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Abstract

Kernel embeddings of distributions and the Maximum Mean Discrepancy (MMD),
the resulting distance between distributions, are useful tools for fully nonparametric
two-sample testing and learning on distributions. However, it is rare that all possible
differences between samples are of interest — discovered differences can be due to
different types of measurement noise, data collection artefacts or other irrelevant
sources of variability. We propose distances between distributions which encode
invariance to additive symmetric noise, aimed at testing whether the assumed
true underlying processes differ. Moreover, we construct invariant features of
distributions, leading to learning algorithms robust to the impairment of the input
distributions with symmetric additive noise.

1 Introduction

There are many sources of variability in data, and not all of them are pertinent to the questions that
a data analyst may be interested in. Consider, for example, a nonparametric two-sample testing
problem, which has recently been attracting significant research interest, especially in the context
of kernel embeddings of distributions [2} [5,[7]. We observe samples { X ; };V; 1 and {Xy; };V:"’l from
two data generating processes PP, and Ps, respectively, and would like to test the null hypothesis that
P, = P, without making any parametric assumptions on these distributions. With a large sample-size,
the minutiae of the two data generating processes are uncovered (e.g. slightly different calibration
of the data collecting equipment, different numerical precision), and we ultimately reject the null
hypothesis, even if the sources of variation across the two samples may be irrelevant for the analysis.

Similarly, we may be interested in learning on distributions (14} 23| 24]], where the appropriate
level of granularity in the data is distributional. For example, each label y; in supervised learning
is associated to a whole bag of observations B; = {X;; };V: 1 —assumed to come from a probability
distribution P;, or we may be interested in clustering such bags of observations. Again, nonparametric
distances used in such contexts to facilitate a learning algorithm on distributions, such as Maximum
Mean Discrepancy (MMD) [5]], can be sensitive to irrelevant sources of variation and may lead to
suboptimal or even misleading results, in which case building predictors which are invariant to noise
is of interest.

While it may be tempting to revert back to a parametric setup and work with simple, easy to interpret
models, we argue that a different approach is possible: we stay within a nonparametric framework,
exploit the irregular and complicated nature of real life distributions and encode invariances to sources



of variation assumed to be irrelevant. In this contribution, we focus on invariances to symmetric
additive noise on each of the data generating distributions. Namely, assume that the ¢-th sample
{X; j };V: 1 we observe does not follow the distribution P; of interest but instead its convolution P; x &;
with some unknown noise distributions &; assumed to be symmetric about 0 (we also require that it
has a positive characteristic function). We would like to assess the differences between P; and P;/
while allowing &; and &;/ to differ in an arbitrary way. We investigate two approaches to this problem:
(1) measuring the degree of asymmetry of the paired differences { X;; — X;/;}, and (2) comparing
the phase functions of the corresponding samples. While the first approach is simpler and presents
a sensible solution for the two-sample testing problem, we demonstrate that phase functions give a
much better gauge on the relative comparisons between bags of observations, as required for learning
on distributions.

The paper is outlined as follows. In section 2] we provide an overview of the background. In section[3]
we provide details of the construction and implementation of phase features. In section[d] we discuss
the approach based on asymmetry in paired differences for two sample testing with invariances.
Section [5] provides experiments on synthetic and real data, before concluding in section [6]

2 Background and Setup

We will say that a random vector E on R? is a symmetric positive definite (SPD) component if its
characteristic function is positive, i.e. p(w) = Ex~p [exp(iw' E)| > 0, Vw € R%. This means
that E' is (1) symmetric about zero, i.e. E' and —F have the same distribution and (2) if it has a
density, this density must be a positive definite function [20]]. Note that many distributions used to
model additive noise, including the spherical zero-mean Gaussian distribution, as well as multivariate
Laplace, Cauchy or Student’s ¢ (but not uniform), are all SPD components.

