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Abstract

Hashing is a basic tool for dimensionality reduction employed in several aspects of
machine learning. However, the perfomance analysis is often carried out under the
abstract assumption that a truly random unit cost hash function is used, without
concern for which concrete hash function is employed. The concrete hash function
may work fine on sufficiently random input. The question is if they can be trusted
in the real world where they may be faced with more structured input.
In this paper we focus on two prominent applications of hashing, namely similarity
estimation with the one permutation hashing (OPH) scheme of Li et al. [NIPS’12]
and feature hashing (FH) of Weinberger et al. [ICML’09], both of which have
found numerous applications, i.e. in approximate near-neighbour search with LSH
and large-scale classification with SVM.
We consider the recent mixed tabulation hash function of Dahlgaard et al.
[FOCS’15] which was proved theoretically to perform like a truly random hash
function in many applications, including the above OPH. Here we first show im-
proved concentration bounds for FH with truly random hashing and then argue that
mixed tabulation performs similar when the input vectors are not too dense. Our
main contribution, however, is an experimental comparison of different hashing
schemes when used inside FH, OPH, and LSH.
We find that mixed tabulation hashing is almost as fast as the classic multiply-mod-
prime scheme (ax+ b) mod p. Mutiply-mod-prime is guaranteed to work well on
sufficiently random data, but here we demonstrate that in the above applications, it
can lead to bias and poor concentration on both real-world and synthetic data. We
also compare with the very popular MurmurHash3, which has no proven guarantees.
Mixed tabulation and MurmurHash3 both perform similar to truly random hashing
in our experiments. However, mixed tabulation was 40% faster than MurmurHash3,
and it has the proven guarantee of good performance (like fully random) on all
possible input making it more reliable.

1 Introduction

Hashing is a standard technique for dimensionality reduction and is employed as an underlying tool in
several aspects of machine learning including search [22, 31, 32, 3], classification [24, 22], duplicate
detection [25], computer vision and information retrieval [30]. The need for dimensionality reduction
techniques such as hashing is becoming further important due to the huge growth in data sizes. As
an example, already in 2010, Tong [36] discussed data sets with 1011 data points and 109 features.
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Furthermore, when working with text, data points are often stored as w-shingles (i.e. w contiguous
words or bytes) with w ≥ 5. This further increases the dimension from, say, 105 common english
words to 105w.

Two particularly prominent applications are set similarity estimation as initialized by the MinHash
algorithm of Broder, et al. [8, 9] and feature hashing (FH) of Weinberger, et al. [37]. Both applications
have in common that they are used as an underlying ingredient in many other applications. While
both MinHash and FH can be seen as hash functions mapping an entire set or vector, they are perhaps
better described as algorithms implemented using what we will call basic hash functions. A basic
hash function h maps a given key to a hash value, and any such basic hash function, h, can be used to
implement Minhash, which maps a set of keys, A, to the smallest hash value mina∈A h(a). A similar
case can be made for other locality-sensitive hash functions such as SimHash [12], One Permutation
Hashing (OPH) [22, 31, 32], and cross-polytope hashing [2, 33, 20], which are all implemented using
basic hash functions.

1.1 Importance of understanding basic hash functions

In this paper we analyze the basic hash functions needed for the applications of similarity estimation
and FH. This is important for two reasons: 1) As mentioned in [22], dimensionality reduction is
often a time bottle-neck and using a fast basic hash function to implement it may improve running
times significantly, and 2) the theoretical guarantees of hashing schemes such as Minhash and FH
rely crucially on the basic hash functions used to implement it, and this is further propagated into
applications of these schemes such as approximate similarity search with the seminal LSH framework
of Indyk and Motwani [19].

To fully appreciate this, consider LSH for approximate similarity search implemented with MinHash.
We know from [19] that this structure obtains provably sub-linear query time and provably sub-
quadratic space, where the exponent depends on the probability of hash collisions for “similar” and
“not-similar” sets. However, we also know that implementing MinHash with a poorly chosen hash
function leads to constant bias in the estimation [28], and this constant then appears in the exponent
of both the space and the query time of the search structure leading to worse theoretical guarantees.

