
The Neural Hawkes Process: A Neurally
Self-Modulating Multivariate Point Process

Hongyuan Mei Jason Eisner
Department of Computer Science, Johns Hopkins University

3400 N. Charles Street, Baltimore, MD 21218 U.S.A
{hmei,jason}@cs.jhu.edu

Abstract
Many events occur in the world. Some event types are stochastically excited or
inhibited—in the sense of having their probabilities elevated or decreased—by
patterns in the sequence of previous events. Discovering such patterns can help
us predict which type of event will happen next and when. We model streams
of discrete events in continuous time, by constructing a neurally self-modulating
multivariate point process in which the intensities of multiple event types evolve
according to a novel continuous-time LSTM. This generative model allows past
events to influence the future in complex and realistic ways, by conditioning future
event intensities on the hidden state of a recurrent neural network that has con-
sumed the stream of past events. Our model has desirable qualitative properties.
It achieves competitive likelihood and predictive accuracy on real and synthetic
datasets, including under missing-data conditions.

1 Introduction

Some events in the world are correlated. A single event, or a pattern of events, may help to cause
or prevent future events. We are interested in learning the distribution of sequences of events (and
in future work, the causal structure of these sequences). The ability to discover correlations among
events is crucial to accurately predict the future of a sequence given its past, i.e., which events are
likely to happen next and when they will happen.

We specifically focus on sequences of discrete events in continuous time (“event streams”). Model-
ing such sequences seems natural and useful in many applied domains:

• Medical events. Each patient has a sequence of acute incidents, doctor’s visits, tests, diag-
noses, and medications. By learning from previous patients what sequences tend to look
like, we could predict a new patient’s future from their past.
• Consumer behavior. Each online consumer has a sequence of online interactions. By mod-

eling the distribution of sequences, we can learn purchasing patterns. Buying cookies may
temporarily depress purchases of all desserts, yet increase the probability of buying milk.
• “Quantified self” data. Some individuals use cellphone apps to record their behaviors—

eating, traveling, working, sleeping, waking. By anticipating behaviors, an app could per-
form helpful supportive actions, including issuing reminders and placing advance orders.
• Social media actions. Previous posts, shares, comments, messages, and likes by a set of

users are predictive of their future actions.
• Other event streams arise in news, animal behavior, dialogue, music, etc.

A basic model for event streams is the Poisson process (Palm, 1943), which assumes that events
occur independently of one another. In a non-homogenous Poisson process, the (infinitesimal)
probability of an event happening at time tmay vary with t, but it is still independent of other events.
A Hawkes process (Hawkes, 1971; Liniger, 2009) supposes that past events can temporarily raise
the probability of future events, assuming that such excitation is ¬ positive, ­ additive over the past
events, and ® exponentially decaying with time.
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Figure 1: Drawing an event stream from a neural Hawkes process. An LSTM reads the sequence of past
events (polygons) to arrive at a hidden state (orange). That state determines the future “intensities” of the two
types of events—that is, their time-varying instantaneous probabilities. The intensity functions are continuous
parametric curves (solid lines) determined by the most recent LSTM state, with dashed lines showing the
steady-state asymptotes that they would eventually approach. In this example, events of type 1 excite type 1
but inhibit type 2. Type 2 excites itself, and excites or inhibits type 1 according to whether the count of type 2
events so far is odd or even. Those are immediate effects, shown by the sudden jumps in intensity. The events
also have longer-timescale effects, shown by the shifts in the asymptotic dashed lines.

However, real-world patterns often seem to violate these assumptions. For example, ¬ is violated
if one event inhibits another rather than exciting it: cookie consumption inhibits cake consump-
tion. ­ is violated when the combined effect of past events is not additive. Examples abound: The
20th advertisement does not increase purchase rate as much as the first advertisement did, and may
even drive customers away. Market players may act based on their own complex analysis of market
history. Musical note sequences follow some intricate language model that considers melodic tra-
jectory, rhythm, chord progressions, repetition, etc. ® is violated when, for example, a past event
has a delayed effect, so that the effect starts at 0 and increases sharply before decaying.

