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Abstract

We develop a new accelerated stochastic gradient method for efficiently solving
the convex regularized empirical risk minimization problem in mini-batch settings.
The use of mini-batches has become a golden standard in the machine learning
community, because the mini-batch techniques stabilize the gradient estimate and
can easily make good use of parallel computing. The core of our proposed method
is the incorporation of our new “double acceleration” technique and variance re-
duction technique. We theoretically analyze our proposed method and show that
our method much improves the mini-batch efficiencies of previous accelerated
stochastic methods, and essentially only needs size

√
n mini-batches for achieving

the optimal iteration complexities for both non-strongly and strongly convex objec-
tives, where n is the training set size. Further, we show that even in non-mini-batch
settings, our method achieves the best known convergence rate for non-strongly
convex and strongly convex objectives.

1 Introduction

We consider a composite convex optimization problem associated with regularized empirical risk
minimization, which often arises in machine learning. In particular, our goal is to minimize the
sum of finite smooth convex functions and a relatively simple (possibly) non-differentiable convex
function by using first order methods in mini-batch settings. The use of mini-batches is now a
golden standard in the machine learning community, because it is generally more efficient to execute
matrix-vector multiplications over a mini-batch than an equivalent amount of vector-vector ones each
over a single instance; and more importantly, mini-batch techniques can easily make good use of
parallel computing.

Traditional and effective methods for solving the abovementioned problem are the “proximal gradient”
(PG) method and “accelerated proximal gradient” (APG) method [10, 3, 20]. These methods are
well known to achieve linear convergence for strongly convex objectives. Particularly, APG achieves
optimal iteration complexities for both non-strongly and strongly convex objectives. However, these
methods need a per iteration cost of O(nd), where n denotes the number of components of the
finite sum, and d is the dimension of the solution space. In typical machine learning tasks, n and d
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correspond to the number of instances and features respectively, which can be very large. Then, the
per iteration cost of these methods can be considerably high.

A popular alternative is the “stochastic gradient descent” (SGD) method [19, 5, 17]. As the per
iteration cost of SGD is only O(d) in non-mini-batch settings, SGD is suitable for many machine
learning tasks. However, SGD only achieves sublinear rates and is ultimately slower than PG and
APG.

Recently, a number of stochastic gradient methods have been proposed; they use a variance reduction
technique that utilizes the finite sum structure of the problem (“stochastic averaged gradient” (SAG)
method [15, 16], “stochastic variance reduced gradient" (SVRG) method [6, 22] and SAGA [4]).
Even though the per iteration costs of these methods are same as that of SGD, they achieve a linear
convergence for strongly convex objectives. Consequently, these methods dramatically improve the
total computational cost of PG. However, in size b mini-batch settings, the rate is essentially b times
worse than in non-mini-batch settings (the extreme situation is b = n which corresponds to PG). This
means that there is little benefit in applying mini-batch scheme to these methods.

More recently, several authors have proposed accelerated stochastic methods for the composite finite
sum problem (“accelerated stochastic dual coordinate ascent” (ASDCA) method [18], Universal
Catalyst (UC) [8], “accelerated proximal coordinate gradient” (APCG) method [9], “stochastic
primal-dual coordinate” (SPDC) method [23], and Katyusha [1]). ASDCA (UC), APCG, SPDC and
Katyusha essentially achieve the optimal total computational cost1 for strongly convex objectives2

in non-mini-batch settings. However, in size b mini-batch settings, the rate is essentially
√
b times

worse than that in non-mini-batch settings, and these methods need size O(n) mini-batches for
achieving the optimal iteration complexity3, which is essentially the same as APG. In addition,
[12, 13] has proposed the “accelerated mini-batch proximal stochastic variance reduced gradient”
(AccProxSVRG) method and its variant, the “accelerated efficient mini-batch stochastic variance
reduced gradient” (AMSVRG) method. In non-mini-batch settings, AccProxSVRG only achieves the
same rate as SVRG. However, in mini-batch settings, AccProxSVRG significantly improves the mini-
batch efficiency of non-accelerated variance reduction methods, and surprisingly, AccProxSVRG
essentially only needs size O(

√
κ) mini-batches for achieving the optimal iteration complexity for

strongly convex objectives, where κ is the condition number of the problem. However, the necessary
size of mini-batches depends on the condition number and gradually increases when the condition
number increases and ultimately matches with O(n) for a large condition number.

