., the number of extra workers is only slightly bigger than
the number of problems (both in theory and in experiments). Since we have n — k extra workers,
a natural way is to pick any (n — k) linear inverse problems and replicate them using these extra
(n — k) workers. After we obtain two computation results for the same equation, we use two
natural “decoding” strategies for this replication-based linear inverse: (i) choose the worker with

- . Lo . . . wy wo
higher number of iterations; (ii) compute the weighted average using weights =1~ and =2,

where wy; = 1/4/trace(C(ly)) and we = 1//trace(C(l2)), and {1 and I are the number of iterations

completed at the two workers (recall that trace(C(!;)) represents the residual MSE at the i-th worker).
Theorem 4.3. The replication-based schemes satisfy the following lower bound on the MSE:

Ey [IEwl’] >E; [ Buncoseal*] = (n — K)Eftrace(C(11))]. 0)

Proof overview. Here the goal is to obtain a lower bound on the MSE of replication-based linear
inverse and compare it with an upper bound on the MSE of coded linear inverse.

Note that if an extra worker is used to replicate the computation at the i-th worker, i.e., the linear
inverse problem with input r; is solved on two workers, the expected error of the result of the i-th
problem could at best reduced from E ¢ [trace(C(l1))] (see Thm. to zercﬂ Therefore, (n—k) extra
workers make the error decrease by at most (and strictly smaller than) (n — k)E[trace(C(l1))]. O

Using this lower bound, we can provably show that coded linear inverse beats replication-based linear
inverse when certain conditions are satisfied. One crucial condition is that the distribution of the
random variable trace(C(l)) (i.e., the expected MSE at each worker) satisfies a “variance heavy-tail”
property defined as follows.

Definition 1. The random variable trace(C(1)) is said to have a “p-variance heavy-tail” property if

var[trace(C(1))] > p]E?c [trace(C(1))], (21)

for some constant p > 1. Notice that the term trace(C([)) is essentially the remaining MSE after [
iterations at a single machine. Therefore, this property simply means the remaining error at a single
machine has large variance. For the coded linear inverse, we will use a “Fourier code”, the generator
matrix G of which is a submatrix of a Fourier matrix. This particular choice of code is only for ease
of analysis in comparing coded linear inverse and replication-based linear inverse. In practice, the
code that minimizes mean-squared error should be chosen.

! Although this is clearly a loose bound, it makes for convenient comparison with coded linear inverse.



Theorem 4.4. (Coded linear inverse beats replication) Suppose the i.i.d. Assumptions[IJand2]hold and
G is a k X n submatrix of k rows of an n x n Fourier matrix F. Further, suppose (n — k) = o(y/n).
Then, the expected error of the coded linear inverse satisfies

LY [trace(C(l1))]
~ Egltrace(C(lh))]

lim
n—oo N —

(B [ Bmensal?] = [ Bl ”]] 22)

Moreover, if the random variable trace(C(1)) satisfies the p-variance heavy-tail property for p > 1,
coded linear inverse outperforms replication-based linear inverse in the following sense,

IEf I:”Euncodede:I _]Ef I:HEcodedHQ]] .
(23)

. 1 1
Jdim oy (B (1Bl ] — By [[Bpl’]] < 7 limm s |

Proof overview. See Supplementary Section for a complete and rigorous proof. Here we only
provide the main intuition behind the proof. From Theorem , we have E {HEunmdedHQ] -

Es [||Ecoded\|2} > Eyftrace(JoJ; ' JJ)]. Therefore, to prove 22), the main technical difficulty is

to simplify the term trace(JoJ; *JJ ). For a Fourier matrix F, we are able to show that the matrix
Ji J
T_ [J1 Je2
FAF 3l I,
us to study its behavior. Then, we use the Gershgorin circle theorem [27] (with some algebraic
manipulations) to show that the maximum eigenvalue of J, satisfies omax (J4) = E[trace(C(11))],
and separately using some algebraic manipulations, we show

(see Theorem |4.2)) is a Toeplitz matrix, which provides a good structure for

trace(JoJy ) & (n — k)var s[trace(C(l1))], (24)

forlarge matri size . Since trace(JoJ; 197 > trace(Ja (s (1)) 193) = o trace(do ),
k t l

trace(JoJ; 1 J] ) > (n — k)var[trace(C(l1))] 25)

E[trace(C(l4))] ’

for large n. Then, (22)) can be proved by plugging (23) into (T9). After that, we can combine (22)),
(20) and the variance heavy-tail property to prove 23). O

4.3 Asymptotic Comparison between Coded, Uncoded and Replication-based linear inverse
as the Deadline Ty — oo

Assumption 3. We assume the computation time of one power iteration is fixed at each worker for
each linear inverse computation, i.e., there exist n independent (not necessarily identically distributed)

random variables v, vs, ... v, such that [; = [T‘ﬂ i=1,2,.

