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Abstract

Autoregressive models are among the best performing neural density estimators.
We describe an approach for increasing the flexibility of an autoregressive model,
based on modelling the random numbers that the model uses internally when gen-
erating data. By constructing a stack of autoregressive models, each modelling the
random numbers of the next model in the stack, we obtain a type of normalizing
flow suitable for density estimation, which we call Masked Autoregressive Flow.
This type of flow is closely related to Inverse Autoregressive Flow and is a gen-
eralization of Real NVP. Masked Autoregressive Flow achieves state-of-the-art
performance in a range of general-purpose density estimation tasks.

1 Introduction

The joint density p(x) of a set of variables x is a central object of interest in machine learning. Being
able to access and manipulate p(x) enables a wide range of tasks to be performed, such as inference,
prediction, data completion and data generation. As such, the problem of estimating p(x) from a set
of examples {xn} is at the core of probabilistic unsupervised learning and generative modelling.

In recent years, using neural networks for density estimation has been particularly successful. Combin-
ing the flexibility and learning capacity of neural networks with prior knowledge about the structure
of data to be modelled has led to impressive results in modelling natural images [4, 30, 37, 38] and
audio data [34, 36]. State-of-the-art neural density estimators have also been used for likelihood-free
inference from simulated data [21, 23], variational inference [13, 24], and as surrogates for maximum
entropy models [19].

Neural density estimators differ from other approaches to generative modelling—such as variational
autoencoders [12, 25] and generative adversarial networks [7]—in that they readily provide exact
density evaluations. As such, they are more suitable in applications where the focus is on explicitly
evaluating densities, rather than generating synthetic data. For instance, density estimators can learn
suitable priors for data from large unlabelled datasets, for use in standard Bayesian inference [39].
In simulation-based likelihood-free inference, conditional density estimators can learn models for
the likelihood [5] or the posterior [23] from simulated data. Density estimators can learn effective
proposals for importance sampling [22] or sequential Monte Carlo [8, 21]; such proposals can be
used in probabilistic programming environments to speed up inference [15, 16]. Finally, conditional
density estimators can be used as flexible inference networks for amortized variational inference and
as part of variational autoencoders [12, 25].

A challenge in neural density estimation is to construct models that are flexible enough to represent
complex densities, but have tractable density functions and learning algorithms. There are mainly
two families of neural density estimators that are both flexible and tractable: autoregressive models
[35] and normalizing flows [24]. Autoregressive models decompose the joint density as a product of
conditionals, and model each conditional in turn. Normalizing flows transform a base density (e.g. a
standard Gaussian) into the target density by an invertible transformation with tractable Jacobian.
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Our starting point is the realization (as pointed out by Kingma et al. [13]) that autoregressive models,
when used to generate data, correspond to a differentiable transformation of an external source of
randomness (typically obtained by random number generators). This transformation has a tractable
Jacobian by design, and for certain autoregressive models it is also invertible, hence it precisely
corresponds to a normalizing flow. Viewing an autoregressive model as a normalizing flow opens
the possibility of increasing its flexibility by stacking multiple models of the same type, by having
each model provide the source of randomness for the next model in the stack. The resulting stack of
models is a normalizing flow that is more flexible than the original model, and that remains tractable.

In this paper we present Masked Autoregressive Flow (MAF), which is a particular implementation of
the above normalizing flow that uses the Masked Autoencoder for Distribution Estimation (MADE)
[6] as a building block. The use of MADE enables density evaluations without the sequential loop
that is typical of autoregressive models, and thus makes MAF fast to evaluate and train on parallel
computing architectures such as Graphics Processing Units (GPUs). We show a close theoretical
connection between MAF and Inverse Autoregressive Flow (IAF) [13], which has been designed for
variational inference instead of density estimation, and show that both correspond to generalizations
of the successful Real NVP [4]. We experimentally evaluate MAF on a wide range of datasets, and
we demonstrate that (a) MAF outperforms Real NVP on general-purpose density estimation, and (b)
a conditional version of MAF achieves close to state-of-the-art performance on conditional image
modelling even with a general-purpose architecture.