We generalize the Hawkes process by determining the event intensities (instantaneous probabilities)
from the hidden state of a recurrent neural network. This state is a deterministic function of the past
history. It plays the same role as the state of a deterministic finite-state automaton. However, the
recurrent network enjoys a continuous and infinite state space (a high-dimensional Euclidean space),
as well as a learned transition function. In our network design, the state is updated discontinuously
with each successive event occurrence and also evolves continuously as time elapses between events.

Our main motivation is that our model can capture effects that the Hawkes process misses. The com-
bined effect of past events on future events can now be superadditive, subadditive, or even subtrac-
tive, and can depend on the sequential ordering of the past events. Recurrent neural networks already
capture other kinds of complex sequential dependencies when applied to language modeling—that
is, generative modeling of linguistic word sequences, which are governed by syntax, semantics, and
habitual usage (Mikolov et al., 2010; Sundermeyer et al., 2012; Karpathy et al., 2015). We wish to
extend their success (Chelba et al., 2013) to sequences of events in continuous time.

Another motivation for a more expressive model than the Hawkes process is to cope with missing
data. Even in a domain where Hawkes might be appropriate, it is hard to apply Hawkes when
sequences are only partially observed. Real datasets may systematically omit some types of events
(e.g., illegal drug use, or offline purchases) which, in the true generative model, would have a strong
influence on the future. They may also have stochastically missing data, where the missingness
mechanism—the probability that an event is not recorded—can be complex and data-dependent
(MNAR). In this setting, we can fit our model directly to the observation sequences, and use it to
predict observation sequences that were generated in the same way (using the same complete-data
distribution and the same missingness mechanism). Note that if one knew the true complete-data
distribution—perhaps Hawkes—and the true missingness mechanism, one would optimally predict
the incomplete future from the incomplete past in Bayesian fashion, by integrating over possible
completions (imputing the missing events and considering their influence on the future). Our hope
is that the neural model is expressive enough that it can learn to approximate this true predictive
distribution. Its hidden state after observing the past should implicitly encode the Bayesian
posterior, and its update rule for this hidden state should emulate the “observable operator” that
updates the posterior upon each new observation. See Appendix A.4 for further discussion.
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A final motivation is that one might wish to intervene in a medical, economic, or social event stream
so as to improve the future course of events. Appendix D discusses our plans to deploy our model
family as an environment model within reinforcement learning, where an agent controls some events.

2 Notation

We are interested in constructing distributions over event streams (k1, t1), (k2, t2), . . ., where each
ki ∈ {1, 2, . . . ,K} is an event type and 0 < t1 < t2 < · · · are times of occurrence.1 That is, there
are K types of events, tokens of which are observed to occur in continuous time.

For any distribution P in our proposed family, an event stream is almost surely infinite. However,
when we observe the process only during a time interval [0, T ], the number I of observed events is
almost surely finite. The log-likelihood ` of the model P given these I observations is( I∑

i=1

logP ((ki, ti) | Hi)
)

+ logP (tI+1 > T | HI) (1)

where the historyHi is the prefix sequence (k1, t1), (k2, t2), . . . , (ki−1, ti−1), and P ((ki, ti) | Hi)
is the probability density that the next event occurs at time ti and has type ki.

Throughout the paper, the subscript i usually denotes quantities that affect the distribution of the
next event (ki, ti). These quantities depend only on the historyHi.
We use (lowercase) Greek letters for parameters related to the classical Hawkes process, and Roman
letters for other quantities, including hidden states and affine transformation parameters. We denote
vectors by bold lowercase letters such as s and µ, and matrices by bold capital Roman letters such as
U. Subscripted bold letters denote distinct vectors or matrices (e.g., wk). Scalar quantities, includ-
ing vector and matrix elements such as sk and αj,k, are written without bold. Capitalized scalars
represent upper limits on lowercase scalars, e.g., 1 ≤ k ≤ K. Function symbols are notated like
their return type. All R→ R functions are extended to apply elementwise to vectors and matrices.

3 The Model

In this section, we first review Hawkes processes, and then introduce our model one step at a time.

Formally, generative models of event streams are multivariate point processes. A (temporal) point
process is a probability distribution over {0, 1}-valued functions on a given time interval (for us,
[0,∞)). A multivariate point process is formally a distribution overK-tuples of such functions. The
kth function indicates the times at which events of type k occurred, by taking value 1 at those times.