The above assumption is validated in experiments in Supplementary Section[8.13]

The k-th order statistic of a sample is equal to its k-th smallest value. Suppose the order statistics
of the sequence v1,v2,...v, are v;, < v;, < ...v; , where {21712,. .in} is a permutation of
{1,2,...n}. Denote by [k] the set {1,2,.. k;} and [n] the set {1,2,...

Theorem 4.5. (Error exponent comparison when Ty — 00) Suppose the i.i.d. Assumption[I]and
Assumption [3| hold. Suppose n — k < k. Then, the error exponents of the coded and uncoded
computation schemes satisfy

2 1
lim - logE Eeode > 2 , 26
Tase Td 08 El| Boodeal 1 v 21-d (26)
I log B[ Euncodeal*|1] = _lim_ ——— log B[ Exepl|” |1 2 jog——. @)
m ————- = m ————- = .
Ta—00 Td 8 uncoded Ty—00 le o8 rep maxie[k] V; ) 1—-d

The error exponents satisfy coded>replication=uncoded. Here the expectation E[-|1] is only taken
with respect to the randomness of the linear inverse sequence x;,7 = 1,2, ... k.

Proof overview. See Supplementary Section [8.8]for a detailed proof. The main intuition behind this
result is the following: when Tg approaches infinity, the error of uncoded computation is dominated



by the slowest worker among the first £ workers, which has per-iteration time max; ¢ v;. For the
replication-based scheme, since the number of extra workers n—k < k, there is a non-zero probability
(which does not change with T§;) that the n — k extra workers do not replicate the computation in
the slowest one among the first worker. Therefore, replication when n — k < k does not improve
the error exponent, because the error is dominated by this slowest worker. For coded computation,
we show in Supplementary Section that the slowest n — k workers among the overall n workers
do not affect the error exponent, which means that the error is dominated by the k-th fastest worker,
which has per-iteration time v;, . Since the k-th fastest worker among all n workers can not be slower
than the slowest one among the first (unordered) k workers, the error exponent of coded linear inverse
is larger than that of the uncoded and the replication-based linear inverse. O

S Analyzing the Computational Complexity

5.1 Encoding and decoding complexity

We first show that the encoding and decoding complexity of Algorithm [T]are in scaling-sense smaller
than that of the computation at each worker. This ensures that straggling comes from the parallel
workers, not the encoder or decoder. The proof of Theorem [5.1]is in Supplementary Section[8.10] In
our experiment on the Google Plus graph (See Section [f) for computing PageRank, the computation
time at each worker is 30 seconds and the encoding and decoding time at the central controller is
about 1 second.

Theorem 5.1. The computational complexity for the encoding and decoding is ©(nkN), where N is
the number of rows in the matrix B and &, n depend on the number of available workers assuming
that each worker performs a single linear inverse computation. For a general dense matrix B, the
computational complexity of computing linear inverse at each worker is ©(N?[), where [ is the
number of iterations in the specified iterative algorithm. The complexity of encoding and decoding is
smaller than that of the computation at each user for large B matrices (large V).

5.2 Analysis on the cost of communication versus computation

In this work, we focus on optimizing the computation cost. However, what if the computation cost is
small compared to the overall cost, including the communication cost? If this is true, optimizing the
computation cost is not very useful. In Theorem 5.2] (proof appears in Supplementary Section [8.1T),
we show that the computation cost is larger than the communication cost in the scaling-sense.

Theorem 5.2. The ratio between the number of operations (computation) and the number of bits trans-
mitted (communication) at the i-th worker is COSTcomputation/ COSTcommunication = ©(l;d) operations
per integer, where [; is the number of iterations at the i-th worker, and d is the average number of

non-zeros in each row of the B matrix.