Main contribution

We propose a new accelerated stochastic variance reduction method that achieves better convergence
than existing methods do, and it particularly takes advantages of mini-batch settings well; it is called
the “doubly accelerated stochastic variance reduced dual averaging” (DASVRDA) method. We
describe the main feature of our proposed method below and list the comparisons of our method with
several preceding methods in Table 1.

Our method significantly improves the mini-batch efficiencies of state-of-the-art methods. As a
result, our method essentially only needs size O(

√
n) mini-batches4for achieving the optimal

iteration complexities for both non-strongly and strongly convex objectives.

1More precisely, the rate of ASDCA (UC) is with extra log-factors, and near but worse than the one of APCG,
SPDC and Katyusha. This means that ASDCA (UC) cannot be optimal.

2Katyusha also achieves a near optimal total computational cost for non-strongly convex objectives.
3We refer to “optimal iteration complexity” as the iteration complexity of deterministic Nesterov’s accelera-

tion method [11].
4Actually, when L/ε ≤ n and L/µ ≤ n, our method needs size O(n

√
ε/L) and O(n

√
µ/L) mini-batches,

respectively, which are larger than O(
√
n), but smaller than O(n). Achieving optimal iteration complexity for

solving high accuracy and bad conditioned problems is much more important than doing ones with low accuracy
and well-conditioned ones, because the former needs more overall computational cost than the latter.
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Table 1: Comparisons of our method with SVRG (SVRG++ [2]), ASDCA (UC), APCG, SPDC,
Katyusha and AccProxSVRG. n is the number of components of the finite sum, d is the dimension of
the solution space, b is the mini-batch size, L is the smoothness parameter of the finite sum, µ is the
strong convexity parameter of objectives, and ε is accuracy. “Necessary mini-batch size” indicates
the order of the necessary size of mini-batches for achieving the optimal iteration complexities
O(
√
L/µlog(1/ε)) and O(

√
L/ε) for strongly and non-strongly convex objectives, respectively.

We regard one computation of a full gradient as n/b iterations in size b mini-batch settings, for
a fair comparison. “Unattainable” implies that the algorithm cannot achieve the optimal iteration
complexity even if it uses size n mini-batches. Õ hides extra log-factors.

µ-strongly convex Non-strongly convex
Total computational cost Necessary mini-batch size Total computational cost Necessary mini-batch size

in size b mini-batch settings L/µ ≥ n otherwise in size b mini-batch settings L/ε ≥ nlog2(1/ε) otherwise

SVRG (++) O
(
d
(
n+ bL

µ

)
log
(

1
ε

))
Unattainable Unattainable O

(
d
(
nlog

(
1
ε

)
+ bL

ε

))
Unattainable Unattainable

ASDCA (UC) Õ
(
d
(
n+

√
nbL
µ

)
log
(

1
ε

))
Unattainable Unattainable Õ

(
d
(
n+
√
nbL√
ε

))
Unattainable Unattainable

APCG O
(
d
(
n+

√
nbL
µ

)
log
(

1
ε

))
O(n) O(n) No direct analysis Unattainable Unattainable

SPDC O
(
d
(
n+

√
nbL
µ

)
log
(

1
ε

))
O(n) O(n) No direct analysis Unattainable Unattainable

Katyusha O
(
d
(
n+

√
nbL
µ

)
log
(

1
ε

))
O(n) O(n) O

(
d

(
nlog

(
1
ε

)
+
√

nbL
ε

))
O(n) O(n)