3.1 Hawkes Process: A Self-Exciting Multivariate Point Process (SE-MPP)

A basic model of event streams is the non-homogeneous multivariate Poisson process. It assumes
that an event of type k occurs at time t—more precisely, in the infinitesimally wide interval [t, t +
dt)—with probability λk(t)dt. The value λk(t) ≥ 0 can be regarded as a rate per unit time, just like
the parameter λ of an ordinary Poisson process. λk is known as the intensity function, and the total
intensity of all event types is given by λ(t) =

∑K
k=1 λk(t).

A well-known generalization that captures interactions is the self-exciting multivariate point pro-
cess (SE-MPP), or Hawkes process (Hawkes, 1971; Liniger, 2009), in which past events h from
the history conspire to raise the intensity of each type of event. Such excitation is positive, additive
over the past events, and exponentially decaying with time:

λk(t) = µk +
∑
h:th<t

αkh,k exp(−δkh,k(t− th)) (2)

where µk ≥ 0 is the base intensity of event type k, αj,k ≥ 0 is the degree to which an event of type
j initially excites type k, and δj,k > 0 is the decay rate of that excitation. When an event occurs, all
intensities are elevated to various degrees, but then will decay toward their base rates µ.

1More generally, one could allow 0 ≤ t1 ≤ t2 ≤ · · · , where ti is a immediate event if ti−1 = ti and a
delayed event if ti−1 < ti. It is not too difficult to extend our model to assign positive probability to immediate
events, but we will disallow them here for simplicity.
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3.2 Self-Modulating Multivariate Point Processes

The positivity constraints in the Hawkes process limit its expressivity. First, the positive interaction
parameters αj,k fail to capture inhibition effects, in which past events reduce the intensity of future
events. Second, the positive base rates µ fail to capture the inherent inertia of some events, which are
unlikely until their cumulative excitation by past events crosses some threshold. To remove such lim-
itations, we introduce two self-modulating models. Here the intensities of future events are stochas-
tically modulated by the past history, where the term “modulation” is meant to encompass both exci-
tation and inhibition. The intensity λk(t) can even fluctuate non-monotonically between successive
events, because the competing excitatory and inhibitory influences may decay at different rates.

3.2.1 Hawkes Process with Inhibition: A Decomposable Self-Modulating MPP (D-SM-MPP)

Our first move is to enrich the Hawkes model’s expressiveness while still maintaining its decom-
posable structure. We relax the positivity constraints on αj,k and µk, allowing them to range over
R, which allows inhibition (αj,k < 0) and inertia (µk < 0). However, the resulting total activation
could now be negative. We therefore pass it through a non-linear transfer function fk : R → R+

to obtain a positive intensity function as required:

λk(t) = fk(λ̃k(t)) (3a) λ̃k(t) = µk +
∑
h:th<t

αkh,k exp(−δkh,k(t− th)) (3b)

As t increases between events, the intensity λk(t) may both rise and fall, but eventually approaches
the base rate f(µk+0), as the influence of each previous event still decays toward 0 at a rate δj,k > 0.

What non-linear function fk should we use? The ReLU function f(x) = max(x, 0) is not strictly
positive as required. A better choice is the scaled “softplus” function f(x) = s log(1 + exp(x/s)),
which approaches ReLU as s → 0. We learn a separate scale parameter sk for each event type k,
which adapts to the rate of that type. So we instantiate (3a) as λk(t) = fk(λ̃k(t)) = sk log(1 +

exp(λ̃k(t)/sk)). Appendix A.1 graphs this and motivates the “softness” and the scale parameter.

3.2.2 Neural Hawkes Process: A Neurally Self-Modulating MPP (N-SM-MPP)

Our second move removes the restriction that the past events have independent, additive influence
on λ̃k(t). Rather than predict λ̃k(t) as a simple summation (3b), we now use a recurrent neural
network. This allows learning a complex dependence of the intensities on the number, order, and
timing of past events. We refer to our model as a neural Hawkes process.

Just as before, each event type k has an time-varying intensity λk(t), which jumps discontinuously
at each new event, and then drifts continuously toward a baseline intensity. In the new process, how-
ever, these dynamics are controlled by a hidden state vector h(t) ∈ (−1, 1)D, which in turn depends
on a vector c(t) ∈ RD of memory cells in a continuous-time LSTM.2 This novel recurrent neural
network architecture is inspired by the familiar discrete-time LSTM (Hochreiter and Schmidhuber,
1997; Graves, 2012). The difference is that in the continuous interval following an event, each
memory cell c exponentially decays at some rate δ toward some steady-state value c̄.

