Sobolev Training for Neural Networks

Wojciech Marian Czarnecki, Simon Osindero, Max Jaderberg
Grzegorz Swirszcz, and Razvan Pascanu
DeepMind, London, UK
{lejlot,osindero, jaderberg,swirszcz,razp}@google.com

Abstract

At the heart of deep learning we aim to use neural networks as function approxi-
mators — training them to produce outputs from inputs in emulation of a ground
truth function or data creation process. In many cases we only have access to
input-output pairs from the ground truth, however it is becoming more common to
have access to derivatives of the target output with respect to the input — for exam-
ple when the ground truth function is itself a neural network such as in network
compression or distillation. Generally these target derivatives are not computed, or
are ignored. This paper introduces Sobolev Training for neural networks, which is
a method for incorporating these target derivatives in addition the to target values
while training. By optimising neural networks to not only approximate the func-
tion’s outputs but also the function’s derivatives we encode additional information
about the target function within the parameters of the neural network. Thereby
we can improve the quality of our predictors, as well as the data-efficiency and
generalization capabilities of our learned function approximation. We provide
theoretical justifications for such an approach as well as examples of empirical
evidence on three distinct domains: regression on classical optimisation datasets,
distilling policies of an agent playing Atari, and on large-scale applications of
synthetic gradients. In all three domains the use of Sobolev Training, employing
target derivatives in addition to target values, results in models with higher accuracy
and stronger generalisation.

1 Introduction

Deep Neural Networks (DNNs) are one of the main tools of modern machine learning. They are
consistently proven to be powerful function approximators, able to model a wide variety of functional
forms — from image recognition [8, [24], through audio synthesis [27], to human-beating policies
in the ancient game of GO [22]. In many applications the process of training a neural network
consists of receiving a dataset of input-output pairs from a ground truth function, and minimising
some loss with respect to the network’s parameters. This loss is usually designed to encourage
the network to produce the same output, for a given input, as that from the target ground truth
function. Many of the ground truth functions we care about in practice have an unknown analytic
form, e.g. because they are the result of a natural physical process, and therefore we only have the
observed input-output pairs for supervision. However, there are scenarios where we do know the
analytic form and so are able to compute the ground truth gradients (or higher order derivatives),
alternatively sometimes these quantities may be simply observable. A common example is when the
ground truth function is itself a neural network; for instance this is the case for distillation [9 20],
compressing neural networks [7]], and the prediction of synthetic gradients [12]]. Additionally, if we
are dealing with an environment/data-generation process (vs. a pre-determined set of data points),
then even though we may be dealing with a black box we can still approximate derivatives using finite
differences. In this work, we consider how this additional information can be incorporated in the
learning process, and what advantages it can provide in terms of data efficiency and performance. We

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

9
Ox

Figure 1: a) Sobolev Training of order 2. Diamond nodes m and f indicate parameterised functions,
where m is trained to approximate f. Green nodes receive supervision. Solid lines indicate con-
nections through which error signal from loss [, [1, and /5 are backpropagated through to train m.
b) Stochastic Sobolev Training of order 2. If f and m are multivariate functions, the gradients are
Jacobian matrices. To avoid computing these high dimensional objects, we can efficiently compute
and fit their projections on a random vector v; sampled from the unit sphere.

propose Sobolev Training (ST) for neural networks as a simple and efficient technique for leveraging
derivative information about the desired function in a way that can easily be incorporated into any
training pipeline using modern machine learning libraries.

The approach is inspired by the work of Hornik [10] which proved the universal approximation
theorems for neural networks in Sobolev spaces — metric spaces where distances between functions
are defined both in terms of their differences in values and differences in values of their derivatives.

In particular, it was shown that a sigmoid network can not only approximate a function’s value
arbitrarily well, but that the network’s derivatives with respect to its inputs can approximate the
corresponding derivatives of the ground truth function arbitrarily well too. Sobolev Training exploits
this property, and tries to match not only the output of the function being trained but also its derivatives.