AccProxSVRG O
(
d
(
n+

(
n−b
n−1

)
L
µ + b

√
L
µ

)
log
(

1
ε

))
O
(√

L
µ

)
O
(
n
√

µ
L

)
No direct analysis Unattainable Unattainable

DASVRDA O
(
d
(
n+ (b+

√
n)
√

L
µ

)
log
(

1
ε

))
O (
√
n) O

(
n
√

µ
L

)
O
(
d
(
nlog

(
1
ε

)
+ (b+

√
n)
√

L
ε

))
O (
√
n) Õ

(
n
√

ε
L

)

2 Preliminary

In this section, we formally describe the problem to be considered in this paper and the assumptions
for our theory.

We use ‖ · ‖ to denote the Euclidean L2 norm ‖ · ‖2: ‖x‖ = ‖x‖2 =
√∑

i x
2
i . For natural number n,

[n] denotes set {1, . . . , n}.
In this paper, we consider the following composite convex minimization problem:

min
x∈Rd

{P (x)
def
= F (x) +R(x)}, (1)

where F (x) = 1
n

∑n
i=1 fi(x). Here each fi : Rd → R is a Li-smooth convex function and

R : Rd → R is a relatively simple and (possibly) non-differentiable convex function. Problems
of this form often arise in machine learning and fall under regularized empirical risk minimization
(ERM). In ERM problems, we are given n training examples {(ai, bi)}ni=1, where each ai ∈ Rd
is the feature vector of example i, and each bi ∈ R is the label of example i. Important examples
of ERM in our setting include linear regression and logistic regression with Elastic Net regularizer
R(x) = λ1‖ · ‖1 + (λ2/2)‖ · ‖22 (λ1, λ2 ≥ 0).

We make the following assumptions for our analysis:
Assumption 1. There exists a minimizer x∗ of (1).
Assumption 2. Each fi is convex, and is Li-smooth, i.e.,

‖∇fi(x)−∇fi(y)‖ ≤ Li‖x− y‖ (∀x, y ∈ Rd).
Assumption 3. Regularization function R is convex, and is relatively simple, which means that
computing the proximal mapping of R at y, proxR(y) = argmin x∈Rd

{
1
2‖x− y‖

2 +R(x)
}

, takes
O(d) computational cost, for any y ∈ Rd.

We always consider Assumptions 1, 2 and 3 in this paper.
Assumption 4. There exists µ > 0 such that objective function P is µ-optimally strongly convex,
i.e., P has a minimizer and satisfies

µ

2
‖x− x∗‖2 ≤ P (x)− P (x∗) (∀x ∈ Rd,∀x∗ ∈ argminx∈Rdf(x)).

Note that the requirement of optimally strong convexity is weaker than the one of ordinary strong
convexity (for the definition of ordinary strong convexity, see [11]).

We further consider Assumption 4 when we deal with strongly convex objectives.
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3 Our Approach: Double Acceleration

In this section, we provide high-level ideas of our main contribution called “double acceleration.”

First, we consider deterministic PG (Algorithm 1) and (non-mini-batch) SVRG (Algorithm 2). PG
is an extension of the steepest descent to proximal settings. SVRG is a stochastic gradient method
using the variance reduction technique, which utilizes the finite sum structure of the problem, and
it achieves a faster convergence rate than PG does. As SVRG (Algorithm 2) matches with PG
(Algorithm 1) when the number of inner iterations m equals 1, SVRG can be seen as a generalization
of PG. The key element of SVRG is employing a simple but powerful technique called the variance
reduction technique for gradient estimate. The variance reduction of the gradient is realized by
setting gk = ∇fik(xk−1)−∇fik(x̃) +∇F (x̃) rather than vanilla stochastic gradient ∇fik(xk−1).
Generally, stochastic gradient ∇fik(xk−1) is an unbiased estimator of ∇F (xk−1), but it may have
high variance. In contrast, gk is also unbiased, and one can show that its variance is “reduced”; that
is, the variance converges to zero as xk−1 and x̃ to x∗.