2 Background

2.1 Autoregressive density estimation

Using the chain rule of probability, any joint density p(x) can be decomposed into a product of
one-dimensional conditionals as p(x) =

∏
i p(xi |x1:i−1). Autoregressive density estimators [35]

model each conditional p(xi |x1:i−1) as a parametric density, whose parameters are a function of a
hidden state hi. In recurrent architectures, hi is a function of the previous hidden state hi−1 and the
ith input variable xi. The Real-valued Neural Autoregressive Density Estimator (RNADE) [32] uses
mixtures of Gaussian or Laplace densities for modelling the conditionals, and a simple linear rule for
updating the hidden state. More flexible approaches for updating the hidden state are based on Long
Short-Term Memory recurrent neural networks [30, 38].

A drawback of autoregressive models is that they are sensitive to the order of the variables. For
example, the order of the variables matters when learning the density of Figure 1a if we assume a
model with Gaussian conditionals. As Figure 1b shows, a model with order (x1, x2) cannot learn
this density, even though the same model with order (x2, x1) can represent it perfectly. In practice
is it hard to know which of the factorially many orders is the most suitable for the task at hand.
Autoregressive models that are trained to work with an order chosen at random have been developed,
and the predictions from different orders can then be combined in an ensemble [6, 33]. Our approach
(Section 3) can use a different order in each layer, and using random orders would also be possible.

Straightforward recurrent autoregressive models would update a hidden state sequentially for every
variable, requiring D sequential computations to compute the probability p(x) of a D-dimensional
vector, which is not well-suited for computation on parallel architectures such as GPUs. One way to
enable parallel computation is to start with a fully-connected model with D inputs and D outputs, and
drop out connections in order to ensure that output i will only be connected to inputs 1, 2, . . . , i−1.
Output i can then be interpreted as computing the parameters of the ith conditional p(xi |x1:i−1).
By construction, the resulting model will satisfy the autoregressive property, and at the same time
it will be able to calculate p(x) efficiently on a GPU. An example of this approach is the Masked
Autoencoder for Distribution Estimation (MADE) [6], which drops out connections by multiplying
the weight matrices of a fully-connected autoencoder with binary masks. Other mechanisms for
dropping out connections include masked convolutions [38] and causal convolutions [36].

2.2 Normalizing flows

A normalizing flow [24] represents p(x) as an invertible differentiable transformation f of a base
density πu(u). That is, x = f(u) where u ∼ πu(u). The base density πu(u) is chosen such that it
can be easily evaluated for any input u (a common choice for πu(u) is a standard Gaussian). Under
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(a) Target density (b) MADE with Gaussian conditionals (c) MAF with 5 layers

Figure 1: (a) The density to be learnt, defined as p(x1, x2) = N (x2 | 0, 4)N
(
x1 | 14x

2
2, 1
)
. (b) The

density learnt by a MADE with order (x1, x2) and Gaussian conditionals. Scatter plot shows the train
data transformed into random numbers u; the non-Gaussian distribution indicates that the model is a
poor fit. (c) Learnt density and transformed train data of a 5 layer MAF with the same order (x1, x2).

the invertibility assumption for f , the density p(x) can be calculated as

p(x) = πu
(
f−1(x)

) ∣∣∣∣det(∂f−1

∂x

)∣∣∣∣ . (1)

In order for Equation (1) to be tractable, the transformation f must be constructed such that (a) it
is easy to invert, and (b) the determinant of its Jacobian is easy to compute. An important point is
that if transformations f1 and f2 have the above properties, then their composition f1 ◦ f2 also has
these properties. In other words, the transformation f can be made deeper by composing multiple
instances of it, and the result will still be a valid normalizing flow.