There are several related works which have also exploited derivative information for function approx-
imation. For instance Wu et al. [30] and antecedents propose a technique for Bayesian optimisation
with Gaussian Processess (GP), where it was demonstrated that the use of information about gradi-
ents and Hessians can improve the predictive power of GPs. In previous work on neural networks,
derivatives of predictors have usually been used either to penalise model complexity (e.g. by pushing
Jacobian norm to 0 [19])), or to encode additional, hand crafted invariances to some transformations
(for instance, as in Tangentprop [23]]), or estimated derivatives for dynamical systems [6]] and very
recently to provide additional learning signal during attention distillation [31 Similar techniques
have also been used in critic based Reinforcement Learning (RL), where a critic’s derivatives are
trained to match its target’s derivatives [29, 15/ 15, |4} 126] using small, sigmoid based models. Finally,
Hyviérinen proposed Score Matching Networks [11], which are based on the somewhat surprising
observation that one can model unknown derivatives of the function without actual access to its values
— all that is needed is a sampling based strategy and specific penalty. However, such an estimator has
a high variance [28]], thus it is not really useful when true derivatives are given.

To the best of our knowledge and despite its simplicity, the proposal to directly match network
derivatives to the true derivatives of the target function has been minimally explored for deep
networks, especially modern ReLU based models. In our method, we show that by using the
additional knowledge of derivatives with Sobolev Training we are able to train better models — models
which achieve lower approximation errors and generalise to test data better — and reduce the sample
complexity of learning. The contributions of our paper are therefore threefold: (1): We introduce

'Please relate to Supplementary Materials, section 5 for details

Sobolev Training — a new paradigm for training neural networks. (2): We look formally at the
implications of matching derivatives, extending previous results of Hornik [[10] and showing that
modern architectures are well suited for such training regimes. (3): Empirical evidence demonstrating
that Sobolev Training leads to improved performance and generalisation, particularly in low data
regimes. Example domains are: regression on classical optimisation problems; policy distillation
from RL agents trained on the Atari domain; and training deep, complex models using synthetic
gradients — we report the first successful attempt to train a large-scale ImageNet model using synthetic
gradients.

2 Sobolev Training

We begin by introducing the idea of training using Sobolev spaces. When learning a function
f, we may have access to not only the output values f(z;) for training points x;, but also the
values of its j-th order derivatives with respect to the input, DL f(z;). In other words, instead
of the typical training set consisting of pairs {(x;, f(z;))}X_, we have access to (K + 2)-tuples
{(z4, f(x:), DLf(;), ..., DE f(,;))} Y. In this situation, the derivative information can easily be
incorporated into training a neural network model of f by making derivatives of the neural network
match the ones given by f.

Considering a neural network model m parameterised with 6, one typically seeks to minimise the
empirical error in relation to f according to some loss function ¢

N
Zé(m(xiw), f(3)).

When learning in Sobolev spaces, this is replaced with:

N K

> 1 emi@il0), f(xi) + > £; (Dim(a:10), DLf(x)) | (1)

i=1 j=1

where /; are loss functions measuring error on j-th order derivatives. This causes the neural network
to encode derivatives of the target function in its own derivatives. Such a model can still be trained
using backpropagation and off-the-shelf optimisers.

A potential concern is that this optimisation might be expensive when either the output dimensionality
of f or the order K are high, however one can reduce this cost through stochastic approximations.
Specifically, if f is a multivariate function, instead of a vector gradient, one ends up with a full
Jacobian matrix which can be large. To avoid adding computational complexity to the training
process, one can use an efficient, stochastic version of Sobolev Training: instead of computing a full
Jacobian/Hessian, one just computes its projection onto a random vector (a direct application of a
known estimation trick [19]). In practice, this means that during training we have a random variable
v sampled uniformly from the unit sphere, and we match these random projections instead:

N

K

i=1
Figure I]illustrates compute graphs for non-stochastic and stochastic Sobolev Training of order 2.

3 Theory and motivation

While in the previous section we defined Sobolev Training, it is not obvious that modeling the
derivatives of the target function f is beneficial to function approximation, or that optimising such
an objective is even feasible. In this section we motivate and explore these questions theoretically,
showing that the Sobolev Training objective is a well posed one, and that incorporating derivative
information has the potential to drastically reduce the sample complexity of learning.

