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Abstract

Recent attacks on Bitcoin’s peer-to-peer (P2P) network demonstrated that its
transaction-flooding protocols, which are used to ensure network consistency,
may enable user deanonymization—the linkage of a user’s IP address with her
pseudonym in the Bitcoin network. In 2015, the Bitcoin community responded
to these attacks by changing the network’s flooding mechanism to a different
protocol, known as diffusion. However, it is unclear if diffusion actually improves
the system’s anonymity. In this paper, we model the Bitcoin networking stack and
analyze its anonymity properties, both pre- and post-2015. The core problem is
one of epidemic source inference over graphs, where the observational model and
spreading mechanisms are informed by Bitcoin’s implementation; notably, these
models have not been studied in the epidemic source detection literature before.
We identify and analyze near-optimal source estimators. This analysis suggests
that Bitcoin’s networking protocols (both pre- and post-2015) offer poor anonymity
properties on networks with a regular-tree topology. We confirm this claim in
simulation on a 2015 snapshot of the real Bitcoin P2P network topology.

1 Introduction

The Bitcoin cryptocurrency has seen widespread adoption, due in part to its reputation as a privacy-
preserving financial system [17, 22]. In practice, though, Bitcoin exhibits serious privacy vulner-
abilities [3, 19, 27, 28, 24]. Most of these vulnerabilities arise because of two key properties: (1)
Bitcoin associates each user with a pseudonym, and (2) pseudonyms can be linked to financial trans-
actions through a public transaction ledger, called the blockchain [23]. If an attacker can associate a
pseudonym with a human identity, the attacker may learn the user’s transaction history.

In practice, there are several ways to link a user to her Bitcoin pseudonym. The most commonly-
studied methods analyze transaction patterns in the public blockchain, and link those patterns using
side information [3, 19, 27, 28, 24]. In this paper, we are interested in a lower-layer vulnerability: the
networking stack. Like most cryptocurrencies, Bitcoin nodes communicate over a P2P network [23].
Whenever a user (Alice) generates a transaction (i.e., sends bitcoins to another user, Bob), she first
creates a “transaction message” that contains her pseudonym, Bob’s pseudonym, and the transaction
amount. Alice subsequently floods this transaction message over the P2P network, which enables
other users to validate her transaction and incorporate it into the global blockchain.

The anonymity implications of transaction broadcasting were largely ignored until recently, when
researchers demonstrated practical deanonymization attacks on the P2P network [6, 15]. These
attacks use a “supernode” to connect to all active Bitcoin nodes and listen to the transaction traffic
they relay [15, 6, 7]. By using simple estimators to infer the source IP of each transaction broadcast,
this eavesdropper adversary was able to link IP addresses to Bitcoin pseudonyms with an accuracy
of up to 30% [6]. We refer to such linkage as deanonymization.
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In 2015, the Bitcoin community responded to these attacks by changing its flooding protocols from
a gossip-style protocol known as trickle spreading to a diffusion spreading protocol that spreads
content with independent exponential delays [1]. We define these protocols precisely in Section 2.
However, no systematic motivation was provided for this shift. Indeed, it is unclear whether the
change actually defends against the deanonymization attacks in [6, 15].

Problem and contributions. The main point of our paper is to show that Bitcoin’s flooding protocols
have poor anonymity properties, and the community’s shift from trickle spreading (pre-2015) to
diffusion spreading (post-2015) did not help the situation. The problem of deanonymizing a user
in this context is mathematically equivalent to inferring the source of a random spreading process
over a graph, given partial observations of the spread. The optimal (maximum-likelihood) source-
identification algorithms change between spreading protocols; identifying such algorithms and
quantifying their accuracy is the primary focus of this work. We find that despite having different
maximum-likelihood estimators, trickle and diffusion exhibit roughly the same, poor anonymity
properties. Our specific contributions are threefold:

(1) Modeling. We model the Bitcoin P2P network and an eavesdropper adversary, whose capabilities
reflect recent practical attacks in [6, 15]. Most Bitcoin network protocols are not explicitly docu-
mented, so modeling the system requires parsing a combination of documentation, papers, and code.
Several of the resulting models are new to the epidemic source detection literature.