There have been various approaches in developing normalizing flows. An early example is Gaussian-
ization [2], which is based on successive application of independent component analysis. Enforcing
invertibility with nonsingular weight matrices has been proposed [1, 26], however in such approaches
calculating the determinant of the Jacobian scales cubicly with data dimensionality in general. Pla-
nar/radial flows [24] and Inverse Autoregressive Flow (IAF) [13] are models whose Jacobian is
tractable by design. However, they were developed primarily for variational inference and are not
well-suited for density estimation, as they can only efficiently calculate the density of their own sam-
ples and not of externally provided datapoints. The Non-linear Independent Components Estimator
(NICE) [3] and its successor Real NVP [4] have a tractable Jacobian and are also suitable for density
estimation. IAF, NICE and Real NVP are discussed in more detail in Section 3.

3 Masked Autoregressive Flow

3.1 Autoregressive models as normalizing flows

Consider an autoregressive model whose conditionals are parameterized as single Gaussians. That is,
the ith conditional is given by

p(xi |x1:i−1) = N
(
xi |µi, (expαi)2

)
where µi = fµi

(x1:i−1) and αi = fαi
(x1:i−1). (2)

In the above, fµi
and fαi

are unconstrained scalar functions that compute the mean and log standard
deviation of the ith conditional given all previous variables. We can generate data from the above
model using the following recursion:

xi = ui expαi + µi where µi = fµi
(x1:i−1), αi = fαi

(x1:i−1) and ui ∼ N (0, 1). (3)

In the above, u = (u1, u2, . . . , uI) is the vector of random numbers the model uses internally to
generate data, typically by making calls to a random number generator often called randn().

Equation (3) provides an alternative characterization of the autoregressive model as a transformation
f from the space of random numbers u to the space of data x. That is, we can express the model
as x = f(u) where u ∼ N (0, I). By construction, f is easily invertible. Given a datapoint x, the
random numbers u that were used to generate it are obtained by the following recursion:

ui = (xi − µi) exp(−αi) where µi = fµi
(x1:i−1) and αi = fαi

(x1:i−1). (4)
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Due to the autoregressive structure, the Jacobian of f−1 is triangular by design, hence its absolute
determinant can be easily obtained as follows:∣∣∣∣det(∂f−1

∂x

)∣∣∣∣ = exp
(
−
∑

i
αi

)
where αi = fαi(x1:i−1). (5)

It follows that the autoregressive model can be equivalently interpreted as a normalizing flow, whose
density p(x) can be obtained by substituting Equations (4) and (5) into Equation (1). This observation
was first pointed out by Kingma et al. [13].

A useful diagnostic for assessing whether an autoregressive model of the above type fits the target
density well is to transform the train data {xn} into corresponding random numbers {un} using
Equation (4), and assess whether the ui’s come from independent standard normals. If the ui’s do
not seem to come from independent standard normals, this is evidence that the model is a bad fit. For
instance, Figure 1b shows that the scatter plot of the random numbers associated with the train data
can look significantly non-Gaussian if the model fits the target density poorly.

Here we interpret autoregressive models as a flow, and improve the model fit by stacking multiple
instances of the model into a deeper flow. Given autoregressive models M1,M2, . . . ,MK , we model
the density of the random numbers u1 ofM1 withM2, model the random numbers u2 ofM2 withM3

and so on, finally modelling the random numbers uK of MK with a standard Gaussian. This stacking
adds flexibility: for example, Figure 1c demonstrates that a flow of 5 autoregressive models is able
to learn multimodal conditionals, even though each model has unimodal conditionals. Stacking has
previously been used in a similar way to improve model fit of deep belief nets [9] and deep mixtures
of factor analyzers [28].