Algorithm 1: PG (x̃0, η, S)
for s = 1 to S do
x̃s = One Stage PG(x̃s−1, η).

end for
return 1

S

∑S
s=1 x̃s.

Algorithm 2: SVRG (x̃0, η,m, S)
for s = 1 to S do
x̃s = One Stage SVRG(x̃s−1, η,m).

end for
return 1

S

∑S
s=1 x̃s.

Algorithm 3: One Stage PG (x̃, η)

x̃+ = proxηR(x̃− η∇F (x̃)).
return x̃+.

Algorithm 4: One Stage SVRG (x̃, η,m)

x0 = x̃.
for k = 1 to m do

Pick ik ∈ [1, n] randomly.
gk = ∇fik(xk−1)−∇fik(x̃) +∇F (x̃).
xk = proxηR(xk−1 − ηgk).

end for
return 1

n

∑n
k=1 xk.

Algorithm 5: APG (x̃0, η, S)

x̃−1 = x̃0, θ̃0 = 0.
for s = 1 to S do
θ̃s = s+1

2 , ỹs = x̃s−1 + θ̃s−1−1

θ̃s
(x̃s−1 − x̃s−2).

x̃s = One Stage PG(ỹs, η).
end for
return xS .

Next, we explain the method of accelerating SVRG and obtaining an even faster convergence rate
based on our new but quite natural idea “outer acceleration.” First, we would like to remind you
that the procedure of deterministic APG is given as described in Algorithm 5. APG uses the famous
“momentum” scheme and achieves the optimal iteration complexity. Our natural idea is replacing
One Stage PG in Algorithm 5 with One Stage SVRG. With slight modifications, we can show
that this algorithm improves the rates of PG, SVRG and APG, and is optimal. We call this new
algorithm outerly accelerated SVRG. However, this algorithm has poor mini-batch efficiency, because
in size b mini-batch settings, the rate of this algorithm is essentially

√
b times worse than that of

non-mini-batch settings. State-of-the-art methods APCG, SPDC, and Katyusha also suffer from the
same problem in the mini-batch setting.

Now, we illustrate that for improving the mini-batch efficiency, using the “inner acceleration” tech-
nique is beneficial. The author of [12] has proposed AccProxSVRG in mini-batch settings. Ac-
cProxSVRG applies the momentum scheme to One Stage SVRG, and we call this technique “inner”
acceleration. He showed that the inner acceleration could significantly improve the mini-batch
efficiency of vanilla SVRG. This fact indicates that inner acceleration is essential to fully utilize
the mini-batch settings. However, AccProxSVRG is not a truly accelerated method, because in
non-mini-batch settings, the rate of AccProxSVRG is same as that of vanilla SVRG.

In this way, we arrive at our main high-level idea called “double” acceleration, which involves
applying momentum scheme to both outer and inner algorithms. This enables us not only to lead to
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the optimal total computational cost in non-mini-batch settings, but also to improving the mini-batch
efficiency of vanilla acceleration methods.

We have considered SVRG and its accelerations so far; however, we actually adopt stochastic variance
reduced dual averaging (SVRDA) rather than SVRG itself, because we can construct lazy update
rules of (innerly) accelerated SVRDA for sparse data. In Section G of supplementary material, we
briefly discuss a SVRG version of our proposed method and provide its convergence analysis.

4 Algorithm Description

In this section, we describe the concrete procedure of the proposed algorithm in detail.