Choosing the right basic hash function is an often overlooked aspect, and many authors simply state
that any (universal) hash function “is usually sufficient in practice” (see e.g. [22, page 3]). While
this is indeed the case most of the time (and provably if the input has enough entropy [26]), many
applications rely on taking advantage of highly structured data to perform well (such as classification
or similarity search). In these cases a poorly chosen hash function may lead to very systematic
inconsistensies. Perhaps the most famous example of this is hashing with linear probing which was
deemed very fast but unrealiable in practice until it was fully understood which hash functions to
employ (see [35] for discussion and experiments). Other papers (see e.g. [31, 32] suggest using
very powerful machinery such as the seminal pseudorandom generator of Nisan [27]. However,
such a PRG does not represent a hash function and implementing it as such would incur a huge
computational overhead.

Meanwhile, some papers do indeed consider which concrete hash functions to use. In [15] it was
considered to use 2-independent hashing for bottom-k sketches, which was proved in [34] to work for
this application. However, bottom-k sketches do not work for SVMs and LSH. Closer to our work,
[23] considered the use of 2-independent (and 4-independent) hashing for large-scale classification
and online learning with b-bit minwise hashing. Their experiments indicate that 2-independent
hashing often works, and they state that “the simple and highly efficient 2-independent scheme may
be sufficient in practice”. However, no amount of experiments can show that this is the case for all
input. In fact, we demonstrate in this paper – for the underlying FH and OPH – that this is not the case,
and that we cannot trust 2-independent hashing to work in general. As noted, [23] used hashing for
similarity estimation in classification, but without considering the quality of the underlying similarity
estimation. Due to space restrictions, we do not consider classification in this paper, but instead focus
on the quality of the underlying similarity estimation and dimensionality reduction sketches as well
as considering these sketches in LSH as the sole applicaton (see also the discussion below).
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1.2 Our contribution

We analyze the very fast and powerful mixed tabulation scheme of [14] comparing it to some of the
most popular and widely employed hash functions. In [14] it was shown that implementing OPH
with mixed tabulation gives concentration bounds “essentially as good as truly random”. For feature
hashing, we first present new concentration bounds for the truly random case improving on [37, 16].
We then argue that mixed tabulation gives essentially as good concentration bounds in the case where
the input vectors are not too dense, which is a very common case for applying feature hashing.

Experimentally, we demonstrate that mixed tabulation is almost as fast as the classic multiply-mod-
prime hashing scheme. This classic scheme is guaranteed to work well for the considered applications
when the data is sufficiently random, but we demonstrate that bias and poor concentration can occur
on both synthetic and real-world data. We verify on the same experiments that mixed tabulation
has the desired strong concentration, confirming the theory. We also find that mixed tabulation is
roughly 40% faster than the very popular MurmurHash3 and CityHash. In our experiments these hash
functions perform similar to mixed tabulation in terms of concentration. They do, however, not have
the same theoretical guarantees making them harder to trust. We also consider different basic hash
functions for implementing LSH with OPH. We demonstrate that the bias and poor concentration of
the simpler hash functions for OPH translates into poor concentration for e.g. the recall and number
of retrieved data points of the corresponding LSH search structure. Again, we observe that this is not
the case for mixed tabulation, which systematically out-performs the faster hash functions. We note
that [23] suggests that 2-independent hashing only has problems with dense data sets, but both the
real-world and synthetic data considered in this work are sparse or, in the case of synthetic data, can
be generalized to arbitrarily sparse data. While we do not consider b-bit hashing as in [23], we note
that applying the b-bit trick to our experiments would only introduce a bias from false positives for
all basic hash functions and leave the conclusion the same.

It is important to note that our results do not imply that standard hashing techniques (i.e. multiply-mod
prime) never work. Rather, they show that there does exist practical scenarios where the theoretical
guarantees matter, making mixed tabulation more consistent. We believe that the very fast evaluation
time and consistency of mixed tabulation makes it the best choice for the applications considered in
this paper.

2 Preliminaries

As mentioned we focus on similarity estimation and feature hashing. Here we briefly describe the
methods used. We let [m] = {0, . . . ,m − 1}, for some integer m, denote the output range of the
hash functions considered.