We choose to implement the set of functions {fµi
, fαi
} with masking, following the approach used

by MADE [6]. MADE is a feedforward network that takes x as input and outputs µi and αi for
all i with a single forward pass. The autoregressive property is enforced by multiplying the weight
matrices of MADE with suitably constructed binary masks. In other words, we use MADE with
Gaussian conditionals as the building layer of our flow. The benefit of using masking is that it
enables transforming from data x to random numbers u and thus calculating p(x) in one forward
pass through the flow, thus eliminating the need for sequential recursion as in Equation (4). We call
this implementation of stacking MADEs into a flow Masked Autoregressive Flow (MAF).

3.2 Relationship with Inverse Autoregressive Flow

Like MAF, Inverse Autoregressive Flow (IAF) [13] is a normalizing flow which uses MADE as its
component layer. Each layer of IAF is defined by the following recursion:

xi = ui expαi + µi where µi = fµi
(u1:i−1) and αi = fαi

(u1:i−1). (6)

Similarly to MAF, functions {fµi , fαi} are computed using a MADE with Gaussian conditionals.
The difference is architectural: in MAF µi and αi are directly computed from previous data variables
x1:i−1, whereas in IAF µi and αi are directly computed from previous random numbers u1:i−1.

The consequence of the above is that MAF and IAF are different models with different computational
trade-offs. MAF is capable of calculating the density p(x) of any datapoint x in one pass through
the model, however sampling from it requires performing D sequential passes (where D is the
dimensionality of x). In contrast, IAF can generate samples and calculate their density with one pass,
however calculating the density p(x) of an externally provided datapoint x requires D passes to find
the random numbers u associated with x. Hence, the design choice of whether to connect µi and
αi directly to x1:i−1 (obtaining MAF) or to u1:i−1 (obtaining IAF) depends on the intended usage.
IAF is suitable as a recognition model for stochastic variational inference [12, 25], where it only
ever needs to calculate the density of its own samples. In contrast, MAF is more suitable for density
estimation, because each example requires only one pass through the model whereas IAF requires D.

A theoretical equivalence between MAF and IAF is that training a MAF with maximum likelihood
corresponds to fitting an implicit IAF to the base density with stochastic variational inference. Let
πx(x) be the data density we wish to learn, πu(u) be the base density, and f be the transformation
from u to x as implemented by MAF. The density defined by MAF (with added subscript x for
disambiguation) is

px(x) = πu
(
f−1(x)

) ∣∣∣∣det(∂f−1

∂x

)∣∣∣∣ . (7)
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The inverse transformation f−1 from x to u can be seen as describing an implicit IAF with base
density πx(x), which defines the following implicit density over the u space:

pu(u) = πx(f(u))

∣∣∣∣det(∂f∂u
)∣∣∣∣ . (8)

Training MAF by maximizing the total log likelihood
∑
n log p(xn) on train data {xn} corresponds

to fitting px(x) to πx(x) by stochastically minimizing DKL(πx(x) ‖ px(x)). In Section A of the
supplementary material, we show that

DKL(πx(x) ‖ px(x)) = DKL(pu(u) ‖πu(u)). (9)

Hence, stochastically minimizing DKL(πx(x) ‖ px(x)) is equivalent to fitting pu(u) to πu(u) by
minimizing DKL(pu(u) ‖πu(u)). Since the latter is the loss function used in variational inference,
and pu(u) can be seen as an IAF with base density πx(x) and transformation f−1, it follows that
training MAF as a density estimator of πx(x) is equivalent to performing stochastic variational
inference with an implicit IAF, where the posterior is taken to be the base density πu(u) and the
transformation f−1 implements the reparameterization trick [12, 25]. This argument is presented in
more detail in Section A of the supplementary material.