At each time t > 0, we obtain the intensity λk(t) by (4a), where (4b) defines how the
hidden states h(t) are continually obtained from the memory cells c(t) as the cells decay:

λk(t) = fk(w>k h(t)) (4a) h(t) = oi � (2σ(2c(t))− 1) for t ∈ (ti−1, ti] (4b)

This says that on the interval (ti−1, ti]—in other words, after event i−1 up until event i occurs at
some time ti—the h(t) defined by equation (4b) determines the intensity functions via equation (4a).
So for t in this interval, according to the model, h(t) is a sufficient statistic of the history (Hi, t −
ti−1) with respect to future events (see equation (1)). h(t) is analogous to hi in an LSTM language
model (Mikolov et al., 2010), which summarizes the past event sequence k1, . . . , ki−1. But in our
decay architecture, it will also reflect the interarrival times t1−0, t2− t1, . . . , ti−1− ti−2, t− ti−1.

This interval (ti−1, ti] ends when the next event ki stochastically occurs at some time ti. At this
point, the continuous-time LSTM reads (ki, ti) and updates the current (decayed) hidden cells c(t)
to new initial values ci+1, based on the current (decayed) hidden state h(ti).

2We use one-layer LSTMs with D hidden units in our present experiments, but a natural extension is to use
multi-layer (“deep”) LSTMs (Graves et al., 2013), in which case h(t) is the hidden state of the top layer.
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How does the continuous-time LSTM make those updates? Other than depending on decayed values
h(ti), the update formulas resemble the discrete-time case:3

ii+1 ← σ (Wiki + Uih(ti) + di) (5a)
f i+1 ← σ (Wfki + Ufh(ti) + df) (5b)
zi+1 ← 2σ (Wzki + Uzh(ti) + dz)− 1 (5c)
oi+1 ← σ (Woki + Uoh(ti) + do) (5d)

ci+1 ← f i+1 � c(ti) + ii+1 � zi+1 (6a)

c̄i+1 ← f̄ i+1 � c̄i + ı̄i+1 � zi+1 (6b)
δi+1 ← f (Wdki + Udh(ti) + dd) (6c)

The vector ki ∈ {0, 1}K is the ith input: a one-hot encoding of the new event ki, with non-zero
value only at the entry indexed by ki. The above formulas will make a discrete update to the LSTM
state. They resemble the discrete-time LSTM, but there are two differences. First, the updates do
not depend on the “previous” hidden state from just after time ti−1, but rather its value h(ti) at time
ti, after it has decayed for a period of ti − ti−1. Second, equations (6b)–(6c) are new. They define
how in future, as t > ti increases, the elements of c(t) will continue to deterministically decay (at
different rates) from ci+1 toward targets c̄i+1. Specifically, c(t) is given by (7), which continues to
control h(t) and thus λk(t) (via (4), except that i has now increased by 1).

c(t)
def
= c̄i+1 + (ci+1 − c̄i+1) exp (−δi+1 (t− ti)) for t ∈ (ti, ti+1] (7)

In short, not only does (6a) define the usual cell values ci+1, but equation (7) defines c(t) on R>0.
On the interval (ti, ti+1], c(t) follows an exponential curve that begins at ci+1 (in the sense that
limt→t+i

c(t) = ci+1) and decays toward c̄i+1 (which it would approach as t→∞, if extrapolated).

A schematic example is shown in Figure 1. As in the previous models, λk(t) drifts deterministically
between events toward some base rate. But the neural version is different in three ways: ¬ The
base rate is not a constant µk, but shifts upon each event.4 ­ The drift can be non-monotonic,
because the excitatory and inhibitory influences on λk(t) from different elements of h(t) may decay
at different rates. ® The sigmoidal transfer function means that the behavior of h(t) itself is a little
more interesting than exponential decay. Suppose that ci is very negative but increases toward a
target c̄i > 0. Then h(t) will stay close to −1 for a while and then will rapidly rise past 0. This
usefully lets us model a delayed response (e.g. the last green segment in Figure 1).