4.1 DASVRDA for non-strongly convex objectives

Algorithm 6: DASVRDAns(x̃0, z̃0, γ, {Li}ni=1,m, b, S)

x̃−1 = z̃0, θ̃0 = 0, L̄ = 1
n

∑n
i=1 Li, Q = {qi} =

{
Li
nL̄

}
, η = 1

(1+
γ(m+1)

b )L̄
.

for s = 1 to S do
θ̃s =

(
1− 1

γ

)
s+2

2 , ỹs = x̃s−1 + θ̃s−1−1

θ̃s
(x̃s−1 − x̃s−2) + θ̃s−1

θ̃s
(z̃s−1 − x̃s−1).

(x̃s, z̃s) = One Stage AccSVRDA(ỹs, x̃s−1, η,m, b,Q).
end for
return x̃S .

Algorithm 7: One Stage AccSVRDA (ỹ, x̃, η,m, b,Q)

x0 = z0 = ỹ, ḡ0 = 0, θ0 = 1
2 .

for k = 1 to m do
Pick independently i1k, . . . , i

b
k ∈ [1, n] according to Q, set Ik = {i`k}b`=1.

θk = k+1
2 , yk =

(
1− 1

θk

)
xk−1 + 1

θk
zk−1.

gk = 1
b

∑
i∈Ik

1
nqi

(∇fi(yk)−∇fi(x̃)) +∇F (x̃), ḡk =
(

1− 1
θk

)
ḡk−1 + 1

θk
gk.

zk = argmin
z∈Rd

{
〈ḡk, z〉+R(z) + 1

2ηθkθk−1
‖z − z0‖2

}
= proxηθkθk−1R

(z0 − ηθkθk−1ḡk) .

xk =
(

1− 1
θk

)
xk−1 + 1

θk
zk.

end for
return (xm, zm).

We provide details of the doubly accelerated SVRDA (DASVRDA) method for non-strongly convex
objectives in Algorithm 6. Our momentum step is slightly different from that of vanilla deterministic
accelerated methods: we not only add momentum term ((θ̃s−1 − 1)/θ̃s)(x̃s−1 − x̃s−2) to the
current solution x̃s−1 but also add term (θ̃s−1/θ̃s)(z̃s−1 − x̃s−1), where z̃s−1 is the current more
“aggressively” updated solution rather than x̃s−1; thus, this term also can be interpreted as momentum5.
Then, we feed ỹs to One Stage Accelerated SVRDA (Algorithm 7) as an initial point. Note that
Algorithm 6 can be seen as a direct generalization of APG, because if we set m = 1, One Stage
Accelerated SVRDA is essentially the same as one iteration PG with initial point ỹs; then, we can
see that z̃s = x̃s, and Algorithm 6 essentially matches with deterministic APG. Next, we move
to One Stage Accelerated SVRDA (Algorithm 7). Algorithm 7 is essentially a combination of the
“accelerated regularized dual averaging” (AccSDA) method [21] with the variance reduction technique
of SVRG. It updates zk by using the weighted average of all past variance reduced gradients ḡk
instead of only using a single variance reduced gradient gk. Note that for constructing variance
reduced gradient gk, we use the full gradient of F at x̃s−1 rather than the initial point ỹs. The

5This form also arises in Monotone APG [7]. In Algorithm 7, x̃ = xm can be rewritten as (2/(m(m +
1))
∑m
k=1 kzk, which is a weighted average of zk; thus, we can say that z̃ is updated more “aggressively” than

x̃. For the outerly accelerated SVRG (that is a combination of Algorithm 6 with vanilla SVRG, see section 3), z̃
and x̃ correspond to xm and (1/m)

∑m
k=1 xk in [22], respectively. Thus, we can also see that z̃ is updated more

“aggressively” than x̃.
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Adoption of (Innerly) Accelerated SVRDA rather than (Innerly) Accelerated SVRG enables us to
construct lazy updates for sparse data (for more details, see Section E of supplementary material).