Hornik showed [10] that neural networks with non-constant, bounded, continuous activation functions,
with continuous derivatives up to order K are universal approximators in the Sobolev spaces of
order K, thus showing that sigmoid-networks are indeed capable of approximating elements of these

\ A Regular 20 points
Sobolev 20 points
2 m Regular 100 points
BN sobolev 100 points
i | —
|

Regular 10K points
A

Logarithm of Test MSE
I SR,
-

Soholev 10K points
\\ -8
e &t 2 & 3 & © o

Figure 2: Left: From top: Example of the piece-wise linear function; Two (out of a continuum of)
hypotheses consistent with 3 training points, showing that one needs two points to identify each linear
segment; The only hypothesis consistent with 3 training points enriched with derivative information.
Right: Logarithm of test error (MSE) for various optimisation benchmarks with varied training set
size (20, 100 and 10000 points) sampled uniformly from the problem’s domain.

spaces arbitrarily well. However, nowadays we often use activation functions such as ReLU which
are neither bounded nor have continuous derivatives. The following theorem shows that for K = 1
we can use ReLU function (or a similar one, like leaky ReL.U) to create neural networks that are
universal approximators in Sobolev spaces. We will use a standard symbol C*(.S) (or simply C!) to
denote a space of functions which are continuous, differentiable, and have a continuous derivative on
a space S [14]]. All proofs are given in the Supplementary Materials (SM).

Theorem 1. Let f be a C' function on a compact set. Then, for every positive ¢ there exists a single
hidden layer neural network with a ReLU (or a leaky ReLU) activation which approximates f in
Sobolev space Sy up to € error.

This suggests that the Sobolev Training objective is achievable, and that we can seek to encode the
values and derivatives of the target function in the values and derivatives of a ReLU neural network
model. Interestingly, we can show that if we seek to encode an arbitrary function in the derivatives of
the model then this is impossible not only for neural networks but also for any arbitrary differentiable
predictor on compact sets.

Theorem 2. Let f be a C! function. Let g be a continuous function satisfying ||g — % oo > 0. Then,
there exists an) > 0 such that for any C* function h either || f — h||o > 1 or Hg — % Hoo >n.

However, when we move to the regime of finite training data, we can encode any arbitrary function in
the derivatives (as well as higher order signals if the resulting Sobolev spaces are not degenerate), as
shown in the following Proposition.

Proposition 1. Given any two functions f : S — Rand g : S — R% on S C R? and a finite
set 2 C S, there exists neural network h with a ReLU (or a leaky ReLU) activation such that
Ve e X: f(x) = h(z) and g(x) = %(w) (it has O training loss).

Having shown that it is possible to train neural networks to encode both the values and derivatives of
a target function, we now formalise one possible way of showing that Sobolev Training has lower
sample complexity than regular training.

Let F denote the family of functions parametrised by w. We define K., = K4 (F) to be a measure
of the amount of data needed to learn some target function f. That is K., is the smallest number for
which there holds: for every f,, € F and every set of distinct K., points (21, ..., Tk,.,,) such that
Viel, Koo /(i) = fu(2i) = f = fu. Ksop is defined analogously, but the final implication is of
form f(z;) = fo,(z:) A %(zi) = %(zi) = f = f,. Straight from the definition there follows:
Proposition 2. For any F, there holds Ko (F) < Kyeg(F).

For many families, the above inequality becomes sharp. For example, to determine the coefficients
of a polynomial of degree n one needs to compute its values in at least n + 1 distinct points. If we
know values and the derivatives at & points, it is a well-known fact that only [3| points suffice to
determine all the coefficients. We present two more examples in a slightly more formal way. Let
Fc denote a family of Gaussian PDF-s (parametrised by p, o). Let R¢{>D=D,U...UD, and
let Fp1, be a family of functions from D; X ... x D,, (Cartesian product of sets D;) to R™ of form
f(x) =[A1xy + b1, ..., Apxy + by (linear element-wise) (FigureLeft).