3.3 Relationship with Real NVP

Real NVP [4] (NVP stands for Non Volume Preserving) is a normalizing flow obtained by stacking
coupling layers. A coupling layer is an invertible transformation f from random numbers u to data x
with a tractable Jacobian, defined by

x1:d = u1:d

xd+1:D = ud+1:D � expα+ µ
where

µ = fµ(u1:d)

α = fα(u1:d).
(10)

In the above, � denotes elementwise multiplication, and the exp is applied to each element of α. The
transformation copies the first d elements, and scales and shifts the remaining D−d elements, with
the amount of scaling and shifting being a function of the first d elements. When stacking coupling
layers into a flow, the elements are permuted across layers so that a different set of elements is copied
each time. A special case of the coupling layer where α=0 is used by NICE [3].

We can see that the coupling layer is a special case of both the autoregressive transformation used by
MAF in Equation (3), and the autoregressive transformation used by IAF in Equation (6). Indeed, we
can recover the coupling layer from the autoregressive transformation of MAF by setting µi = αi = 0
for i ≤ d and making µi and αi functions of only x1:d for i > d (for IAF we need to make µi and αi
functions of u1:d instead for i > d). In other words, both MAF and IAF can be seen as more flexible
(but different) generalizations of Real NVP, where each element is individually scaled and shifted as
a function of all previous elements. The advantage of Real NVP compared to MAF and IAF is that it
can both generate data and estimate densities with one forward pass only, whereas MAF would need
D passes to generate data and IAF would need D passes to estimate densities.

3.4 Conditional MAF

Given a set of example pairs {(xn,yn)}, conditional density estimation is the task of estimating
the conditional density p(x |y). Autoregressive modelling extends naturally to conditional density
estimation. Each term in the chain rule of probability can be conditioned on side-information y,
decomposing any conditional density as p(x |y) =

∏
i p(xi |x1:i−1,y). Therefore, we can turn any

unconditional autoregressive model into a conditional one by augmenting its set of input variables
with y and only modelling the conditionals that correspond to x. Any order of the variables can be
chosen, as long as y comes before x. In masked autoregressive models, no connections need to be
dropped from the y inputs to the rest of the network.

We can implement a conditional version of MAF by stacking MADEs that were made conditional
using the above strategy. That is, in a conditional MAF, the vector y becomes an additional input
for every layer. As a special case of MAF, Real NVP can be made conditional in the same way.
In Section 4, we show that conditional MAF significantly outperforms unconditional MAF when
conditional information (such as data labels) is available. In our experiments, MAF was able to
benefit from conditioning considerably more than MADE and Real NVP.
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4 Experiments

4.1 Implementation and setup

We systematically evaluate three types of density estimator (MADE, Real NVP and MAF) in terms
of density estimation performance on a variety of datasets. Code for reproducing our experiments
(which uses Theano [29]) can be found at https://github.com/gpapamak/maf.

MADE. We consider two versions: (a) a MADE with Gaussian conditionals, denoted simply by
MADE, and (b) a MADE whose conditionals are each parameterized as a mixture of C Gaussians,
denoted by MADE MoG. We used C=10 in all our experiments. MADE can be seen either as a
MADE MoG with C=1, or as a MAF with only one autoregressive layer. Adding more Gaussian
components per conditional or stacking MADEs to form a MAF are two alternative ways of increasing
the flexibility of MADE, which we are interested in comparing.

Real NVP. We consider a general-purpose implementation of the coupling layer, which uses two
feedforward neural networks, implementing the scaling function fα and the shifting function fµ
respectively. Both networks have the same architecture, except that fα has hyperbolic tangent hidden
units, whereas fµ has rectified linear hidden units (we found this combination to perform best). Both
networks have a linear output. We consider Real NVPs with either 5 or 10 coupling layers, denoted
by Real NVP (5) and Real NVP (10) respectively, and in both cases the base density is a standard
Gaussian. Successive coupling layers alternate between (a) copying the odd-indexed variables and
transforming the even-indexed variables, and (b) copying the even-indexed variables and transforming
the odd-indexed variables. It is important to clarify that this is a general-purpose implementation of
Real NVP which is different and thus not comparable to its original version [4], which was designed
specifically for image data. Here we are interested in comparing coupling layers with autoregressive
layers as building blocks of normalizing flows for general-purpose density estimation tasks, and our
design of Real NVP is such that a fair comparison between the two can be made.