We point out two behaviors that are naturally captured by our LSTM’s “forget” and “input” gates:

• if f i+1 ≈ 1 and ii+1 ≈ 0, then ci+1 ≈ c(ti). So c(t) and h(t) will be continuous at ti.
There is no jump due to event i, though the steady-state target may change.

• if f̄ i+1 ≈ 1 and ı̄i+1 ≈ 0, then c̄i+1 ≈ c̄i. So although there may be a jump in activation,
it is temporary. The memory cells will decay toward the same steady states as before.

Among other benefits, this lets us fit datasets in which (as is common) some pairs of event types do
not influence one another. Appendix A.3 explains why all the models in this paper have this ability.

The drift of c(t) between events controls how the system’s expectations about future events change
as more time elapses with no event having yet occured. Equation (7) chooses a moderately flexible
parametric form for this drift function (see Appendix D for some alternatives). Equation (6a) was
designed so that c in an LSTM could learn to count past events with discrete-time exponential
discounting; and (7) can be viewed as extending that to continuous-time exponential discounting.

Our memory cell vector c(t) is a deterministic function of the past history (Hi, t − ti).5 Thus,
the event intensities at any time are also deterministic via equation (4). The stochastic part of the
model is the random choice—based on these intensities—of which event happens next and when it
happens. The events are in competition: an event with high intensity is likely to happen sooner than
an event with low intensity, and whichever one happens first is fed back into the LSTM. If no event
type has high intensity, it may take a long time for the next event to occur.

Training the model means learning the LSTM parameters in equations (5) and (6c) along with the
other parameters mentioned in this section, namely sk ∈ R and wk ∈ RD for k ∈ {1, 2, . . . ,K}.

3The upright-font subscripts i, f , z and o are not variables, but constant labels that distinguish different W,
U and d tensors. The f̄ and ı̄ in equation (6b) are defined analogously to f and i but with different weights.

4Equations (4b) and (7) imply that after event i− 1, the base rate jumps to fk(w>(oi � (2σ(2c̄i)− 1))).
5Appendix A.2 explains how our LSTM handles the start and end of the sequence.
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4 Algorithms
For the proposed models, the log-likelihood (1) of the parameters turns out to be given by a simple
formula—the sum of the log-intensities of the events that happened, at the times they happened,
minus an integral of the total intensities over the observation interval [0, T ]:

` =
∑
i:ti≤T

log λki(ti)−
∫ T

t=0

λ(t)dt︸ ︷︷ ︸
call this Λ

(8)

The full derivation is given in Appendix B.1. Intuitively, the −Λ term (which is ≤ 0) sums the
log-probabilities of infinitely many non-events. Why? The probability that there was not an event
of any type in the infinitesimally wide interval [t, t+ dt) is 1− λ(t)dt, whose log is −λ(t)dt.

We can locally maximize ` using any stochastic gradient method. A detailed recipe is given in Ap-
pendix B.2, including the Monte Carlo trick we use to handle the integral in equation (8).

If we wish to draw random sequences from the model, we can adopt the thinning algorithm (Lewis
and Shedler, 1979; Liniger, 2009) that is commonly used for the Hawkes process. See Appendix B.3.

Given an event stream prefix (k1, t1), (k2, t2), . . . , (ki−1, ti−1), we may wish to predict the time
and type of the single next event. The next event’s time ti has density pi(t) = P (ti = t | Hi) =

λ(t) exp
(
−
∫ t
ti−1

λ(s)ds
)

. To predict a single time whose expected L2 loss is as low as possible,

we should choose t̂i = E[ti | Hi] =
∫∞
ti−1

tpi(t)dt. Given the next event time ti, the most likely
type would be argmaxk λk(ti)/λ(ti), but the most likely next event type without knowledge of ti
is k̂i = argmaxk

∫∞
ti−1

λk(t)
λ(t) pi(t)dt. The integrals in the preceding equations can be estimated by

Monte Carlo sampling much as before (Appendix B.2). For event type prediction, we recommend
a paired comparison that uses the same sample of t values for each k in the argmax; this reduces
sampling variance and also lets us share the λ(t) and pi(t) computations across all k.

5 Related Work
The Hawkes process has been widely used to model event streams, including for topic modeling and
clustering of text document streams (He et al., 2015; Du et al., 2015a), constructing and inferring
network structure (Yang and Zha, 2013; Choi et al., 2015; Etesami et al., 2016), personalized rec-
ommendations based on users’ temporal behavior (Du et al., 2015b), discovering patterns in social
interaction (Guo et al., 2015; Lukasik et al., 2016), learning causality (Xu et al., 2016), and so on.