Dataset 20 training samples 100 training samples

Styblinski-Tang function Regular Network Sobolev Network Regular Network Sobolev Network

DR

Figure 3: Styblinski-Tang function (on the left) and its models using regular neural network training
(left part of each plot) and Sobolev Training (right part). We also plot the vector field of the gradients
of each predictor underneath the function plot.

Proposition 3. There holds Ko (Fa) < Kreg(Fa) and Kgop(Frr) < Kreg(Fpr).

This result relates to Deep ReLU networks as they build a hyperplanes-based model of the target
function. If those were parametrised independently one could expect a reduction of sample complexity
by d-+1 times, where d is the dimension of the function domain. In practice parameters of hyperplanes
in such networks are not independent, furthermore the hinges positions change so the Proposition
cannot be directly applied, but it can be seen as an intuitive way to see why the sample complexity
drops significantly for Deep ReLU networks too.

4 Experimental Results

We consider three domains where information about derivatives is available during trainingﬂ

4.1 Artificial Data

First, we consider the task of regression on a set of well known low-dimensional functions used for
benchmarking optimisation methods.

We train two hidden layer neural networks with 256 hidden units per layer with ReLU activations to
regress towards function values, and verify generalisation capabilities by evaluating the mean squared
error on a hold-out test set. Since the task is standard regression, we choose all the losses of Sobolev
Training to be L2 errors, and use a first order Sobolev method (second order derivatives of ReLU
networks with a linear output layer are constant, zero). The optimisation is therefore:

N
min 5 > [|f(2i) = m(@il0) |3 + [|Vaf (@:) — Vamn(zi[0)]3.
i=1

Figure [2] right shows the results for the optimisation benchmarks. As expected, Sobolev trained
networks perform extremely well — for six out of seven benchmark problems they significantly reduce
the testing error with the obtained errors orders of magnitude smaller than the corresponding errors of
the regularly trained networks. The stark difference in approximation error is highlighted in Figure 3]
where we show the Styblinski-Tang function and its approximations with both regular and Sobolev
Training. It is clear that even in very low data regimes, the Sobolev trained networks can capture the
functional shape.

Looking at the results, we make two important observations. First, the effect of Sobolev Training
is stronger in low-data regimes, however it does not disappear even in the high data regime, when
one has 10,000 training examples for training a two-dimensional function. Second, the only case
where regular regression performed better is the regression towards Ackley’s function. This particular

2All experiments were performed using TensorFlow [2] and the Sonnet neural network library [1].

Test action prediction error Test Dg,

10% Train Data 20% Train Data 50% Train Data 10% Train Data 20% Train Data 50% Train Data
024 022 018 0030 0030 0030
0.025 0025 0.025

022 020 016 0020 0020 0020

= . a o
S 020 018 014 € 0015 0015 0.015
& 515 016 012 & o010 0010 0010
016 014 010 0.005 0.005 0.005
0.000 0.000 0.000

) & 5), 5 5), 5 5 S . -
ps4® S0 100 150 200 ., 0 50 100 150 200 0 50 100 150 200 030 S0 100 150 200 .. 0 50 100 150 200 ., 0 50 100 150 200

0.42
o 052 048
5 o 040 = 0x0 016 L// 012
8 050) 2 014 010
® 0as 044 038 = 025
i H 012 oo f|]
) @

036 0
o 046 042 020 010 006 |\
034
044 040 015 0.08 0.04
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 s 100 150 200 0 50 100 150 200
0 040 93 024
o 043 039 033 T 03 028 e
T 042 038 032 o0 026 2
S om 037 031 © 030 024 020
H Z 028 018
E 040 036 030 E 028 022 8
o 039 035 029 o 026 020 \/_—,———— 016
O 038 031 028 3 024 018 (ST | I
© o3 033 027 © 022 s | — o2 [Mee————