MAF. We consider three versions: (a) a MAF with 5 autoregressive layers and a standard Gaussian as
a base density πu(u), denoted by MAF (5), (b) a MAF with 10 autoregressive layers and a standard
Gaussian as a base density, denoted by MAF (10), and (c) a MAF with 5 autoregressive layers and a
MADE MoG with C=10 Gaussian components as a base density, denoted by MAF MoG (5). MAF
MoG (5) can be thought of as a MAF (5) stacked on top of a MADE MoG and trained jointly with it.

In all experiments, MADE and MADE MoG order the inputs using the order that comes with the
dataset by default; no alternative orders were considered. MAF uses the default order for the first
autoregressive layer (i.e. the layer that directly models the data) and reverses the order for each
successive layer (the same was done for IAF by Kingma et al. [13]).

MADE, MADE MoG and each layer in MAF is a feedforward neural network with masked weight
matrices, such that the autoregressive property holds. The procedure for designing the masks (due to
Germain et al. [6]) is as follows. Each input or hidden unit is assigned a degree, which is an integer
ranging from 1 to D, where D is the data dimensionality. The degree of an input is taken to be its
index in the order. The D outputs have degrees that sequentially range from 0 to D−1. A unit is
allowed to receive input only from units with lower or equal degree, which enforces the autoregressive
property. In order for output i to be connected to all inputs with degree less than i, and thus make
sure that no conditional independences are introduced, it is both necessary and sufficient that every
hidden layer contains every degree. In all experiments except for CIFAR-10, we sequentially assign
degrees within each hidden layer and use enough hidden units to make sure that all degrees appear.
Because CIFAR-10 is high-dimensional, we used fewer hidden units than inputs and assigned degrees
to hidden units uniformly at random (as was done by Germain et al. [6]).

We added batch normalization [10] after each coupling layer in Real NVP and after each autore-
gressive layer in MAF. Batch normalization is an elementwise scaling and shifting, which is easily
invertible and has a tractable Jacobian, and thus it is suitable for use in a normalizing flow. We
found that batch normalization in Real NVP and MAF reduces training time, increases stability
during training and improves performance (as observed by Dinh et al. [4] for Real NVP). Section B
of the supplementary material discusses our implementation of batch normalization and its use in
normalizing flows.

All models were trained with the Adam optimizer [11], using a minibatch size of 100, and a step size
of 10−3 for MADE and MADE MoG, and of 10−4 for Real NVP and MAF. A small amount of `2
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Table 1: Average test log likelihood (in nats) for unconditional density estimation. The best performing
model for each dataset is shown in bold (multiple models are highlighted if the difference is not
statistically significant according to a paired t-test). Error bars correspond to 2 standard deviations.

POWER GAS HEPMASS MINIBOONE BSDS300

Gaussian −7.74± 0.02 −3.58± 0.75 −27.93± 0.02 −37.24± 1.07 96.67± 0.25

MADE −3.08± 0.03 3.56± 0.04 −20.98± 0.02 −15.59± 0.50 148.85± 0.28
MADE MoG 0.40± 0.01 8.47± 0.02 −15.15± 0.02 −12.27± 0.47 153.71± 0.28

Real NVP (5) −0.02± 0.01 4.78± 1.80 −19.62± 0.02 −13.55± 0.49 152.97± 0.28
Real NVP (10) 0.17± 0.01 8.33± 0.14 −18.71± 0.02 −13.84± 0.52 153.28± 1.78

MAF (5) 0.14± 0.01 9.07± 0.02 −17.70± 0.02 −11.75± 0.44 155.69± 0.28
MAF (10) 0.24± 0.01 10.08± 0.02 −17.73± 0.02 −12.24± 0.45 154.93± 0.28
MAF MoG (5) 0.30± 0.01 9.59± 0.02 −17.39± 0.02 −11.68± 0.44 156.36± 0.28

regularization was added, with coefficient 10−6. Each model was trained with early stopping until no
improvement occurred for 30 consecutive epochs on the validation set. For each model, we selected
the number of hidden layers and number of hidden units based on validation performance (we gave
the same options to all models), as described in Section D of the supplementary material.