Recent interest has focused on expanding the expressivity of Hawkes processes. Zhou et al. (2013)
describe a self-exciting process that removes the assumption of exponentially decaying influence
(as we do). They replace the scaled-exponential summands in equation (2) with learned positive
functions of time (the choice of function again depends on ki, k). Lee et al. (2016) generalize the
constant excitation parameters αj,k to be stochastic, which increases expressivity. Our model also
allows non-constant interactions between event types, but arranges these via deterministic, instead of
stochastic, functions of continuous-time LSTM hidden states. Wang et al. (2016) consider non-linear
effects of past history on the future, by passing the intensity functions of the Hawkes process through
a non-parametric isotonic link function g, which is in the same place as our non-linear function fk. In
contrast, our fk has a fixed parametric form (learning only the scale parameter), and is approximately
linear when x is large. This is because we model non-linearity (and other complications) with a
continuous-time LSTM, and use fk only to ensure positivity of the intensity functions.

Du et al. (2016) independently combined Hawkes processes with recurrent neural networks (and
Xiao et al. (2017a) propose an advanced way of estimating the parameters of that model). How-
ever, Du et al.’s architecture is different in several respects. They use standard discrete-time LSTMs
without our decay innovation, so they must encode the intervals between past events as explicit nu-
merical inputs to the LSTM. They have only a single intensity function λ(t), and it simply decays
exponentially toward 0 between events, whereas our more modular model creates separate (poten-
tially transferrable) functions λk(t), each of which allows complex and non-monotonic dynamics
en route to a non-zero steady state intensity. Some structural limitations of their design are that ti
and ki are conditionally independent given h (they are determined by separate distributions), and
that their model cannot avoid a positive probability of extinction at all times. Finally, since they take
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f = exp, the effect of their hidden units on intensity is effectively multiplicative, whereas we take
f = softplus to get an approximately additive effect inspired by the classical Hawkes process. Our
rationale is that additivity is useful to capture independent (disjunctive) causes; at the same time, the
hidden units that our model adds up can each capture a complex joint (conjunctive) cause.

6 Experiments6

We fit our various models on several simulated and real-world datasets, and evaluated them in each
case by the log-probability that they assigned to held-out data. We also compared our approach with
that of Du et al. (2016) on their prediction task. The datasets that we use in this paper range from
one extreme with only K = 2 event types but mean sequence length > 2000, to the other extreme
with K = 5000 event types but mean sequence length 3. Dataset details can be found in Table 1
in Appendix C.1. Training details (e.g., hyperparameter selection) can be found in Appendix C.2.

6.1 Synthetic Datasets

In a pilot experiment with synthetic data (Appendix C.4), we confirmed that the neural Hawkes
process generates data that is not well modeled by training an ordinary Hawkes process, but that
ordinary Hawkes data can be successfully modeled by training an neural Hawkes process.

In this experiment, we were not limited to measuring the likelihood of the models on the stochastic
event sequences. We also knew the true latent intensities of the generating process, so we were able
to directly measure whether the trained models predicted these intensities accurately. The pattern of
results was similar.

6.2 Real-World Media Datasets

Retweets Dataset (Zhao et al., 2015). On Twitter, novel tweets are generated from some distribu-
tion, which we do not model here. Each novel tweet serves as the beginning-of-stream event (see
Appendix A.2) for a subsequent stream of retweet events. We model the dynamics of these streams:
how retweets by various types of users (K = 3) predict later retweets by various types of users.

Details of the dataset and its preparation are given in Appendix C.5. The dataset is interesting for its
temporal pattern. People like to retweet an interesting post soon after it is created and retweeted by
others, but may gradually lose interest, so the intervals between retweets become longer over time.
In other words, the stream begins in a self-exciting state, in which previous retweets increase the
intensities of future retweets, but eventually interest dies down and events are less able to excite one
another. The decomposable models are essentially incapable of modeling such a phase transition,
but our neural model should have the capacity to do so.