4.2 DASVRDA for strongly convex objectives

Algorithm 8: DASVRDAsc(x̌0, γ, {Li}ni=1,m, b, S, T )
for t = 1 to T do
x̌t = DASVRDAns(x̌t−1, x̌t−1, γ, {Li}ni=1,m, b, S).

end for
return x̌T .

Algorithm 8 is our proposed method for strongly convex objectives. Instead of directly accelerating
the algorithm using a constant momentum rate, we restart Algorithm 6. Restarting scheme has several
advantages both theoretically and practically. First, the restarting scheme only requires the optimal
strong convexity of the objective instead of the ordinary strong convexity. Whereas, non-restarting
accelerated algorithms essentially require the ordinary strong convexity of the objective. Second,
for restarting algorithms, we can utilize adaptive restart schemes [14]. The adaptive restart schemes
have been originally proposed for deterministic cases. The schemes are heuristic but quite effective
empirically. The most fascinating property of these schemes is that we need not prespecify the
strong convexity parameter µ, and the algorithms adaptively determine the restart timings. [14]
have proposed two heuristic adaptive restart schemes: the function scheme and gradient scheme.
We can easily apply these ideas to our method, because our method is a direct generalization of
the deterministic APG. For the function scheme, we restart Algorithm 6 if P (x̃s) > P (x̃s−1). For
the gradient scheme, we restart the algorithm if (ỹs − x̃s)>(ỹs+1 − x̃s) > 0. Here ỹs − x̃s can be
interpreted as a “one stage” gradient mapping of P at ỹs. As ỹs+1− x̃s is the momentum, this scheme
can be interpreted such that we restart whenever the momentum and negative one Stage gradient
mapping form an obtuse angle (this means that the momentum direction seems to be “bad”). We
numerically demonstrate the effectiveness of these schemes in Section 6.

Parameter tunings

For DASVRDAns, only learning rate η needs to be tuned, because we can theoretically obtain the
optimal choice of γ, and we can naturally use m = n/b as a default epoch length (see Section 5). For
DASVRDAsc, both learning rate η and fixed restart interval S need to be tuned.

5 Convergence Analysis of DASVRDA Method

In this section, we provide the convergence analysis of our algorithms. Unless otherwise specified,
serial computation is assumed. First, we consider the DASVRDAns algorithm.

Theorem 5.1. Suppose that Assumptions 1, 2 and 3 hold. Let x̃0, z̃0 ∈ Rd, γ ≥ 3, m ∈ N, b ∈ [n]
and S ∈ N. Then DASVRDAns(x̃0, z̃0, γ, {Li}ni=1,m, b, S) satisfies

E [P (x̃S)− P (x∗)] ≤ 4(
1− 1

γ

)2
(S + 2)2

((
1− 1

γ

)2

(P (x̃0)− P (x∗)) +
2

η(m+ 1)m
‖z̃0 − x∗‖2

)
.

The proof of Theorem 5.1 is found in the supplementary material (Section A). We can easily see that
the optimal choice of γ is (3+

√
9 + 8b/(m+ 1))/2 = O(1+b/m) (see Section B of supplementary

material). We denote this value as γ∗. From Theorem 5.1, we obtain the following corollary:

Corollary 5.2. Suppose that Assumptions 1, 2, and 3 hold. Let x̃0 ∈ Rd, γ = γ∗ , m ∝ n/b and b ∈
[n]. If we appropriately choose S = O(

√
(P (x̃0)− P (x∗))/ε+(1/m+1/

√
mb)

√
L̄‖x̃0 − x∗‖2/ε),

then a total computational cost of DASVRDAns (x̃0, γ∗, {Li}ni=1,m, b, S) for E [P (x̃S)− P (x∗)] ≤
ε is

O

(
d

(
n

√
P (x̃0)− P (x∗)

ε
+
(
b+
√
n
)√ L̄‖x̃0 − x∗‖2

ε

))
.