032 026 010
0 S0 100 150 200 0 50 100 150 200 0 50 100 150 200 0 S0 100 150 200 0 S0 100 150 200 0 50 100 150 200

o Regular distillation e Sobolev distillation

Figure 4: Test results of distillation of RL agents on three Atari games. Reported test action prediction
error (left) is the error of the most probable action predicted between the distilled policy and target
policy, and test D, (right) is the Kulblack-Leibler divergence between policies. Numbers in the
column title represents the percentage of the 100K recorded states used for training (the remaining
are used for testing). In all scenarios the Sobolev distilled networks are significantly more similar to
the target policy.

example was chosen to show that one possible weak point of our approach might be approximating
functions with a very high frequency signal component in the relatively low data regime. Ackley’s
function is composed of exponents of high frequency cosine waves, thus creating an extremely bumpy
surface, consequently a method that tries to match the derivatives can behave badly during testing if
one does not have enough data to capture this complexity. However, once we have enough training
data points, Sobolev trained networks are able to approximate this function better.

4.2 Distillation

Another possible application of Sobolev Training is to perform model distillation. This technique has
many applications, such as network compression [21], ensemble merging [9]], or more recently policy
distillation in reinforcement learning [20]].

We focus here on a task of distilling a policy. We aim to distill a target policy 7*(s) — a trained
neural network which outputs a probability distribution over actions — into a smaller neural network
m(s|6), such that the two policies 7* and 7 have the same behaviour. In practice this is often done by
minimising an expected divergence measure between 7* and 7, for example, the Kullback—Leibler
divergence D1, (m(s)||7*(s)), over states gathered while following 7*. Since policies are multivari-
ate functions, direct application of Sobolev Training would mean producing full Jacobian matrices
with respect to the s, which for large actions spaces is computationally expensive. To avoid this issue
we employ a stochastic approximation described in Section [2] thus resulting in the objective

wmin Dic (x(5/6) 7 (5)) + oy [V, (log 7° (),) — Vs (log w(s10), v},

where the expectation is taken with respect to v coming from a uniform distribution over the unit
sphere, and Monte Carlo sampling is used to approximate it.

As target policies 7%, we use agents playing Atari games [17] that have been trained with A3C [16]
on three well known games: Pong, Breakout and Space Invaders. The agent’s policy is a neural
network consisting of 3 layers of convolutions followed by two fully-connected layers, which we
distill to a smaller network with 2 convolutional layers and a single smaller fully-connected layer
(see SM for details). Distillation is treated here as a purely supervised learning problem, as our aim is
not to re-evaluate known distillation techniques, but rather to show that if the aim is to minimise a
given divergence measure, we can improve distillation using Sobolev Training. Figure @] shows test
error during training with and without Sobolev Traininéﬂ The introduction of Sobolev Training leads
to similar effects as in the previous section — the network generalises much more effectively, and this

3Testing is performed on a held out set of episodes, thus there are no temporal nor causal relations between
training and testing

Table 1: Various techniques for producing synthetic gradients. Green shaded nodes denote nodes that
get supervision from the corresponding object from the main network (gradient or loss value). We
report accuracy on the test set = standard deviation. Backpropagation results are given in parenthesis.

o

(] SG(h,y)

m}

hy hoy

Noprop Direct SG [12] VEBN [235]] Critic Sobolev

CIFAR-10 with 3 synthetic gradient modules
Top 1 (94.3%) 54.5% +1.15 79.2% +0.01 88.5% +2.70 93.2% +0.02 93.5% +0.01

ImageNet with 1 synthetic gradient module

Top 1 (75.0%) 54.0% +0.29 - 57.9% +2.03 71.7% +0.23 72.0% +0.05
Top 5 (92.3%) 77.3% +0.06 - 81.5% +1.20 90.5% +0.15 90.8% +0.01
ImageNet with 3 synthetic gradient modules

Top 1 (75.0%) 18.7% +o0.18 - 28.3% +5.24 65.7% +0.56 66.5% +0.22
Top 5 (92.3%) 38.0% +0.34 - 52.9% +6.62 86.9% +0.33 87.4% +o0.11

is especially true in low data regimes. Note the performance gap on Pong is small due to the fact that
optimal policy is quite degenerate for this gameﬂ In all remaining games one can see a significant
performance increase from using our proposed method, and as well as minor to no overfitting.