Following the terminology similar to that of [3], we will say that a random vector X on R? is
decomposable if its characteristic function can be written as px = ¢x,¢g, with ¢ > 0. Thus,
if X can be written in the form X = Xy + E, where Xy and F are independent and E is an
SPD noise component, then X is decomposable. We will say that X is indecomposable if it is
not decomposable. In this paper, we will assume that mostly the indecomposable components of
distributions are of interest and will construct tools to directly measure differences between these
indecomposable components, encoding invariance to other sources of variability. The class of Borel
Probability measures on R? will be denoted M}r (R?), while the class of indecomposable probability

measures will be denoted by Z(R?) C M (R?).

2.1 Kernel Embeddings, Fourier Features and learning on distributions

For any positive definite function k: X x X +— R, there exists a unique reproducing kernel Hilbert
space (RKHS) H, of real-valued functions on X'. Function (-, x) is an element of 7}, and represents
evaluation at z, i.e. (f,k(-,x))y = f(z), Vf € Hi, Vo € X. The kernel mean embedding
(cf. [15] for a recent review) of a probability measure P is defined by pp = Ex..plk(-, X)] =
f Py k(-,z)dP(x). The Maximum Mean Discrepancy (MMD) between probability measures P and )
is then given by ||1p — 1| %, - For shift-invariant kernels on R¢, using Bochner’s characterisation of
positive definiteness [26l 6.2], the squared MMD can be written as a weighted Lo-distance between
characteristic functions [22, Corollary 4]

I = el = [ | lor (@) = o0 @) dA @), n

where A is the non-negative spectral measure (inverse Fourier transform) of kernel & as a function of
x —y, while pp(w) and ¢ (w) are the characteristic functions of probability measures P and Q).

Bochner’s theorem is also used to construct random Fourier features (RFF) [[19] for fast approxi-
mations to kernel methods in order to approximate a pre-specified shift-invariant kernel by a finite
dimensional explicit feature map. If we can draw samples from its spectral measure A, we can
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where wy,...,w,; ~ A and ¢(x) := \/g [cos (w] ) ,sin (w] z) ..., cos (whz),sin (w)z)] . Thus, the
explicit computation of the kernel matrix is not needed and the computational complexity is
reduced. This also allows computation with the approximate, finite-dimensional embeddings
fip = ®(P) = Ex..p¢p(X) € R*™, which can be understood as the evaluations (real and complex
part stacked together) of the characteristic function ¢ p at frequencies wi, . . ., w,,. We will refer to
the approximate embeddings ®(P) as Fourier features of distribution P.

Kernel embeddings can be used for supervised learning on distributions. Assume we have a training
set {B;,y;}1,, where input B; = {xzj}jvzl is a bag of samples taking values in X, and y; is
a response. Given a kernel k: X x X — R, we first map each B; to the empirical embedding
Wp, = N% Z;y:"l k(-,z;;) € H} and then can apply any positive definite kernel on #, as the kernel
on bag inputs, e.g. linear kernel K (B;, B]) = (1tp,+ p, )3, in order to perform classification [[14]
or regression [24]]. Approximate kernel embeddings have also been applied in this context [23].

3 Phase Discrepancy and Phase Features

While MMD and kernel embeddings are related to characteristic functions, and indeed the same
connection forms a basis for fast approximations to kernel methods using random Fourier features
[19], the relevant notion in our context is the phase function of a probability measure, recently used
for nonparametric deconvolution by [3[]. In this section, we overview this formalism. Based on
the empirical phase functions, we will then derive and investigate hypothesis testing and learning
framework using phase features of distributions.

In nonparametric deconvolution [3], the goal is to estimate the density function f; of a univariate r.v.
. . jid

X, but in general we only have noisy data samples Xy, ..., X, 0 X = X, + F, where E denotes

an independent noise term. Even though the distribution of F is unknown, making the assumption

that ' is an SPD noise component, and that X is indecomposable, i.e. X itself does not contain

any SPD noise components, [3]] show that it is possible to obtain consistent estimates of f.