2.1 Similarity estimation

In similarity estimation we are given two sets, A and B belonging to some universe U and are tasked
with estimating the Jaccard similarity J(A,B) = |A ∩B|/|A ∪B|. As mentioned earlier, this can
be solved using k independent repetitions of the MinHash algorithm, however this requires O(k · |A|)
running time. In this paper we instead use the faster OPH of Li et al. [22] with the densification
scheme of Shrivastava and Li [32]. This scheme works as follows: Let k be a parameter with k
being a divisor of m, and pick a random hash function h : U → [m]. for each element x split
h(x) into two parts b(x), v(x), where b(x) : U → [k] is given by h(x) mod k and v(x) is given by
bh(x)/kc. To create the sketch SOPH(A) of size k we simply let SOPH(A)[i] = mina∈A,b(a)=i v(a).
To estimate the similarity of two sets A and B we simply take the fraction of indices, i, where
SOPH(A)[i] = SOPH(B)[i].

This is, however, not an unbiased estimator, as there may be empty bins. Thus, [31, 32] worked on
handling empty bins. They showed that the following addition gives an unbiased estimator with good
variance. For each index i ∈ [k] let bi be a random bit. Now, for a given sketch SOPH(A), if the
ith bin is empty we copy the value of the closest non-empty bin going left (circularly) if bi = 0 and
going right if bi = 1. We also add j · C to this copied value, where j is the distance to the copied bin
and C is some sufficiently large offset parameter. The entire construction is illustrated in Figure 1
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Hash value 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Bin 0 1 2 3 4

Value 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

h(A) 0 0 1 1 0 1 0 0 0 0 0 0 1 0 1 0 0 0 1 0

S_OPH(A) 2 1 - 0 2

Bin 0 1 2 3 4 5

Direction 0 1 1 0 0 1

S_OPH(A) 3+C 2 1+2C 2+2C 1 3

Figure 1: Left: Example of one permutation sketch creation of a set A with |U | = 20 and k = 5. For
each of the 20 possible hash value the corresponding bin and value is displayed. The hash values of
A, h(A), are displayed as an indicator vector with the minimal value per bin marked in red. Note that
the 3rd bin is empty. Right: Example of the densification from [32] (right).

2.2 Feature hashing

Feature hashing (FH) introduced by Weinberger et al. [37] takes a vector v of dimension d and
produces a vector v′ of dimension d′ � d preserving (roughly) the norm of v. More precisely,
let h : [d] → [d′] and sgn : [d] → {−1,+1} be random hash functions, then v′ is defined as
v′i =

∑
j,h(j)=i sgn(j)vj . Weinberger et al. [37] (see also [16]) showed exponential tail bounds on

‖v′‖22 when ‖v‖∞ is sufficiently small and d′ is sufficiently large.

2.3 Locality-sensitive hashing

The LSH framework of [19] is a solution to the approximate near neighbour search problem: Given a
giant collection of sets C = A1, . . . , An, store a data structure such that, given a query set Aq, we
can, loosely speaking, efficiently find a Ai with large J(Ai, Aq). Clearly, given the potential massive
size of C it is infeasible to perform a linear scan.

With LSH parameterized by positive integers K,L we create a size K sketch Soph(Ai) (or using
another method) for each Ai ∈ C. We then store the set Ai in a large table indexed by this sketch
T [Soph(Ai)]. For a given query Aq we then go over all sets stored in T [Soph(Aq)] returning only
those that are “sufficiently similar”. By picking K large enough we ensure that very distinct sets
(almost) never end up in the same bucket, and by repeating the data structure L independent times
(creating L such tables) we ensure that similar sets are likely to be retrieved in at least one of the
tables.

Recently, much work has gone into providing theoretically optimal [5, 4, 13] LSH. However, as noted
in [2], these solutions require very sophisticated locality-sensitive hash functions and are mainly
impractical. We therefore choose to focus on more practical variants relying either on OPH [31, 32]
or FH [12, 2].