(2) Analysis of Trickle (Pre-2015). We analyze the probability of deanonymization by an eavesdropper
adversary under trickle propagation. Our analysis is conducted over a regular tree-structured network.
Although the Bitcoin network topology is not a regular tree, we show in Section 2 that regular trees are
a reasonable first-order model. We consider graph-independent estimators (e.g., the first-timestamp
estimator), as well as maximum-likelihood estimators; both are defined precisely in Section 2. Our
analysis suggests that although the first-timestamp estimator performs poorly on high-degree trees,
maximum-likelihood estimators achieve high probabilities of detection for trees of any degree d.

(3) Analysis of Diffusion (Post-2015). We conduct a similar analysis of diffusion spreading, which was
adopted in 2015 as a fix for the anonymity weaknesses observed under trickle propagation [6, 15]. The
analysis of diffusion requires different theoretical tools, including nonlinear differential equations and
generalized Polya urns. Although the analysis techniques and attack mechanisms are different, we find
that the anonymity properties of diffusion are similar to those of trickle. Namely, the first-timestamp
estimator’s probability of detection decays to 0 as degree d grows, but the maximum-likelihood
probability of detection remains high (in particular, non-vanishing) even as d — oo.

2 Model and related work

Network model. We model the P2P network of Bitcoin nodes as a graph G(V, E), where V' is
the set of all server nodes and F is the set of edges, or connections, between them. Each server is
represented by a (IP address, port) tuple; it can establish up to eight outgoing connections to other
Bitcoin nodes [6, 2]. The resulting sparse random graph between nodes can be modeled approximately
as a 16-regular graph; in practice, the average degree is closer to 8 due to nonhomogeneities across
nodes [20]. The graph is locally tree-like and (approximately) regular. For this reason, regular trees
are a natural class of graphs to study. In our theoretical analysis, we model G as a d-regular tree. We
validate this choice by running simulations on a snapshot of the true Bitcoin network [20] (Section 5).

Spreading protocols. Each transaction must be broadcast over the network; we analyze the spread
of a single message originating from source node v* € V. Without loss of generality, we label v* as
node ‘0’ when iterating over nodes. At time ¢ = 0, the message starts spreading according to one of
two randomized protocols: trickle (pre-2015) or diffusion (post-2015).

Trickle spreading is a gossip-based flooding protocol. Each source or relay chooses a neighboring
peer (called the ‘trickle’ node) uniformly at random, every 200 ms. If the trickle node has not
yet received the message, the sender forwards the message [6]." We model this by considering a
canonical, simpler spreading protocol of round-robin gossip. In round-robin gossip, each source or
relay randomly orders its neighbors who have not yet seen the message; we call these uninfected
neighbors. In each successive (discrete) timestep, the node transmits the message to the next neighbor

!This description omits some details of trickle spreading, which we do not consider in our analysis. For
example, with probability 1/4, each relay forwards the message instantaneously to its neighbors without trickling.



in its ordering. Thus, if a node has d neighbors, all d neighbors will receive the message within d
timesteps. This differs from trickle spreading, where the time-to-infection is a coupon collector’s
problem, and therefore takes ©(dlog d) timesteps in expectation [8]. We will henceforth abuse
terminology by referring to round-robin gossip as trickle spreading.

In diffusion, each source or relay node transmits the message to each of its uninfected neighbors with
an independent, exponential delay of rate A. In practice, Bitcoin uses a higher rate on outgoing edges
than incoming ones [2]; we omit this distinction in our model. We assume a continuous-time system,
with each node starting the exponential clocks upon receipt (or creation) of a message.

For both protocols, we let X, denote the timestamp at which node v € V receives a given message.
Note that server nodes cannot be infected more than once. We assume the message originates at time
t =0, so X, = Xo = 0. Moreover, we let G;(V;, E;) denote the infected subgraph of G at time
t, or the subgraph of nodes who have received the message (but not necessarily reported it to the
adversary) by time ¢.