6 Experiments on Real Systems

We test the performance of the coded linear inverse algorithm for the PageRank problem on the
Twitter graph and the Google Plus graph from the SNAP datasets [28]. The Twitter graph has 81,306
nodes and 1,768,149 edges, and the Google Plus graph has 107,614 nodes and 13,673,453 edges. We
use the HT-condor framework in a cluster to conduct the experiments. The task is to solve k¥ = 100
personalized PageRank problems in parallel using n = 120 workers. The uncoded algorithm picks
the first k¥ workers and uses one worker for each PageRank problem. The two replication-based
schemes replicate the computation of the first n — k& PageRank problems in the extra n — k workers
(see Section [4.2). The coded PageRank uses n workers to solve these k& = 100 equations using
Algorithm We use a (120, 100) code where the generator matrix is the submatrix composed of the
first 100 rows in a 120 x 120 DFT matrix. The computation results are shown in the left two figures in
Fig.[2] Note that the two graphs are of different sizes so the computation in the two experiments take
different time. From Fig.[2] we can see that the mean-squared error of uncoded and replication-based
schemes is larger than that of coded computation by a factor of 10* for large deadlines.

We also compare Algorithm [T with the coded computing algorithm proposed in [6]. As we discussed
in the Figure[T] the original coded technique in [[6] ignores partial results and is suboptimal even in the
toy example of three workers. However, it has a natural extension to iterative methods, which will be
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Figure 2: From left to right: (1,2) Experimentally computed overall MSE of uncoded, replication-
based and coded personalized PageRank on the Twitter and Google Plus graph on a cluster with 120
workers. The ratio of MSE for repetition-based schemes and coded linear inverse increase as Ty
increases. (3) Comparison between an extended version of the algorithm in [6] and Algorithm [T)on
the Google Plus graph. The figure shows that naively extending the general coded method using
matrix inverse introduces error amplification. (4) Comparison of different codes. In this experiment
the DFT-code out-performs the other candidates in MSE.

discussed in details later. The third figure in Fig. 2] shows the comparison between the performance
of Algorithm [I]and this extension of the algorithm from [6]. This extension uses the (unfinished)
partial results from the k fastest workers to retrieve the required PageRank solutions. More concretely,
suppose S C [n] is the index set of the & fastest workers. Then, this extension retrieves the solutions to
the original & PageRank problems by solving the equation Y s = [x},x3,...,x}]- Gs, where Y is
composed of the (partial) computation results obtained from the fastest £ workers and G is the k x k
submatrix composed of the columns in the generator matrix G with indexes in S. However, since
there is some remaining error at each worker (i.e., the computation results Y s have not converged
yet), when conducting the matrix-inverse-based decoding from [6], the error is magnified due to the
large condition number of Gs. This is why the algorithm in [6] should not be naively extended in the
coded linear inverse problem.

One question remains: what is the best code design for the coded linear inverse algorithm? Although
we do not have a concrete answer to this question, we have tested different codes (with different
generator matrices G) in the Twitter graph experiment, all using Algorithm[I] The results are shown
in the fourth figure in Fig.[2] The generator matrix used for the “binary” curve has i.i.d. binary entries
in {—1, 1}. The generator matrix used for the “sparse” curve has random binary sparse entries. The
generator matrix for the “Gaussian” curve has i.i.d. standard Gaussian entries. In this experiment, the
DFT-code performs the best. However, finding the best code in general is a meaningful future work.

7 Conclusions

By studying coding for iterative algorithms designed for distributed inverse problems, we aim to
introduce new applications and analytical tools to the problem of coded computing with stragglers.
Since these iterative algorithms designed for inverse problems commonly have decreasing error
with time, the partial computation results at stragglers can provide useful information for the final
outputs. Note that this is unlike recent works on coding for multi-stage computing problems [29} 30],
where the computation error can accumulate with time and coding has to be applied repeatedly to
suppress this error accumulation. An important connection worth discussing is the diversity gain in
this coded computing problem. The distributed computing setting in this work resembles random
fading channels, which means coding can be used to exploit straggling diversity just as coding is
used in communication channels to turn diverse channel fading into an advantage. What makes
coding even more suitable in our setting is that the amount of diversity gain achieved here through
replication is actually smaller than that can be achieved by replication in fading channels. This
is because for two computers that solve the same equation Mx; = r;, the remaining error at the
slow worker is a deterministic multiple of the remaining error at the fast worker (see equation (G)).
Therefore, taking a weighted average of the two computation results through replication does not
reduce error as in independent fading channels. How diversity gain can be achieved here optimally is
worth deep investigation. Our next goals are two-fold: (1) extend the current method to solving a
single large-scale inverse problem, such as graph mining with graphs that exceed the memory of a
single machine; (2) carry out experiments on faster distributed systems such as Amazon EC2.
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