They distinguish between the symmetric noise and the underlying indecomposable component by
matching phase functions, defined as

px (w)
Px () = 1 @)

where ¢ x (w) denotes the characteristic function of X. Observe that |px (w)| = 1, and thus we
are effectively removing the amplitude information from the characteristic function. For a SPD
noise component F, the phase function is pg(w) = 1. But then since v x = ¢x,¢r, we have that
Px, = pPx = ¢x/|ex|, i.e. the phase function is invariant to additive SPD noise components. This
motivates us to construct explicit feature maps of distributions with the same property and similarly
to the motivation of [3]], we argue that real-world distributions of interest often exhibit certain amount
of irregularity and it is exactly this irregularity which is exploited in our methodology.

In analogy to the MMD, we first define the phase discrepancy (PhD) as a weighted L,-distances
between the phase functions:

PhD(X,Y) = /

y lpx (@) — py (W)]? dA (w) 2)

for some non-negative measure A (w.l.o.g. a probability measure). Now suppose we write X =
Xo+U,Y =Y5+ V, where U and V are SPD noise components. This then implies px = px,
and py = py, A-everywhere, so that PhD(X,Y) = PhD(Xj, Yy). It is clear then that the PhD is

1 T

a complex feature map ¢(z) = /L [exp (iw/ z) ..., exp (iw,,z)] can also be used, but we follow the con-
vention of real-valued Fourier features, since kernels of interest are typically real-valued.



not affected by additive SPD noise components, so it captures desired invariance. However, the
PhD for A supported everywhere is in fact not a proper metric on the indecomposable probability
measures Z(R?), as one can find indecomposable random variables X and Y s.t. px = py and thus
PhD(X,Y) = 0. An example is given in Appendix [A]

While such cases appear contrived, we hence restrict attention to a subset of indecomposable
probability measures P(R?) C Z(R?), which are uniquely determined by phase functions, i.e.

VP,Q € P(RY) : pp =pg = P =Q.
We now have the two following propositions (proofs are given in Appendix [B).

Proposition 1.

.
_ E¢.(X) E£, (Y)
PRD(X,Y)=2-2] (uEsw(xw) (I\Eiw(Y)H) dA(w)

where &, (x) = [cos (w'z) ,sin (w'x)] " and I - || denotes the standard Lo norm.

Proposition 2.

}
o { Beux) Ee, (V)
K (Px,Py)= [ (\mmxm) (mmnu) dA(w)

is a positive definite kernel on probability measures.

Now, we can construct an approximate explicit feature map for kernel K. Taking a sample {w; };-, ~
. 2m o3 _ 1 E5w1 (X) ]Efum (X) :
A, we define ¥ : Px ~— R*™ given by U(Px) = /- [HE&n o TR (X)I} . We will refer

to W(-) as the phase features. Note that these are very similar to Fourier features, but the cos, sin-pair
corresponding to each frequency is normalised to have unit Lo norm. In other words, ¥(-) can be
thought of as evaluations of the phase function at the selected frequencies. By construction, phase
features are invariant to additive SPD noise components. For an empirical measure, we simply have
the following:

Aoy 1| B, (X) Be.,, (X)
where we have replaced the expectations by their empirical estimates. Because H\IJ(PX) H =1,we
can construct
— . . . . 2 . N
PRD(Px, Py) = |w(Px) = w(Py)| =2 - 20(Px) " w(Py), @)

which is a Monte Carlo estimator of PhD(Py, Py ). In summary, ¥(P) € R?™ is an explicit feature
vector of the empirical distribution which encodes invariance to additive SPD noise components
present in P EL as demonstrated in Figure|F.1|in the Appendix. It can now be directly applied to (1)
two-sample testing up to SPD components, where the distance between the phase features, i.e. an
estimate (4)) of the PhD, can be used as a test statistic, with details given in section[5.T]and (2) learning
on distributions, where we use phase features as the explicit feature map for a bag of samples.