Adversarial model. The adversary’s goal is to link a message with the source (IP address, port)—i.e.,
to identify the source node v* € V. We consider an eavesdropper adversary, whose capabilities
are modeled on the practical deanonymization attacks in [6, 15]. These attacks use a supernode that
connects to most of the servers in the Bitcoin network. It can make multiple connections to each
honest server, with each connection coming from a different (IP address, port). Hence, the honest
server does not realize that the supernode’s connections are all from the same entity. We model this
by assuming that the eavesdropper adversary makes a fixed number 6 of connections to each server,
where 6 > 1. We do not include these adversarial connections in the original server graph G, so G
remains a d-regular graph (see Figure 1). The supernode can learn the network structure between
servers [6], so we assume that G(V, E) is known to the eavesdropper.

Eavesdropper —_
a=2
9=
the message from node v € V. We let 7 = (74 )pev

denote the set of all observed first-timestamps. We assume

timestamps are relative to time ¢ = 0, i.e., the adversary Figure 1: The eavesdropper adversary
knows when the message started spreading. establishes 0 links (in red) to each server.
Honest servers are connected in a d-
regular tree topology (edges in black).

The supernode in [6, 15] observes the timestamps at which
messages are relayed from each honest server, without
relaying or transmitting content. If the adversary maintains
multiple active connections to each server (6 > 1), it
receives the message 6 times from each server. We let
T, denote the time at which the adversary first observes

Source estimation. The adversary’s goal is as follows:
given the observed timestamps 7 (up to estimation time
t) and the graph G, find an estimator M(7, G) that outputs
the true source. Our metric of success for the adversary is probability of detection, P(M(T, G) = v*),
taken over the random spreading realization (captured by 7) and any randomness in the estimator.

In [6, 15], the adversary uses a variant of the first-timestamp estimator Mpr(7, G) = arg min, ¢y, Ty,
which outputs the first node (prior to estimation time t) to report the message to the adversary. The
first-timestamp estimator requires no knowledge of the graph, and it is computationally easy to
implement. We begin by analyzing this estimator for both trickle and diffusion propagation.

We also consider the maximum-likelihood (ML) estimator: My, (T, G) = arg max,cy P(7|G,v* =
v). The ML estimator depends on the time of estimation ¢ to the extent that 7 only contains timestamps
up to time ¢. Unlike the first-timestamp estimator, the ML estimator differs across spreading protocols,
depends on the graph, and may be computationally intractable in general.

Problem statement. Our goal is to understand whether the Bitcoin community’s move from trickle
spreading to diffusion actually improved the system’s anonymity guarantees. The problem at hand is
to characterize the maximum-likelihood (ML) probability of detection of the eavesdropper adversary
for both trickle and diffusion processes on d-regular trees, as a function of degree d, number of
corrupted connections 6, and detection time ¢. We meet this goal by computing lower bounds derived
from the analysis of suboptimal estimators (e.g., first-timestamp estimator and centrality-based
estimators), and upper bounds derived from fundamental limits on detection.



Related work. Although there has been much work on the anonymity properties of Bitcoin [19,
28, 24, 27], the ‘epidemic source finding’ interpretation of Bitcoin deanonymization is fairly new.
Prior work that (implicitly) adopts this interpretation has focused on Bitcoin’s protocol flaws more
than the inference aspect of the problem [6, 15]. As this is the focus of our paper, we include the
related source detection literature. Epidemic source detection has been widely studied under diffusion
spreading with a snapshot adversary, which observes the set of infected nodes at a single time ¢; in
our notation, the adversary would learn the set {v € V : X, < ¢} (no timestamps), along with graph
G. Shah and Zaman first characterized the ML probability of detection for diffusion observed by a
snapshot adversary when the underlying graph is a regular tree [29]. These results were later extended
to random, irregular trees [31], whereas other authors studied heuristic source detection methods on
general graphs [12, 26, 16] and related theoretical limits [32, 21, 14]. The eavesdropper adversary
differs in that it eventually observes a noisy timestamp 7,, from every node, regardless of when the
node is infected. This changes both the analysis and the estimators that one can use. Another common
adversarial model is the spy-based adversary, which observes exact timestamps for a corrupted set
of nodes that does not include the source [25, 34]. In our notation, for a set of spies S C V/, the
spy-based adversary observes {(s, X) : s € S}. Prior work on the spy-based adversary does not
characterize the ML probability of detection, but researchers have proposed efficient heuristics that
perform well in practice [25, 34, 35, 9]. Unlike the spy-based adversary, the eavesdropper only
observes delayed timestamps, and it does so for all nodes, including the source.