We generated learning curves (Figure 2) by training our models on increasingly long prefixes of
the training set. As we can see, our self-modulating processes significantly outperform the Hawkes
process at all training sizes. There is no obvious a priori reason to expect inhibition or even inertia
in this application domain, which explains why the D-SM-MPP makes only a small improvement
over the Hawkes process when the latter is well-trained. But D-SM-MPP requires much less data,
and also has more stable behavior (smaller error bars) on small datasets. Our neural model is even
better. Not only does it do better on the average stream, but its consistent superiority over the other
two models is shown by the per-stream scatterplots in Figure 3, demonstrating the importance of our
model’s neural component even with large datasets.

MemeTrack Dataset (Leskovec and Krevl, 2014). This dataset is similar in conception to
Retweets, but with many more event types (K = 5000). It considers the reuse of fixed phrases,
or “memes,” in online media. It contains time-stamped instances of meme use in articles and posts
from 1.5 million different blogs and news sites. We model how the future occurrence of a meme is
affected by its past trajectory across different websites—that is, given one meme’s past trajectory
across websites, when and where it will be mentioned again.

On this dataset,7 the advantage of our full neural models was dramatic, yielding cross-entropy per
event of around −8 relative to the −15 of D-SM-MPP—which in turn is far above the −800 of the

6Our code and data are available at https://github.com/HMEIatJHU/neurawkes.
7Data preparation details are given in Appendix C.6.
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Figure 2: Learning curve (with 95% error bars) of all three models on the Retweets (left two) and MemeTrack
(right two) datasets. Our neural model significantly outperforms our decomposable model (right graph of each
pair), and both significantly outperform the Hawkes process (left of each pair—same graph zoomed out).
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Figure 3: Scatterplots of N-SM-MPP vs. SE-MPP (left) and N-SM-MPP
vs. D-SM-MPP (right), comparing the held-out log-likelihood of the
two models (when trained on our full Retweets training set) with respect
to each of the 2000 test sequences. Nearly all points fall to the right of
y = x, since N-SM-MPP (the neural Hawkes process) is consistently
more predictive than our non-neural model and the Hawkes process.
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Figure 4: Scatterplot of N-SM-
MPP vs. SE-MPP, comparing
their log-likelihoods with respect
to each of the 31 incomplete se-
quences’ test sets. All 31 points
fall to the right of y = x.

Hawkes process. Figure 2 illustrates the persistent gaps among the models. A scatterplot similar
to Figure 3 is given in Figure 13 of Appendix C.6. We attribute the poor performance of the Hawkes
process to its failure to capture the latent properties of memes, such as their topic, political stance,
or interestingness. This is a form of missing data (section 1), as we now discuss.

As the table in Appendix C.1 indicates, most memes in MemeTrack are uninteresting and give rise
to only a short sequence of mentions. Thus the base mention probability is low. An ideal analysis
would recognize that if a specific meme has been mentioned several times already, it is a posteriori
interesting and will probably be mentioned in future as well. The Hawkes process cannot distinguish
the interesting memes from the others, except insofar as they appear on more influential websites.
By contrast, our D-SM-MPP can partly capture this inferential pattern by using negative base rates
µ to create “inertia” (section 3.2.1). Indeed, all 5000 of its learned µk parameters were negative,
with values ranging from −10 to −30, which numerically yields 0 intensity and is hard to excite.

An ideal analysis would also recognize that if a specific meme has appeared mainly on conservative
websites, it is a posteriori conservative and unlikely to appear on liberal websites in the future. The
D-SM-MPP, unlike the Hawkes process, can again partly capture this, by having conservative web-
sites inhibit liberal ones. Indeed, 24% of its learned α parameters were negative. (We re-emphasize
that this inhibition is merely a predictive effect—probably not a direct causal mechanism.)

And our N-SM-MPP process is even more powerful. The LSTM state aims to learn sufficient statis-
tics for predicting the future, so it can learn hidden dimensions (which fall in (−1, 1)) that encode
useful posterior beliefs in boolean properties of the meme such as interestingness, conservativeness,
timeliness, etc. The LSTM’s “long short-term memory” architecture explicitly allows these beliefs
to persist indefinitely through time in the absence of new evidence, without having to be refreshed
by redundant new events as in the decomposable models. Also, the LSTM’s hidden dimensions
are computed by sigmoidal activation rather than softplus activation, and so can be used implicitly
to perform logistic regression. The flat left side of the sigmoid resembles softplus and can model
inertia as we saw above: it takes several mentions to establish interestingness. Symmetrically, the
flat right side can model saturation: once the posterior probability of interestingness is at 80%, it
cannot climb much farther no matter how many more mentions are observed.