Despite looking like a regularisation effect, we stress that Sobolev Training is not trying to find the
simplest models for data or suppress the expressivity of the model. This training method aims at
matching the original function’s smoothness/complexity and so reduces overfitting by effectively
extending the information content of the training set, rather than by imposing a data-independent
prior as with regularisation.

4.3 Synthetic Gradients

The previous experiments have shown how information about the derivatives can boost approximating
function values. However, the core idea of Sobolev Training is broader than that, and can be employed
in both directions. Namely, if one ultimately cares about approximating derivatives, then additionally
approximating values can help this process too. One recent technique, which requires a model of
gradients is Synthetic Gradients (SG) [12] — a method for training complex neural networks in a
decoupled, asynchronous fashion. In this section we show how we can use Sobolev Training for SG.

The principle behind SG is that instead of doing full backpropagation using the chain-rule, one splits
a network into two (or more) parts, and approximates partial derivatives of the loss L with respect
to some hidden layer activations h with a trainable function SG(h, y|#). In other words, given that
network parameters up to / are denoted by ©

oL OL Oh oh
20~ 9h90 SG(h,y|9)%-

. 2
_ OL(pn,y)
oh 9’

In the original SG paper, this module is trained to minimise Lg(0) = HSG(h, y|0)

where py, is the final prediction of the main network for hidden activations h. For the case of learning
a classifier, in order to apply Sobolev Training in this context we construct a loss predictor, composed

“For majority of the time the policy in Pong is uniform, since actions taken when the ball is far away from
the player do not matter at all. Only in crucial situations it peaks so the ball hits the paddle.

of a class predictor p(+|@) followed by the log loss, which gets supervision from the true loss, and the
gradient of the prediction gets supervision from the true gradient:

m(h,yl0) := L(p(h|0),y), SG(h,y|0) = dm(h,y|0)/0h,

LE2(0) = L(m(h, y10), Lo,) + b (224210, 2Lpun)).

In the Sobolev Training framework, the target function is the loss of the main network L(pp,y)
for which we train a model m(h,y|d) to approximate, and in addition ensure that the model’s
derivatives Om(h, y|6)/0h are matched to the true derivatives OL(pp,, y) /Oh. The model’s derivatives
om(h,y|0)/Oh are used as the synthetic gradient to decouple the main network.

This setting closely resembles what is known in reinforcement learning as critic methods [[13]. In
particular, if we do not provide supervision on the gradient part, we end up with a loss critic. Similarly
if we do not provide supervision at the loss level, but only on the gradient component, we end up in a
method that resembles VFBN [25]]. In light of these connections, our approach in this application
setting can be seen as a generalisation and unification of several existing ones (see Table [I] for
illustrations of these approaches).

One could ask why we need these additional constraints, and what is gained over using a neural
network based approximator directly [[12]]. The answer lies in the fact that gradient vector fields are a
tiny subset of all vector fields, and while each neural network produces a valid vector field, almost no
(standard) neural network produces valid gradient vector fields. Using non-gradient vector fields as
update directions for learning can have catastrophic consequences — learning divergence, oscillations,
chaotic behaviour, etc. The following proposition makes this observation more formal:

Proposition 4. If an approximator SG(h,y|0) produces a valid gradient vector field of some scalar
function L then the approximator’s Jacobian matrix must be symmetric.

It is worth noting that having a symmetric Jacobian is an extremely rare property for a neural network
model. For example, a linear model has a symmetric Jacobian if and only if its weight matrix is
symmetric. If we sample weights iid from typical distribution (like Gaussian or uniform on an
interval), the probability of sampling such a matrix is 0, but it could be easy to learn with strong,
symmetric-enforcing updates. On the other hand, for highly non-linear neural networks, it is not only
improbable to randomly find such a model, but enforcing this constraint during learning becomes
much harder too. This might be one of the reasons why linear SG modules work well in Jaderberg et
al. [12], but non-linear convolutional SG struggled to achieve state-of-the-art performance.