2.4 Mixed tabulation

Mixed tabulation was introduced by [14]. For simplicity assume that we are hashing from the universe
[2w] and fix integers c, d such that c is a divisor of w. Tabulation-based hashing views each key x
as a list of c characters x0, . . . , xc−1, where xi consists of the ith w/c bits of x. We say that the
alphabet Σ = [2w/c]. Mixed tabulation uses x to derive d additional characters from Σ. To do this
we choose c tables T1,i : Σ → Σd uniformly at random and let y = ⊕ci=0T1,i[xi] (here ⊕ denotes
the XOR operation). The d derived characters are then y0, . . . , yd−1. To create the final hash value
we additionally choose c+ d random tables T2,i : Σ→ [m] and define

h(x) =
⊕
i∈[c]

T2,i[xi]
⊕
i∈[d]

T2,i+c[yi] .

Mixed Tabulation is extremely fast in practice due to the word-parallelism of the XOR operation and
the small table sizes which fit in fast cache. It was proved in [14] that implementing OPH with mixed
tabulation gives Chernoff-style concentration bounds when estimating Jaccard similarity.

Another advantage of mixed tabulation is when generating many hash values for the same key. In
this case, we can increase the output size of the tables T2,i, and then whp. over the choice of T1,i the
resulting output bits will be independent. As an example, assume that we want to map each key to
two 32-bit hash values. We then use a mixed tabulation hash function as described above mapping
keys to one 64-bit hash value, and then split this hash value into two 32-bit values, which would be
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independent of each other with high probability. Doing this with e.g. multiply-mod-prime hashing
would not work, as the output bits are not independent. Thereby we significantly speed up the hashing
time when generating many hash values for the same keys.

A sample implementation with c = d = 4 and 32-bit keys and values can be found below.

uint64_t mt_T1[256][4]; // Filled with random bits
uint32_t mt_T2[256][4]; // Filled with random bits

uint32_t mixedtab(uint32_t x) {
uint64_t h=0; // This will be the final hash value
for(int i = 0;i < 4;++i, x >>= 8)

h ^= mt_T1[(uint8_t)x][i];
uint32_t drv=h >> 32;
for(int i = 0;i < 4;++i, drv >>= 8)

h ^= mt_T2[(uint8_t)drv][i];
return (uint32_t)h;

}

The main drawback to mixed tabulation hashing is that it needs a relatively large random seed to
fill out the tables T1 and T2. However, as noted in [14] for all the applications we consider here it
suffices to fill in the tables using a Θ(log |U |)-independent hash function.

3 Feature Hashing with Mixed Tabulation

As noted, Weinberger et al. [37] showed exponential tail bounds for feature hashing. Here, we first
prove improved concentration bounds, and then, using techniques from [14] we argue that these
bounds still hold (up to a small additive factor polynomial in the universe size) when implementing
FH with mixed tabulation.

The concentration bounds we show are as follows (proved in the full version).
Theorem 1. Let v ∈ Rd with ‖v‖2 = 1 and let v′ be the d′-dimensional vector obtained by applying
feature hashing implemented with truly random hash functions. Let ε, δ ∈ (0, 1). Assume that

d′ ≥ 16ε−2 lg(1/δ) and ‖v‖∞ ≤
√
ε log(1+ 4

ε )

6
√

log(1/δ) log(d′/δ)
. Then it holds that

Pr
[
1− ε < ‖v′‖22 < 1 + ε

]
≥ 1− 4δ . (1)

Theorem 1 is very similar to the bounds on feature hashing by Weinberger et al. [37] and Dasgupta
et al. [16], but improves on the requirement on the size of ‖v‖∞. Weinberger et al. [37] show that
(1) holds if ‖v‖∞ is bounded by ε

18
√

log(1/δ) log(d′/δ)
, and Dasgupta et al. [16] show that (1) holds if

‖v‖∞ is bounded by
√

ε
16 log(1/δ) log2(d′/δ)

. We improve on these results factors of Θ
(√

1
ε log(1/ε)

)
and Θ

(√
log(1/ε) log(d′/δ)

)
respectively. We note that if we use feature hashing with a pre-

conditioner (as in e.g. [16, Theorem 1]) these improvements translate into an improved running
time.