Although we have assumed an indecomposable underlying distribution so far, this assumption is
not strict. For distribution regression, if the indecomposable assumption is invalid, given that the
underlying distribution is irregular, it may still be useful to encode invariance as long as the benefit
of removing the SPD components irrelevant for learning outweighs the signal in the SPD part of
the distribution, i.e. there is a trade off between SPD noise and SPD signal. In practice, the phase
features we propose can be used to encode such invariance where appropriate or in conjunction with
other features which do not encode invariance.

In order to construct the approximate mean embeddings for learning, we first compute an
explicit feature map by taking averages of the Fourier features, as given by ®(Px) =

N [ngwl (X),..., B¢, (X )] . For phase features, we need to compute an additional normal-

m
1=

isation term over each frequency as in . To obtain the set of frequencies {w;},, we can draw

?Note that, unlike the population expression ¥ (P), the empirical estimator ¥(P) will in general have a
distribution affected by the noise components and is thus only approximately invariant, but we observe that it
captures invariance very well as long as the signal-to-noise regime remains relatively high (Section@.



samples from a probability measure A corresponding to an inverse Fourier transform of a shift-
invariant kernel, e.g. Gaussian Kernel. However, given a supervised signal, we can also optimise a set
of frequencies {w; }, that will give us a useful representation and good discriminative performance.
In other words, we no longer focus on a specific shift-invariant kernel k, but are learning discrim-
inative Fourier/phase features. To do this, we can construct a neural network (NN) with special
activation functions, pooling layers as shown in Algorithm[D.T]|and Figure [D.T]in the Appendix.

4 Asymmetry in Paired Differences

We now consider a separate approach to nonparametric two-sample test, where we wish to test the

null hypothesis that Hy : PiQ vs. the general alternative, but we only have iid samples arising from
X~Px&andY ~ Q& ie.

X=Xo+U Y=Yo+V

where Xg ~ P, Yy ~ Q@ lie in the space of P(R?) of indecomposable distributions uniquely
determined by phase functions and U and V' are SPD noise components. With this setting (proof in

Appendix B):
Proposition 3. Under the null hypothesis Hy, X — Y is SPD <= XoiYo.

This motivates us to simply perform a two-sample test on X — Y and Y — X since its rejection would

imply rejection of X gYO, as it tests for symmetry. However, note that this is a test for symmetry
only and that for consistency against all alternatives, positivity of characteristic function would need
to be checked separately. Now, given two i.i.d. samples {X;}” ; and {Y;}}_, with n even, we split
the two samples into two halves and compute W; = X; — Y; on one half and Z; = Y; — X, on the
other half, and perform a nonparametric two sample test on W and Z (which are, by construction,
independent of each other). The advantage of this regime is that we can use any two-sample test —
in particular in this paper, we will focus on the linear time mean embedding (ME) test [[7]], which
was found to have performance similar to or better than the original MMD two-sample test [3]], and
explicitly formulates a criterion which maximises the test power. We will refer to the resulting test on
paired differences as the Symmetric Mean Embedding (SME).

Although we have assumed here that X, Yy lie in the space P(R?) of indecomposable distributions,
in practice, the SME test would not reject if the underlying distributions of interest differ only in the
symmetric components (or in the SPD components for the PhD test). We argue this to be unlikely due
to real life distributions being complex in nature with interesting differences often having a degree of
asymmetry. In practice, we recommend the use of the ME and SME or PhD test together to provide
an exploratory tool to understand the underlying differences, as demonstrated in the Higgs Data
experiment in section

It is tempting to also consider learning on distributions with invariances using this formalism. However
note that the MMD on paired differences is not invariant to the additive SPD noise components under
the alternative, i.e. in general MMD(X — Y)Y — X) #£ MMD(X, — Yy, Yy — Xj). This means that
the paired differences approach to learning is sensitive to the actual type and scale of the additive
SPD noise components, hence not suitable for learning. The mathematical details and empirical
experiments to show this are presented in Appendix [C|and [F1]