3 Analysis of trickle (pre-2015)

3.1 First-timestamp estimator

The analysis of trickle propagation is complicated by its combinatorial, time-dependent na-
ture. As such, we lower-bound the first-timestamp estimator’s probability of detection. Let
Ty 2 min(7y,7y,...) denote the minimum observed timestamp among nodes that are not the
source. Then we compute P(79 < 7,,), i.e., the probability that the true source reports the message
to the adversary strictly before any of the other nodes. This event (which causes the source to be
detected with probability 1) does not include cases where the true source is one of k£ nodes (k > 1)
that report the message to the adversary simultaneously, and before any other node in the system.
Nonetheless, for large node degree d, the ‘simultaneous reporting’ event is rare, so our lower bound
is close to the empirical probability of detection of the first-timestamp estimator.

Theorem 3.1 (Proof in Appendix C.1) Consider a message that propagates according to trickle
spreading over a d-regular tree of servers, where each node additionally has 0 connections to an
eavesdropping adversary. The first-timestamp estimator’s probability of detection at time t = oo

satisfies P(Mpp(T,G) = v*) > dlggQ [Ei(2%1og p) — Ei (log p)| where p = Cﬁi;ia, and Ei(z) £
00 e~ tdt

— £ 2 denotes the exponential integral.
—x t

We prove this bound by conditioning on the time at
which the source reports to the adversary. The proof

sk ey U 4 then becomes a combinatorial counting problem. The

—— Simulation

expression in Theorem 3.1 can be simplified by exam-
ining its Taylor expansion (see Appendix A). In par-
ticular, for the special case of § = 1 where the adver-
sary establishes only one connection per server, line

(5) simplifies to P(Mpp (7, G)) ~ dl“ffng +o (%) .

This suggests that the first-timestamp estimator has
a probability of detection that decays to zero asymp-
totically as log(d)/d. Intuitively, the probability of
detection should decay to zero, because the higher
the degree of the tree, the higher the likelihood that
a node other than the source reports to the adversary
before the source does. Nonetheless, this is only a
lower bound on the first-timestamp’s probability of
detection, so we wish to understand how tight the bound is.

Probability of Detection

Tree degree, d

Figure 2: First-timestamp estimator accuracy
on d-regular trees when 6 = 1.



Simulation. To evaluate the lower bound in Theorem 3.1 and its approximation for § = 1, we
simulate the first-timestamp estimator on regular trees.? Figure 2 illustrates the simulation results
for § = 1 compared to the approximation above. Each data point is averaged over 5,000 trials.
Empirically, the lower bound appears to be tight, especially as d grows. Figure 2 suggest a natural
solution to improve anonymity in the Bitcoin network: increase the degree of each node to reduce the
adversary’s probability of detection. However, we shall see in the next section that stronger estimators
(e.g., the ML estimator) may achieve high probabilities of detection, even for large d.

3.2 Maximume-likelihood estimator

At any time ¢, if one knew the ground truth timestamps (i.e., the X,’s), one could arrange the nodes
of the infected subgraph G in the order they received the message. We call such an arrangement an
ordering of nodes. Since propagation is in discrete time, multiple nodes may receive the message
simultaneously; such nodes are lumped together in the ordering. Of course, the true ordering is not
observed by the adversary, but the observed timestamps (i.e., T) restrict the set of possible orderings.
A feasible ordering is an ordering that respects the rules of trickle propagation over graph G, as well
as the observed timestamps 7. In this subsection only, we will abuse notation by using 7 to refer
to all timestamps observed by the adversary, not just the first timestamp from each server. So if the
adversary has 6 connections to each server, 7 would include 6 timestamps per honest server.

We propose an estimator called timestamp rumor centrality, which counts the number of feasible
orderings originating from each candidate source. The candidate with the most feasible orderings is
chosen as the estimator output. This estimator is similar to rumor centrality, an estimator devised for
snapshot adversaries in [29]. However, the presence of timestamps and the lack of knowledge of the
infected subgraph increases the estimator’s complexity. We first motivate timestamp rumor centrality.