4.2 Unconditional density estimation

Following Uria et al. [32], we perform unconditional density estimation on four UCI datasets
(POWER, GAS, HEPMASS, MINIBOONE) and on a dataset of natural image patches (BSDS300).

UCI datasets. These datasets were taken from the UCI machine learning repository [18]. We selected
different datasets than Uria et al. [32], because the ones they used were much smaller, resulting in
an expensive cross-validation procedure involving a separate hyperparameter search for each fold.
However, our data preprocessing follows Uria et al. [32]. The sample mean was subtracted from the
data and each feature was divided by its sample standard deviation. Discrete-valued attributes were
eliminated, as well as every attribute with a Pearson correlation coefficient greater than 0.98. These
procedures are meant to avoid trivial high densities, which would make the comparison between
approaches hard to interpret. Section D of the supplementary material gives more details about the
UCI datasets and the individual preprocessing done on each of them.

Image patches. This dataset was obtained by extracting random 8×8 monochrome patches from
the BSDS300 dataset of natural images [20]. We used the same preprocessing as by Uria et al. [32].
Uniform noise was added to dequantize pixel values, which was then rescaled to be in the range [0, 1].
The mean pixel value was subtracted from each patch, and the bottom-right pixel was discarded.

Table 1 shows the performance of each model on each dataset. A Gaussian fitted to the train data is
reported as a baseline. We can see that on 3 out of 5 datasets MAF is the best performing model, with
MADE MoG being the best performing model on the other 2. On all datasets, MAF outperforms
Real NVP. For the MINIBOONE dataset, due to overlapping error bars, a pairwise comparison was
done to determine which model performs the best, the results of which are reported in Section E
of the supplementary material. MAF MoG (5) achieves the best reported result on BSDS300 for a
single model with 156.36 nats, followed by Deep RNADE [33] with 155.2. An ensemble of 32 Deep
RNADEs was reported to achieve 157.0 nats [33]. The UCI datasets were used for the first time in
the literature for density estimation, so no comparison with existing work can be made yet.

4.3 Conditional density estimation

For conditional density estimation, we used the MNIST dataset of handwritten digits [17] and the
CIFAR-10 dataset of natural images [14]. In both datasets, each datapoint comes from one of 10
distinct classes. We represent the class label as a 10-dimensional, one-hot encoded vector y, and we
model the density p(x |y), where x represents an image. At test time, we evaluate the probability of
a test image x by p(x)=

∑
y p(x |y)p(y), where p(y)= 1

10 is a uniform prior over the labels. For
comparison, we also train every model as an unconditional density estimator and report both results.
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Table 2: Average test log likelihood (in nats) for conditional density estimation. The best performing
model for each dataset is shown in bold. Error bars correspond to 2 standard deviations.

MNIST CIFAR-10

unconditional conditional unconditional conditional

Gaussian −1366.9± 1.4 −1344.7± 1.8 2367± 29 2030± 41

MADE −1380.8± 4.8 −1361.9± 1.9 147± 20 187± 20
MADE MoG −1038.5± 1.8 −1030.3± 1.7 −397± 21 −119± 20

Real NVP (5) −1323.2± 6.6 −1326.3± 5.8 2576± 27 2642± 26
Real NVP (10) −1370.7± 10.1 −1371.3± 43.9 2568± 26 2475± 25

MAF (5) −1300.5± 1.7 −591.7± 1.7 2936± 27 5797± 26
MAF (10) −1313.1± 2.0 −605.6± 1.8 3049± 26 5872± 26
MAF MoG (5) −1100.3± 1.6 −1092.3± 1.7 2911± 26 2936± 26