5 Experimental Results

5.1 Two-Sample Tests with Invariances

In this section, we demonstrate the performance of the SME test and the PhD test on both artificial

and real-world data for testing the hypothesis H : XoiYo based on samples {Xi}ﬁl from Xo 4+ U
and {Y;} Y, from Yy + V, where U and V' are arbitrary SPD noise components (we assume the same
number of samples for simplicity). SME test follows the setup in [7]] but applied to { X; — Yl}fi/f and
v, - X,V /2-+1- For the PhD test, we use as the test statistic the estimate %(px, Py) of . It

is unclear what the exact form of the null distribution is, so we use a permutation test, by recomputing
this statistic on the samples which are first merged and then randomly split in the original proportions.
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Figure 1: Type I error and Power under various additional symmetric noise in the synthetic x? dataset.

Dashed line is the 99% Wald interval here. Left: Type I error, 117 denotes the noise to signal ratio

for the first set of samples and n15 for the second set. Right: Power, n; denotes the noise to signal

ratio for the X set of samples and ny denotes the noise to signal ratio for the Y set of samples.

While we are combining samples with different distributions, the permutation test is still justified

. . d . .. . .
since, under the null hypothesis Xy=Y), the resulting characteristic function (,,,;; of the mixture
can be written as

1 1 1 1
Prull = 5PX0PU T SPXPV = ¢x0(§soU + §¢v)
and since the mixture of the SPD noise terms is also SPD, we have that p,,..;; = px, = py,. For our

experiments, we denote by NV the sample size, d the dimension of the samples, and we take o = 0.05
to be the significance level. In the SME test, we take the number of test locations J to be 10, and
use 20% of the samples to optimise the test locations. All experimental results are averaged over
1000 runs, where each run repeats the simulation or randomly samples without replacement from the
dataset.

5.1.1 Synthetic example: Noisy x?

We start by demonstrating our tests with invariances on a simulated dataset where X, and Yj are
random vectors with d = 5, each dimension is the same in distribution and follows x?(4)/4 and
x2(8)/8 respectively, i.e. chi-squared random variables, with different degrees of freedom, rescaled to
have the same mean 1 (but have different variances, 1/2 and 1/4 respectively). An illustration of the
true and empirical phase and characteristic function with noise for these two distributions can be found
in Appendix We construct samples { X, ; ¥, and {Y,,, ;} Y, such that X,,, ~ X+ U, where
U ~ N(0,071) and similarly Y,,, ~ Yy + V, where V ~ N(0, 031), n; denotes the noise-to-signal
ratio given by the ratio of variances in each dimension, i.e. n; = 207 and ny = 403.

We first verify that Type I error is indeed controlled at our design level of o = 0.05 up to various

additive SPD noise components. This is shown in Figure n (left), where XoiYo, both constructed
using x2(4)/4, with the noiseless case found in Figure [F.6/in the Appendix. It is noted here that the
ME test rejects the null hypothesis for even a small difference in noise levels, hence it is unable to
let us target the underlying distributions we are concerned with. This is unlike the SME test which
controls the Type I error even for large differences in noise levels. The PhD test, on the other hand,
while correctly controlling Type I at small noise levels, was found to have inflated Type I error rates
for large noise, with more results and explanation provided in Figure[F.6]in the Appendix. Namely,
the test relies on the invariance to SPD of the population expression of PhD, but the estimator of the
null distribution of the corresponding test statistic will in general be affected by the differing noise
levels.

Next, we investigate the power, shown in Figure[T] (right). For a fair comparison, we have included
the PhD test power only for small noise levels, in which the Type I error is controlled at the design
level. In these cases, the PhD test has better power than the SME test. This is not surprising, as for the
SME we have to halve the sample size in order to construct a valid test. However, recall that the PhD
test has an inflated Type I error for large noises, which means that its results should be considered
with caution in practice. ME test rejects at all levels at all sample sizes as it picks up all possible
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differences. SME and PhD are by construction more conservative tests whose rejection provides a
much stronger statement: two samples differ even when all arbitrary additive SPD components have
been stripped off.