Proposition 3.2 (Proof in Appendix C.2) Consider a trickle process over a d-regular graph, where
each node has 0 connections to the eavesdropper adversary. Any feasible orderings o1 and oo with
respect to observed timestamps T and graph G have the same likelihood.

Proposition 3.2 implies that at any fixed time, the likelihood of observing 7 given a candidate source
is proportional to the number of feasible orderings originating from that candidate source. Therefore,
an ML estimator (timestamp rumor centrality) counts the number of feasible orderings at estimation
time ¢. Timestamp rumor centrality is a message-passing algorithm that proceeds as follows: for
each candidate source, recursively determine the set of feasible times when each node could have
been infected, given the observed timestamps. This is achieved by passing a set of “feasible times of
receipt” from the candidate source to the leaves of the largest feasible infected subtree rooted at the
candidate source. In each step, nodes prune receipt times that conflict with their observed timestamps.
Next, given each node’s set of feasible receipt times, they count the number of feasible orderings
that obey the rules of trickle propagation. This is achieved by passing sets of partial orderings from
the leaves to the candidate source, and pruning infeasible orderings. The timestamp rumor centrality
protocol is presented in Appendix A.2, along with minor modifications that reduce its complexity.

In [31], precise analysis of standard rumor cen-
trality was possible because rumor centrality
can be reduced to a simple counting problem.
Such an analysis is more challenging for times-
tamp rumor centrality, because timestamps pre-
vent us from using the same counting argument.
However, we identify a suboptimal, simplified
version of timestamp rumor centrality that ap-
Figure 3: Example of ball centrality on a line with proaches optimal probabilities of detection as ¢
one link to the adversary per server (these links are  grows. We call this estimator ball centrality.

not shown). The estimator is run at time ¢ = 4.

Ball centrality checks whether a candidate
source v could have generated each of the ob-
served timestamps, independently. For example, Figure 3 contains a sample spread on a line graph,
where the adversary has one connection per server (not shown). Therefore, d = 2 and § = 1. The
ground truth infection time is written as X, below each node, and the observed timestamps are written

2Code for all simulations available at https://github.com/gfanti/bitcoin-trickle-diffusion.
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above the node. In this figure, the estimator is run at time ¢ = 4, so the adversary only sees three
timestamps. For each observed timestamp T, the estimator creates a ball of radius 7, — 1, centered
at v. For example, in our figure, the green node (node 1) has 7; = 2. Therefore, the adversary would
make a ball of radius 1 centered at node 1; this ball is depicted by the green bubble in our figure. The
ball represents the set of nodes that are close enough to node 1 to feasibly report to the adversary
from node 1 at time 7, = 2. After constructing an analogous ball for every observed timestamp in T,
the protocol outputs a source selected uniformly from the intersection of these balls. In our example,
there are exactly two nodes in this intersection. We describe ball centrality precisely in Protocol 1
(Appendix A.2.1). Although ball centrality is not ML for a fixed time ¢, the following theorem lower
bounds the ML probability of detection by analyzing ball centrality and showing that its probability
of detection approaches a fundamental upper bound exponentially fast in detection time ¢.

Theorem 3.3 (Proof in Section C.3) Consider a trickle spreading process over a d-regular graph of
honest servers. In addition, each server has 0 independent connections to an eavesdropper adversary.
The ML probability of detection at time t satisfies the following expression:

R 4N D by =) Lot 1

Note that the right-hand side of equation (1) is always greater than % As such, increasing the graph
degree would not significantly reduce the probability of detection; the adversary can still identify
the source with probability at least % given enough time. Second, the ML probability of detection
approaches its upper bound exponentially fast in time ¢. This suggests that the adversary can achieve
high probabilities of detection at small times ¢. These results highlight an important point: estimators
that exploit graph structure can reap significant, order-level gains in accuracy.

4 Analysis of diffusion (post-2015)

4.1 First-timestamp estimator

Although the first-timestamp estimator does not use knowledge of the underlying graph, its perfor-
mance depends on the underlying graph structure. The following theorem exactly characterizes its
probability of detection on a regular tree as t — oc.