When using Sobolev-like approach SG always produces a valid gradient vector field by construction,
thus avoiding the problem described.

We perform experiments on decoupling deep convolutional neural network image classifiers using
synthetic gradients produced by loss critics that are trained with Sobolev Training, and compare to
regular loss critic training, and regular synthetic gradient training. We report results on CIFAR-10 for
three network splits (and therefore three synthetic gradient modules) and on ImageNet with one and
three network splitsél

The results are shown in Tablem With a naive SG model, we obtain 79.2% test accuracy on CIFAR-10.
Using an SG architecture which resembles a small version of the rest of the model makes learning
much easier and led to 88.5% accuracy, while Sobolev Training achieves 93.5% final performance.
The regular critic also trains well, achieving 93.2%, as the critic forces the lower part of the network
to provide a representation which it can use to reduce the classification (and not just prediction) error.
Consequently it provides a learning signal which is well aligned with the main optimisation. However,
this can lead to building representations which are suboptimal for the rest of the network. Adding
additional gradient supervision by constructing our Sobolev SG module avoids this issue by making
sure that synthetic gradients are truly aligned and gives an additional boost to the final accuracy.

For ImageNet [3]] experiments based on ResNet50 [8]], we obtain qualitatively similar results. Due
to the complexity of the model and an almost 40% gap between no backpropagation and full
backpropagation results, the difference between methods with vs without loss supervision grows
significantly. This suggests that at least for ResNet-like architectures, loss supervision is a crucial

SN.b. the experiments presented use learning rates, annealing schedule, etc. optimised to maximise the
backpropagation baseline, rather than the synthetic gradient decoupled result (details in the SM).

component of a SG module. After splitting ResNet50 into four parts the Sobolev SG achieves 87.4%
top 5 accuracy, while the regular critic SG achieves 86.9%, confirming our claim about suboptimal
representation being enforced by gradients from a regular critic. Sobolev Training results were also
much more reliable in all experiments (significantly smaller standard deviation of the results).

5 Discussion and Conclusion

In this paper we have introduced Sobolev Training for neural networks — a simple and effective way
of incorporating knowledge about derivatives of a target function into the training of a neural network
function approximator. We provided theoretical justification that encoding both a target function’s
value as well as its derivatives within a ReLU neural network is possible, and that this results in
more data efficient learning. Additionally, we show that our proposal can be efficiently trained using
stochastic approximations if computationally expensive Jacobians or Hessians are encountered.

In addition to toy experiments which validate our theoretical claims, we performed experiments to
highlight two very promising areas of applications for such models: one being distillation/compression
of models; the other being the application to various meta-optimisation techniques that build models
of other models dynamics (such as synthetic gradients, learning-to-learn, etc.). In both cases we obtain
significant improvement over classical techniques, and we believe there are many other application
domains in which our proposal should give a solid performance boost.

In this work we focused on encoding true derivatives in the corresponding ones of the neural network.
Another possibility for future work is to encode information which one believes to be highly correlated
with derivatives. For example curvature [[18]] is believed to be connected to uncertainty. Therefore,
given a problem with known uncertainty at training points, one could use Sobolev Training to match
the second order signal to the provided uncertainty signal. Finite differences can also be used to
approximate gradients for black box target functions, which could help when, for example, learning a
generative temporal model. Another unexplored path would be to apply Sobolev Training to internal
derivatives rather than just derivatives with respect to the inputs.

References
[1] Sonnet. https://github.com/deepmind/sonnet. 2017.

[2] Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al. Tensorflow: Large-scale machine learning on
heterogeneous distributed systems. arXiv preprint arXiv:1603.04467, 2016.

3

—

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on,
pages 248-255. IEEE, 2009.

[4

—

Michael Fairbank and Eduardo Alonso. Value-gradient learning. In Neural Networks (IJCNN), The 2012
International Joint Conference on, pages 1-8. IEEE, 2012.

[5

—

Michael Fairbank, Eduardo Alonso, and Danil Prokhorov. Simple and fast calculation of the second-order
gradients for globalized dual heuristic dynamic programming in neural networks. IEEE transactions on
neural networks and learning systems, 23(10):1671-1676, 2012.