5.1.2 Higgs Dataset

The UCI Higgs dataset [, [11] is a dataset with 11 million observations, where the problem is to
distinguish between the signal process where Higgs bosons are found, versus the background process
that do not produce Higgs bosons. In particular, we will consider a two-sample test with the ME
and SME test on the high level features derived by physicists, as well as a two-sample test on four
extremely low level features (azimuthal angular momentum ¢ measured by four particle jets in the
detector). The high level features here (in R”) have been shown to have good discriminative properties
in [1]. Thus, we expect them to have different distributions across two processes. Denoting by X the
high level features of the process without Higgs Boson, and Y™ as the corresponding distribution for
the processes where Higgs bosons are produced, we test the null hypothesis that the indecomposable
parts of X and Y agree. The results can be found in Table [FI]in the Appendix, which shows that the
high level features differ even up to additive SPD components, with a high power for the SME and
ME test even at small sample sizes (rejection rate of 0.94 at NV = 500). Now we perform the same
experiment, but with the low level features € R*, commented in [T]] to carry very little discriminating
information, using the setup from [2].

The results for the ME and SME test can be found in Figure 2] Here we observe that while ME
test clearly rejects and finds the difference between the two distributions, there is no evidence that
the indecomposable parts of the joint distributions of the angular momentum actually differ. In
fact, the test rejection rate remains around the chosen design level of a = 0.05 for all sample sizes.
This highlights the significance in using the SME test, suggesting that the nature of the difference
between the two processes can potentially be explained by some additive symmetric noise components
which may be irrelevant for discrimination, providing an insight into the dataset. Furthermore, this
also highlights the argument that given two samples from complex data collection and generation
processes, a nonparametric two sample test like ME will likely reject given sufficient sample sizes,
even if the discovered difference may not be of interest. With the SME test however, we can ask a
much more subtle question about the differences between the assumed true underlying processes.
Figures showing that the Type I error is controlled at the design level of o = 0.05 for both low and
high level features can be found in Figure[F7]in the Appendix.

5.2 Learning with Phase Features

5.2.1 Aerosol Dataset

To demonstrate the phase features invariance to SPD noise component, we use the Aerosol MISR1
dataset also studied by [24]] and [25]] and consider a situation with covariate shift [[18] on distribution
inputs: the testing data is impaired by additive SPD components different to that in the training data.



Table 1: Mean Square Error (MSE) on dark o010
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- 0.07
Algorithm MSE 006
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Figure 4: MSE with various levels of noise
added on test set, with 5t and 95" percentile.

Here, we have an aerosol optical depth (AOD) multi-instance learning problem with 800 bags, where
each bag contains 100 randomly selected multispectral (potentially cloudy) pixels within 20km radius
around an AOD sensor. The label y; for each bag is given by the AOD sensor measurements and each
sample x; is 16-dimensional. This can be understood as a distribution regression problem where each
bag is treated as a set of samples from some distribution.

We use 640 bags for training and 160 bags for testing. Here in the bags for testing only, we add
varying levels of Gaussian noise € ~ N(0, Z) to each bag, where Z is a diagonal matrix with
diagonal components z; ~ U|[0, ov;] with v; being the empirical variance in dimension ¢ across all
samples, accounting for different scales across dimensions. For comparisons, we consider linear
ridge regression on embeddings with respect to a Gaussian kernel, approximated with RFF (GLRR)
as described in section[2.1] (i.e. a linear kernel is applied on approximate embeddings), linear ridge
regression on phase features (PLRR) (i.e. normalisation step is applied to obtain (3))), and also the
phase and Fourier neural networks (NN), described in Appendix [D] tuning all hyperparameters with
3-fold cross validation. With the same model, we now measure Root Mean Square Error (RMSE)
100 times with various noise-corrupted test sets and results are shown in figure[3] It is also noted that

a second level non-linear kernel &~ does not improve performance significantly on this problem [24].