Using [14, Theorem 1] we get the following corollary.
Corollary 1. Let v, ε, δ and d′ be as in Theorem 1, and let v′ be the d′-dimensional vector obtained
using feature hashing on v implemented with mixed tabulation hashing. Then, if supp(v) ≤ |Σ|/(1 +
Ω(1)) it holds that

Pr
[
1− ε < ‖v′‖22 < 1 + ε

]
≥ 1− 4δ −O

(
|Σ|1−bd/2c

)
.

In fact Corollary 1 holds even if both h and sgn from Section 2.2 are implemented using the same
hash function. I.e., if h? : [d]→ {−1,+1} × [d′] is a mixed tabulation hash function as described in
Section 2.4.

We note that feature hashing is often applied on very high dimensional, but sparse, data (e.g. in [2]),
and thus the requirement supp(v) ≤ |Σ|/(1 + Ω(1)) is not very prohibitive. Furthermore, the target

5



dimension d′ is usually logarithmic in the universe, and then Corollary 1 still works for vectors with
polynomial support giving an exponential decrease.

4 Experimental evaluation

We experimentally evaluate several different basic hash functions. We first perform an evaluation of
running time. We then evaluate the fastest hash functions on synthetic data confirming the theoretical
results of Section 3 and [14]. Finally, we demonstrate that even on real-world data, the provable
guarantees of mixed tabulation sometimes yields systematically better results.

Due to space restrictions, we only present some of our experiments here, and refer to the full version
for more details.

We consider some of the most popular and fast hash functions employed in practice in k-wise
PolyHash [10], Multiply-shift [17], MurmurHash3 [6], CityHash [29], and the cryptographic hash
function Blake2 [7]. Of these hash functions only mixed tabulation (and very high degree PolyHash)
provably works well for the applications we consider. However, Blake2 is a cryptographic function
which provides similar guarantees conditioned on certain cryptographic assumptions being true. The
remaining hash functions have provable weaknesses, but often work well (and are widely employed)
in practice. See e.g. [1] who showed how to break both MurmurHash3 and Cityhash64.

All experiments are implemented in C++11 using a random seed from http://www.random.org.
The seed for mixed tabulation was filled out using a random 20-wise PolyHash function. All keys and
hash outputs were 32-bit integers to ensure efficient implementation of multiply-shift and PolyHash
using Mersenne prime p = 261 − 1 and GCC’s 128-bit integers.

We perform two time experiments, the results of which are presented in Table 1. Namely, we
evaluate each hash function on the same 107 randomly chosen integers and use each hash function to
implement FH on the News20 dataset (discussed later). We see that the only two functions faster
than mixed tabulation are the very simple multiply-shift and 2-wise PolyHash. MurmurHash3 and
CityHash were roughly 30-70% slower than mixed tabulation. This even though we used the official
implementations of MurmurHash3, CityHash and Blake2 which are highly optimized to the x86 and
x64 architectures, whereas mixed tabulation is just standard, portable C++11 code. The cryptographic
hash function, Blake2, is orders of magnitude slower as we would expect.

Table 1: Time taken to evaluate different hash functions to 1) hash 107 random numbers, and 2)
perform feature hashing with d′ = 128 on the entire News20 data set.

Hash function time (1..107) time (News20)

Multiply-shift 7.72 ms 55.78 ms
2-wise PolyHash 17.55 ms 82.47 ms
3-wise PolyHash 42.42 ms 120.19 ms
MurmurHash3 59.70 ms 159.44 ms
CityHash 59.06 ms 162.04 ms
Blake2 3476.31 ms 6408.40 ms

Mixed tabulation 42.98 ms 90.55 ms

Based on Table 1 we choose to compare mixed tabulation to multiply-shift, 2-wise PolyHash and
MurmurHash3. We also include results for 20-wise PolyHash as a (cheating) way to “simulate” truly
random hashing.

4.1 Synthetic data

For a parameter, n, we generate two sets A,B as follows. The intersection A ∩ B is created by
sampling each integer from [2n] independently at random with probability 1/2. The symmetric
difference is generated by sampling n numbers greater than 2n (distributed evenly to A and B).
Intuitively, with a hash function like (ax+ b) mod p, the dense subset of [2n] will be mapped very
systematically and is likely (i.e. depending on the choice of a) to be spread out evenly. When using
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OPH, this means that elements from the intersection is more likely to be the smallest element in each
bucket, leading to an over-estimation of J(A,B).