A final potential advantage of the LSTM is that in this large-K setting, it has fewer parameters
than the other models (Appendix C.3), sharing statistical strength across event types (websites) to
generalize better. The learning curves in Figure 2 suggest that on small data, the decomposable
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(non-neural) models may overfit their O(K2) interaction parameters αj,k. Our neural model only
has to learn O(D2) pairwise interactions among its D hidden nodes (where D � K), as well as
O(KD) interactions between the hidden nodes and the K event types. In this case, K = 5000 but
D = 64. This reduction by using latent hidden nodes is analogous to nonlinear latent factor analysis.

6.3 Modeling Streams With Missing Data

We set up an artificial experiment to more directly investigate the missing-data setting of section 1,
where we do not observe all events during [0, T ], but train and test our model just as if we had.

We sampled synthetic event sequences from a standard Hawkes process (just as in our pilot exper-
iment from 6.1), removed all the events of selected types, and then compared the neural Hawkes
process (N-SM-MPP) with the Hawkes process (SE-MPP) as models of these censored sequences.
Since we took K = 5, there were 25 − 1 = 31 ways to construct a dataset of censored sequences.
As shown in Figure 4, for each of the 31 resulting datasets, training a neural Hawkes model achieves
better generalization. Appendix A.4 discusses why this kind of behavior is to be expected.

6.4 Prediction Tasks—Medical, Social and Financial

To compare with Du et al. (2016), we evaluate our model on the prediction tasks and datasets that
they proposed. The Financial Transaction dataset contains long streams of high frequency stock
transactions for a single stock, with the two event types “buy” and “sell.” The electrical medical
records (MIMIC-II) dataset is a collection of de-identified clinical visit records of Intensive Care
Unit patients for 7 years. Each patient has a sequence of hospital visit events, and each event records
its time stamp and disease diagnosis. The Stack Overflow dataset represents two years of user awards
on a question-answering website: each user received a sequence of badges (of 22 different types).

We follow Du et al. (2016) and attempt to predict every held-out event (ki, ti) from its history Hi,
evaluating the prediction k̂i with 0-1 loss (yielding an error rate, or ER) and evaluating the prediction
t̂i with L2 loss (yielding a root-mean-squared error, or RMSE). We make minimum Bayes risk
predictions as explained in section 4. Figure 8 in Appendix C.7 shows that our model consistently
outperforms that of Du et al. (2016) on event type prediction on all the datasets, although for time
prediction neither model is consistently better.

6.5 Sensitivity to Number of Parameters

Does our method do well because of its flexible nonlinearities or just because it has more parameters?
The answer is both. We experimented on the Retweets data with reducing the number of hidden
units D. Our N-SM-MPP substantially outperformed SE-MPP (the Hawkes process) on held-out
data even with very few parameters, although more parameters does even better:

number of hidden units Hawkes 1 2 4 8 16 32 256
number of parameters 21 31 87 283 1011 3811 14787 921091
log-likelihood -7.19 -6.51 -6.41 -6.36 -6.24 -6.18 -6.16 -6.10

We also tried halving D across several datasets, which had negligible effect, always decreasing
held-out log-likelihood by < 0.2% relative.

More information about model sizes is given in Appendix C.3. Note that the neural Hawkes process
does not always have more parameters. When K is large, we can greatly reduce the number of
params below that of a Hawkes process, by choosing D � K, as for MemeTrack in section 6.2.

7 Conclusion
We presented two extensions to the multivariate Hawkes process, a popular generative model of
streams of typed, timestamped events. Past events may now either excite or inhibit future events.
They do so by sequentially updating the state of a novel continuous-time recurrent neural network
(LSTM). Whereas Hawkes sums the time-decaying influences of past events, we instead sum the
time-decaying influences of the LSTM nodes. Our extensions to Hawkes aim to address real-world
phenomena, missing data, and causal modeling. Empirically, we have shown that both extensions
yield a significantly improved ability to predict the course of future events. There are several excit-
ing avenues for further improvements (discussed in Appendix D), including embedding our model
within a reinforcement learner to discover causal structure and learn an intervention policy.
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