We see that GLRR and PLRR are competitive (see Appendix Table[F.2) in the noiseless case, and
these clearly outperform both the Fourier NN and Phase NN (likely due to the small size of the
dataset). For increasing noise, the performance of GLRR degrades significantly, and while the
performance of PLRR degrades also, the model is much more robust under additional SPD noise.
In comparison, the Phase NN implementation is almost insensitive to covariate shift in the test sets,
unlike the performance of PLRR, highlighting the importance of learning discriminative frequencies
w in a very low signal-to-noise setting.

It is noted that the Fourier NN performs similarly to that of the Phase NN on this example. Interest-
ingly, discriminative frequencies learnt on the training data correspond to Fourier features that are
nearly normalised (i.e. they are close to unit norm - see Figure in the Appendix). This means
that the Fourier NN has learned to be approximately invariant based on training data, indicating that
the original Aerosol data potentially has irrelevant SPD noise components. This is reinforced by the
nature of the dataset (each bag contains 100 randomly selected potentially cloudy pixels, known to
be noisy [25]]) and no loss of performance from going from GLRR to PLRR. The results highlights
that phase features are stable under additive SPD noise.

5.2.2 Dark Matter Dataset

We now study the use of phase features on the dark matter dataset, composing of a catalog of galaxy
clusters. In this setting, we would like to predict the total mass of galaxy clusters, using the dispersion
of velocities in the direction along our line of sight. In particular, we will use the ‘ML1’ dataset,
as obtained from the authors of [[16} [17], who constructed a catalog of massive halos from the
MultiDark mdpl simulation [9]. The dataset contains 5028 bags, with each sample consisting of
its sub-object velocity and its mass label in R. By viewing each galaxy cluster at multiple lines of
sights, we obtain 15 000 bags, using the same experimental setup as in [[L0]. For experiments, we use
approximately 9000 bags for training, and 3000 bags each for validation and testing, keeping those
of multiple lines of sight in the same set. As before, we use GLRR and PLRR and we also include



in comparisons methods with a second level Gaussian kernel (with RFF) applied to phase features
(PGRR) and to approximate embeddings (GGRR). For a baseline, we also include a first level linear
kernel (equivalent to representing each bag with its mean), before applying a second level gaussian
kernel (LGRR). We use the same set of randomly sampled frequencies across the methods, tuning for
the scale of the frequencies and for regularisation parameters.

Table E] shows the results of the methods across 10 different data splits, with 50 sets of randomised
frequencies for each data split. We see that PLRR is significantly better than GLRR. This suggests
that under this model structure, by removing SPD components from each bag, we can target the
underlying signal and obtain superior performance, highlighting the applicability of phase features.
Considering a second level gaussian kernel, we see that the GGRR has a slight advantage over PGRR,
with PGRR performing similar to PLRR. This suggests that the SPD components of the distribution
of sub-object velocity may be useful for predicting the mass of a galaxy cluster if an additional
nonlinearity is applied to embeddings — whereas the benefits of removing them outweigh the signal
present in them without this additional nonlinearity. To show that indeed the phase features are robust
to SPD components, we perform the same covariate shift experiment as in the aerosol dataset, with
results given in Figure ] Note that LGRR is robust to noise, as each bag is represented by its mean.

6 Conclusion

No dataset is immune from measurement noise and often this noise differs across different data
generation and collection processes. When measuring distances between distributions, can we
disentangle the differences in noise from the differences in the signal? We considered two different
ways to encode invariances to additive symmetric noise in those distances, each with different
strengths: a nonparametric measure of asymmetry in paired sample differences and a weighted
distance between the empirical phase functions. The former was used to construct a hypothesis test on
whether the difference between the two generating processes can be explained away by the difference
in postulated noise, whereas the latter allowed us to introduce a flexible framework for invariant
feature construction and learning algorithms on distribution inputs which are robust to measurement
noise and target underlying signal distributions.
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