We use OPH with densification as in [32] implemented with different basic hash functions to estimate
J(A,B). We generate one instance of A and B and perform 2000 independent repetitions for each
different hash function on these A and B. Figure 2 shows the histogram and mean squared error
(MSE) of estimates obtained with n = 2000 and k = 200. The figure confirms the theory: Both
multiply-shift and 2-wise PolyHash exhibit bias and bad concentration whereas both mixed tabulation
and MurmurHash3 behaves essentially as truly random hashing. We also performed experiments
with k = 100 and k = 500 and considered the case of n = k/2, where we expect many empty bins
and the densification of [32] kicks in. All experiments obtained similar results as Figure 2.

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

100

200

300

400

500
MSE=0.0058

Multiply-shift

0.2 0.3 0.4 0.5 0.6 0.7 0.8

MSE=0.0049

2-wise PolyHash

0.2 0.3 0.4 0.5 0.6 0.7 0.8

MSE=0.0012

Mixed Tabulation

0.2 0.3 0.4 0.5 0.6 0.7 0.8

MSE=0.0012

MurmurHash3

0.2 0.3 0.4 0.5 0.6 0.7 0.8

MSE=0.0011

"Random"

Figure 2: Histograms of set similarity estimates obtained using OPH with densification of [32] on
synthetic data implemented with different basic hash families and k = 200. The mean squared error
for each hash function is displayed in the top right corner.

For FH we obtained a vector v by taking the indicator vector of a set A generated as above and
normalizing the length. For each hash function we perform 2000 independent repetitions of the
following experiment: Generate v′ using FH and calculate ‖v′‖22. Using a good hash function we
should get good concentration of this value around 1. Figure 3 displays the histograms and MSE
we obtained for d′ = 200. Again we see that multiply-shift and 2-wise PolyHash give poorly
concentrated results, and while the results are not biased this is only because of a very heavy tail of
large values. We also ran experiments with d′ = 100 and d′ = 500 which were similar.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

100

200

300

400

500
MSE=0.6066

Multiply-shift

0.0 0.5 1.0 1.5 2.0 2.5 3.0

MSE=0.305

2-wise PolyHash

0.0 0.5 1.0 1.5 2.0 2.5 3.0

MSE=0.0099

Mixed Tabulation

0.0 0.5 1.0 1.5 2.0 2.5 3.0

MSE=0.0097

MurmurHash3

0.0 0.5 1.0 1.5 2.0 2.5 3.0

MSE=0.01

"Random"

Figure 3: Histograms of the 2-norm of the vectors output by FH on synthetic data implemented
with different basic hash families and d′ = 200. The mean squared error for each hash function is
displayed in the top right corner.

We briefly argue that this input is in fact quite natural: When encoding a document as shingles or
bag-of-words, it is quite common to let frequent words/shingles have the lowest identifier (using
fewest bits). In this case the intersection of two sets A and B will likely be a dense subset of small
identifiers. This is also the case when using Huffman Encoding [18], or if identifiers are generated
on-the-fly as words occur. Furthermore, for images it is often true that a pixel is more likely to have a
non-zero value if its neighbouring pixels have non-zero values giving many consecutive non-zeros.

Additional synthetic results We also considered the following synthetic dataset, which actually
showed even more biased and poorly concentrated results. For similarity estimation we used elements
from [4n], and let the symmetric difference be uniformly random sampled elements from {0 . . . , n−
1} ∪ {3n, . . . , 4n− 1} with probability 1/2 and the intersection be the same but for {n, . . . , 3n− 1}.
This gave an MSE that was rougly 6 times larger for multiply-shift and 4 times larger for 2-wise
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PolyHash compared to the other three. For feature hashing we sampled the numbers from 0 to
3n− 1 independently at random with probability 1/2 giving an MSE that was 20 times higher for
multiply-shift and 10 times higher for 2-wise PolyHash.

We also considered both datasets without the sampling, which showed an even wider gap between the
hash functions.