[6

—_

A Ronald Gallant and Halbert White. On learning the derivatives of an unknown mapping with multilayer
feedforward networks. Neural Networks, 5(1):129-138, 1992.

[7

—

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks with
pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015.

[8

—_—

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 770-778,
2016.

[9

—

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

[10] Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural networks, 4(2):251—
257, 1991.

(11]

[12]

(13]

[14]
[15]
(16]

(17]

(18]

(19]

[20]

(21]

[22]

(23]

[24]

[25]

[26]

(27]

(28]

(29]

(30]

(31]

Aapo Hyvirinen. Estimation of non-normalized statistical models using score matching. Journal of
Machine Learning Research, pages 695-709, 2005.

Max Jaderberg, Wojciech Marian Czarnecki, Simon Osindero, Oriol Vinyals, Alex Graves, and Koray
Kavukcuoglu. Decoupled neural interfaces using synthetic gradients. arXiv preprint arXiv:1608.05343,
2016.

Vijay R Konda and John N Tsitsiklis. Actor-critic algorithms. In NIPS, volume 13, pages 1008-1014,
1999.

Steven G Krantz. Handbook of complex variables. Springer Science & Business Media, 2012.
W Thomas Miller, Paul J] Werbos, and Richard S Sutton. Neural networks for control. MIT press, 1995.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim Harley,
David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement learning. In
International Conference on Machine Learning, pages 1928-1937, 2016.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, loannis Antonoglou, Daan Wierstra,
and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602,
2013.

Razvan Pascanu and Yoshua Bengio. Revisiting natural gradient for deep networks. arXiv preprint
arXiv:1301.3584, 2013.

Salah Rifai, Grégoire Mesnil, Pascal Vincent, Xavier Muller, Yoshua Bengio, Yann Dauphin, and Xavier
Glorot. Higher order contractive auto-encoder. Machine Learning and Knowledge Discovery in Databases,
pages 645-660, 2011.

Andrei A Rusu, Sergio Gomez Colmenarejo, Caglar Gulcehre, Guillaume Desjardins, James Kirkpatrick,
Razvan Pascanu, Volodymyr Mnih, Koray Kavukcuoglu, and Raia Hadsell. Policy distillation. arXiv
preprint arXiv:1511.06295, 2015.

Bharat Bhusan Sau and Vineeth N Balasubramanian. Deep model compression: Distilling knowledge from
noisy teachers. arXiv preprint arXiv:1610.09650, 2016.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche, Julian
Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering the game of go
with deep neural networks and tree search. Nature, 529(7587):484-489, 2016.

Patrice Simard, Bernard Victorri, Yann LeCun, and John S Denker. Tangent prop-a formalism for specifying
selected invariances in an adaptive network. In NIPS, volume 91, pages 895-903, 1991.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recogni-
tion. arXiv preprint arXiv:1409.1556, 2014.

Shin-ichi Maeda Koyama Masanori Takeru Miyato, Daisuke Okanohara. Synthetic gradient methods with
virtual forward-backward networks. ICLR workshop proceedings, 2017.

Yuval Tassa and Tom Erez. Least squares solutions of the hjb equation with neural network value-function
approximators. IEEE transactions on neural networks, 18(4):1031-1041, 2007.

Adron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves, Nal
Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. Wavenet: A generative model for raw audio.
CoRR abs/1609.03499, 2016.

Pascal Vincent. A connection between score matching and denoising autoencoders. Neural computation,
23(7):1661-1674, 2011.

Paul J Werbos. Approximate dynamic programming for real-time control and neural modeling. Handbook
of intelligent control, 1992.

Angi Wu, Mikio C Aoi, and Jonathan W Pillow. Exploiting gradients and hessians in bayesian optimization
and bayesian quadrature. arXiv preprint arXiv:1704.00060, 2017.

Sergey Zagoruyko and Nikos Komodakis. Paying more attention to attention: Improving the performance
of convolutional neural networks via attention transfer. arXiv preprint arXiv:1612.03928, 2016.

10