For both MNIST and CIFAR-10, we use the same preprocessing as by Dinh et al. [4]. We dequantize
pixel values by adding uniform noise, and then rescale them to [0, 1]. We transform the rescaled pixel
values into logit space by x 7→ logit(λ+ (1− 2λ)x), where λ=10−6 for MNIST and λ=0.05 for
CIFAR-10, and perform density estimation in that space. In the case of CIFAR-10, we also augment
the train set with horizontal flips of all train examples (as also done by Dinh et al. [4]).

Table 2 shows the results on MNIST and CIFAR-10. The performance of a class-conditional Gaussian
is reported as a baseline for the conditional case. Log likelihoods are calculated in logit space. For
unconditional density estimation, MADE MoG is the best performing model on MNIST, whereas
MAF is the best performing model on CIFAR-10. For conditional density estimation, MAF is by far
the best performing model on both datasets. On CIFAR-10, both MADE and MADE MoG performed
significantly worse than the Gaussian baseline. MAF outperforms Real NVP in all cases.

The conditional performance of MAF is particularly impressive. MAF performs almost twice as well
compared to its unconditional version and to every other model’s conditional version. To facilitate
comparison with the literature, Section E of the supplementary material reports results in bits/pixel.
MAF (5) and MAF (10), the two best performing conditional models, achieve 3.02 and 2.98 bits/pixel
respectively on CIFAR-10. This result is very close to the state-of-the-art 2.94 bits/pixel achieved
by a conditional PixelCNN++ [27], even though, unlike PixelCNN++, our version of MAF does not
incorporate prior image knowledge, and it pays a price for doing density estimation in a transformed
real-valued space (PixelCNN++ directly models discrete pixel values).

5 Discussion

We showed that we can improve MADE by modelling the density of its internal random numbers.
Alternatively, MADE can be improved by increasing the flexibility of its conditionals. The comparison
between MAF and MADE MoG showed that the best approach is dataset specific; in our experiments
MAF outperformed MADE MoG in 6 out of 9 cases, which is strong evidence of its competitiveness.
MADE MoG is a universal density approximator; with sufficiently many hidden units and Gaussian
components, it can approximate any continuous density arbitrarily well. It is an open question
whether MAF with a Gaussian base density has a similar property (MAF MoG clearly does).

We also showed that the coupling layer used in Real NVP is a special case of the autoregressive layer
used in MAF. In fact, MAF outperformed Real NVP in all our experiments. Real NVP has achieved
impressive performance in image modelling by incorporating knowledge about image structure. Our
results suggest that replacing coupling layers with autoregressive layers in the original version of Real
NVP is a promising direction for further improving its performance. Real NVP maintains however
the advantage over MAF (and autoregressive models in general) that samples from the model can be
generated efficiently in parallel.

MAF achieved impressive results in conditional density estimation. Whereas almost all models we
considered benefited from the additional information supplied by the labels, MAF nearly doubled
its performance, coming close to state-of-the-art models for image modelling without incorporating
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any prior image knowledge. The ability of MAF to benefit significantly from conditional knowledge
suggests that automatic discovery of conditional structure (e.g. finding labels by clustering) could be
a promising direction for improving unconditional density estimation in general.

Density estimation is one of several types of generative modelling, with the focus on obtaining
accurate densities. However, we know that accurate densities do not necessarily imply good perfor-
mance in other tasks, such as in data generation [31]. Alternative approaches to generative modelling
include variational autoencoders [12, 25], which are capable of efficient inference of their (potentially
interpretable) latent space, and generative adversarial networks [7], which are capable of high quality
data generation. Choice of method should be informed by whether the application at hand calls for
accurate densities, latent space inference or high quality samples. Masked Autoregressive Flow is a
contribution towards the first of these goals.
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