4.2 Real-world data

We consider the following real-world data sets

• MNIST [21] Standard collection of handwritten digits. The average number of non-zeros is
roughly 150 and the total number of features is 728. We use the standard partition of 60000
database points and 10000 query points.

• News20 [11] Collection of newsgroup documents. The average number of non-zeros is
roughly 500 and the total number of features is roughly 1.3 · 106. We randomly split the set
into two sets of roughly 10000 database and query points.

These two data sets cover both the sparse and dense regime, as well as the cases where each data
point is similar to many other points or few other points. For MNIST this number is roughly 3437 on
average and for News20 it is roughly 0.2 on average for similarity threshold above 1/2.

Feature hashing We perform the same experiment as for synthetic data by calculating ‖v′‖22 for
each v in the data set with 100 independent repetitions of each hash function (i.e. getting 6, 000, 000
estimates for MNIST). Our results are shown in Figure 4 for output dimension d′ = 128. Results with
d′ = 64 and d′ = 256 were similar. The results confirm the theory and show that mixed tabulation

0.0 0.5 1.0 1.5 2.0
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200000

300000

400000
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800000
MSE=0.144
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Figure 4: Histograms of the norm of vectors output by FH on the MNIST (top) and News20 (bottom)
data sets implemented with different basic hash families and d′ = 128. The mean squared error for
each hash function is displayed in the top right corner.

performs essentially as well as a truly random hash function clearly outperforming the weaker hash
functions, which produce poorly concentrated results. This is particularly clear for the MNIST data
set, but also for the News20 dataset, where e.g. 2-wise Polyhash resulted in ‖v′‖22 as large as 16.671
compared to 2.077 with mixed tabulation.

Similarity search with LSH We perform a rigorous evaluation based on the setup of [31]. We test
all combinations of K ∈ {8, 10, 12} and L ∈ {8, 10, 12}. For readability we only provide results
for multiply-shift and mixed tabulation and note that the results obtained for 2-wise PolyHash and
MurmurHash3 are essentially identical to those for multiply-shift and mixed tabulation respectively.

Following [31] we evaluate the results based on two metrics: 1) The fraction of total data points
retrieved per query, and 2) the recall at a given threshold T0 defined as the ratio of retrieved data
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points having similarity at least T0 with the query to the total number of data points having similarity
at least T0 with the query. Since the recall may be inflated by poor hash functions that just retrieve
many data points, we instead report #retrieved/recall-ratio, i.e. the number of data points that were
retrieved divided by the percentage of recalled data points. The goal is to minimize this ratio as we
want to simultaneously retrieve few points and obtain high recall. Due to space restrictions we only
report our results for K = L = 10. We note that the other results were similar.

Our results can be seen in Figure 5. The results somewhat echo what we found on synthetic data.
Namely, 1) Using multiply-shift overestimates the similarities of sets thus retrieving more points, and
2) Multiply-shift gives very poorly concentrated results. As a consequence of 1) Multiply-shift does,
however, achieve slightly higher recall (not visible in the figure), but despite recalling slightly more
points, the #retrieved / recall-ratio of multiply-shift is systematically worse.
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Figure 5: Experimental evaluation of LSH with OPH and different hash functions with K = L = 10.
The hash functions used are multiply-shift (blue) and mixed tabulation (green). The value studied is
the retrieved / recall-ratio (lower is better).

5 Conclusion

In this paper we consider mixed tabulation for computational primitives in computer vision, infor-
mation retrieval, and machine learning. Namely, similarity estimation and feature hashing. It was
previously shown [14] that mixed tabulation provably works essentially as well as truly random for
similarity estimation with one permutation hashing. We complement this with a similar result for
FH when the input vectors are sparse, even improving on the concentration bounds for truly random
hashing found by [37, 16].

Our empirical results demonstrate this in practice. Mixed tabulation significantly outperforms the
simple hashing schemes and is not much slower. Meanwhile, mixed tabulation is 40% faster than
both MurmurHash3 and CityHash, which showed similar performance as mixed tabulation. However,
these two hash functions do not have the same theoretical guarantees as mixed tabulation. We believe
that our findings make mixed tabulation the best candidate for implementing these applications in
practice.
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