Theorem 4.1 (Proof in Appendix C.4) Consider a diffusion process of rate A = 1 over a d-regular
tree, d > 2. Suppose an adversary observes each node’s infection time with an independent,
exponential delay of rate Ao = 0, 8 > 1. Then the following expression describes the probability of

detection for the first-timestamp estimator at time t = co: P(Mpp(T,G) = v*) = %5 log (#45-2).

The proof expresses the probability of detection as a nonlinear differential equation that can be
solved exactly. The expression highlights a few points: First, for a fixed degree d, the probability of
detection is strictly positive as t — oo. This is straightforward to see, but under other adversarial
models (e.g., snapshot adversaries) it is not trivial to see that the probability of detection is positive as
t — oo. Indeed, several papers are dedicated to making that point [30, 31]. Second, when 6 = 1, i.e.,
the adversary has only one connection per node, the probability of detection approaches log(d)/d
asymptotically in d. This quantity tends to 0 as d — oo, and it is order-equal to the probability of
detection of the first-timestamp adversary on the trickle protocol when # = 1 (see Section 3.1).

Theorem 4.1 suggests that the Bitcoin community’s transition from trickle spreading to diffusion does
not provide order-level anonymity gains (asymptotically in the degree of the graph), at least for the
first-timestamp adversary. Next, we ask if the same is true for estimators that use the graph structure.

4.2 Centrality-based estimators

We compute a different lower bound on the ML probability of detection by analyzing a centrality-
based estimator. Unlike the first-timestamp estimator, this reporting centrality estimator uses the
structure of the infected subgraph by selecting a candidate source that is close to the center (on the
graph) of the observed timestamps. However, it does not explicitly use the observed timestamps.
Also unlike the first-timestamp estimator, this centrality-based estimator improves as the degree d



of the underlying tree increases, with a strictly positive probability of detection as d — co. Thus
the eavesdropper adversary has an ML probability of detection that scales as ©(1) in d. Intuitively,
reporting centrality works as follows: for each candidate source v, the estimator counts the number
of nodes that have reported to the adversary from each of the node v’s adjacent subtrees. It picks a
candidate source for which the number of reporting nodes is approximately equal in each subtree.

To make this precise, suppose the infected subtree G, is rooted at w; we use 7" to denote the subtree
of G that contains v and all of v’s descendants, with respect to root node w. Consider a random
variable Y, (¢), which is 1 if node v € V has reported to the adversary by time ¢, and 0 otherwise. We

let Y7u (t) = >, cpw Yu(t) denote the number of nodes in 77" that have reported to the adversary

by time t. We use Y'(t) = >,y Y, (t) to denote the total number of reporting nodes in G at time ¢.
Similarly, we use N (t) to denote the number of infected nodes in T, (so Nrw (t) > Yru(t)), and
we let N(¢) denote the total number of infected nodes at time ¢ (N (¢) > Y (¢)). For each candidate
source v, we consider its d neighbors, which comprise the set N'(v). We define a node v’s reporting
centrality at time t—denoted R, (t)—as follows:

i Y

0 otherwise.

That is, a node’s reporting centrality is 1 iff each of its adjacent subtrees has fewer than
Y (t)/2 reporting nodes. A node is a reporting center iff its reporting centrality is I.
The estimator outputs v chosen uniformly from all report-

ing centers. In Figure 4, v* is the only reporting center.

Reporting centrality does not use the adversary’s observed
timestamps—it only counts the number of reporting nodes
in each of a node’s adjacent subtrees. This estimator is
inspired by rumor centrality [30], an ML estimator for the
source of a diffusion process under a snapshot adversary.
Recall that a snapshot adversary sees the infected subgraph
G, at time ¢, but it does not learn timestamp information.

The next theorem shows that for trees with high degree d,
reporting centrality has a strictly higher (in an order sense)
probability of detection than the first-timestamp estimator; Figure 4: Yellow nodes are infected; a
its probability of detection is strictly positive as d — 00.  red outline means the node has reported.
R,~(t) = 1 since v*’s adjacent subtrees
Theorem 4.2 (Proof in Section C.5) Consider a diffu- have < Y (t)/2 = 2.5 reporting nodes.
sion process of rate A\ = 1 over a d-regular tree. Sup-
pose this process is observed by an eavesdropper adversary, which sees each node’s timestamp
with an independent exponential delay of rate A\a = 0, 8 > 1. Then the reporting central-
ity estimator has a (time-dependent) probability of detection P(Mpo(T,G) = v*) that satisfies

liminf; oo P(Mpe(T,G) = v*) > Cy > 0. where Cy = 1 —d (1 — I (ﬁ, 1+ ﬁ)) isa
constant that depends only on degree d, and I, ;5(a,b) is the regularized incomplete Beta function,

i.e., the probability a Beta random variable with parameters a and b takes a value in |0, %)

To prove this, we relate two Polya urn processes: one that represents the diffusion process over the
regular tree of honest nodes, and one that describes the full spreading process, which includes both
diffusion over the regular tree and random reporting to the adversary. The first urn can be posed as a
classic Polya urn [10], which has been studied in the context of diffusion [31, 14]. The second urn
can be described by an unbalanced generalized Polya urn (GPU) with negative coefficients [4, 13]—a
class of urns that does not typically appear in the study of diffusion (to the best of our knowledge).
As a side note, this approach can be used to analyze other epidemic source-finding problems that have
previously evaded analysis, as we show in Appendix B. Notice that the constant C'; in Theorem 4.2
does not depend on 6—this is because the reporting centrality estimator makes no use of timestamp
information, so the delays in the timestamps 7 do not affect the estimator’s asymptotic behavior.

Simulation results. To evaluate the lower bound in Theorem 4.2, we simulate reporting centrality
on diffusion over regular trees. Figure 5 illustrates the empirical performance of reporting centrality
averaged over 4,000 trials, compared to the theoretical lower bound on the liminf. The estimator is
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Table 1: Probability of detection on a d-regular tree. The adversary has 6 connections per server.
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run at time ¢ = d + 2. Our simulations are run up to degree d = 5 due to computational constraints,
since the infected subgraph grows exponentially in the degree of the tree. By d = 5, reporting
centrality reaches the theoretical lower bound on the limiting detection probability.

For diffusion, neither lower bound on the first-timestamp or reporting centrality estimator strictly
outperforms the other. Figure 5 compares the two estimators as a function of degree d. We observe
that reporting centrality outstrips first-timestamp estimation for trees of degree 9 and higher; since
our theoretical result is only a lower bound on the performance of reporting centrality, the transition
may occur at even smaller d. Empirically, the true Bitcoin graph is approximately 8-regular [20], a
regime in which we expect reporting centrality to perform similarly to the first-timestamp estimator.

5 Discussion

Table 1 summarizes our theoretical results for trickle and diffusion. The probabilities of detection
for trickle and diffusion are similar, particularly when § = 1. Although the maximum-likelihood
results are difficult to compare visually, they both approach a positive constant as d,t — oo; for
trickle propagation, that constant is % whereas for diffusion, it is approximately 0.307.

These results are asymptotic in degree d. In practice, the underlying Bitcoin graph is fixed; the
only variable quantity is the adversary’s resources, represented by 6. Figure 6 compares analytical
expressions and simulations for 4-regular trees under the first-timestamp estimator (as we lack an ML
estimator on general graphs), as a function of 6. It suggests nearly identical detection probabilities
for diffusion and trickle on regular trees; while our theoretical prediction for diffusion is exact, our
lower bound on trickle is loose since d is small.

To validate our decision to analyze regular trees, we simulate trickle and diffusion on a 2015 snapshot
of the Bitcoin network [20]. Figure 7 compares these results as a function of 8, for the first-timestamp
estimator. Unless specified otherwise, theoretical curves are calculated for a regular tree with d = 8,
the mean degree of our dataset. Diffusion performs close to the theoretical prediction; this is because
with high probability, the first-timestamp estimator uses only on a local neighborhood to estimate v*,
and the Bitcoin graph is locally tree-like. However, our trickle lower bound remains loose. This is
partially due to simultaneous reporting events, but the main contributing factor seems to be graph
irregularity. Understanding this effect more carefully is an interesting question for future work.



In summary, trickle and diffusion have similar probabilities of detection, both in an asymptotic-order
sense and numerically. We have analyzed the canonical class of d-regular trees and simulated these
protocols on a real Bitcoin graph topology. Our results omit certain details of the spreading protocols,
(Sec. 2); extending the analysis to include these details is practically relevant.
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