6



Remark. If we adopt a warm start scheme for DASVRDAns, we can further improve the rate to

O

(
d

(
nlog

(
P (x̃0)− P (x∗)

ε

)
+ (b+

√
n)

√
L‖x̃0 − x∗‖2

ε

))
(see Section C and D of supplementary material).

Next, we analyze the DASVRDAsc algorithm for optimally strongly convex objectives. Combining
Theorem 5.1 with the optimal strong convexity of the objective function immediately yields the
following theorem, which implies that the DASVRDAsc algorithm achieves a linear convergence.
Theorem 5.3. Suppose that Assumptions 1, 2, 3 and 4 hold. Let x̌0 ∈ Rd, γ = γ∗, m ∈ N, b ∈ [n]

and T ∈ N. Define ρ def
= 4{(1 − 1/γ∗)

2 + 4/(η(m + 1)mµ)}/{(1 − 1/γ∗)
2(S + 2)2}. If S is

sufficiently large such that ρ ∈ (0, 1), then DASVRDAsc(x̌0, γ∗, {Li}ni=1,m, b, S, T ) satisfies

E[P (x̌T )− P (x∗)] ≤ ρT [P (x̌0)− P (x∗)].

From Theorem 5.3, we have the following corollary.
Corollary 5.4. Suppose that Assumptions 1, 2, 3 and 4 hold. Let x̌0 ∈ Rd, γ = γ∗, m ∝ n/b,
b ∈ [n]. There exists S = O(1 + (b/n+ 1/

√
n)
√
L̄/µ), such that 1/log(1/ρ) = O(1). Moreover,

if we appropriately choose T = O(log(P (x̌0)− P (x∗)/ε), then a total computational cost of
DASVRDAsc(x̌0, γ∗, {Li}ni=1,m, b, S, T ) for E [P (x̌T )− P (x∗)] ≤ ε is

O

d
n+

(
b+
√
n
)√ L̄

µ

 log

(
P (x̌0)− P (x∗)

ε

) .

Remark. Corollary 5.4 implies that if the mini-batch size b is O(
√
n), DASVRDAsc(x̌0, γ∗,

{Li}ni=1, n/b, b, S, T ) still achieves the total computational cost of O(d(n +
√
nL̄/µ)log(1/ε)),

which is much better than O(d(n+
√
nbL̄/µ)log(1/ε)) of APCG, SPDC, and Katyusha.

Remark. Corollary 5.4 also implies that DASVRDAsc only needs size O(
√
n) mini-batches for

achieving the optimal iteration complexity O(
√
L/µlog(1/ε)), when L/µ ≥ n. In contrast, APCG,

SPDC and Katyusha need size O(n) mini-batches and AccProxSVRG does O(
√
L/µ) ones for

achieving the optimal iteration complexity. Note that even when L/µ ≤ n, our method only needs
size O(n

√
µ/L) mini-batches 6. This size is smaller than O(n) of APCG, SPDC, and Katyusha, and

the same as that of AccProxSVRG.

6 Numerical Experiments

In this section, we provide numerical experiments to demonstrate the performance of DASVRDA.

We numerically compare our method with several well-known stochastic gradient methods in mini-
batch settings: SVRG [22] (and SVRG++ [2]), AccProxSVRG [12], Universal Catalyst [8] , APCG
[9], and Katyusha [1]. The details of the implemented algorithms and their parameter tunings
are found in the supplementary material. In the experiments, we focus on the regularized logistic
regression problem for binary classification, with regularizer λ1‖ · ‖1 + (λ2/2)‖ · ‖22.

We used three publicly available data sets in the experiments. Their sizes n and dimensions d, and
common min-batch sizes b for all implemented algorithms are listed in Table 2.

Table 2: Summary of the data sets and mini-batch size used in our numerical experiments

Data sets n d b
a9a 32, 561 123 180
rcv1 20, 242 47, 236 140
sido0 12, 678 4, 932 100

For regularization parameters, we used three settings (λ1, λ2) = (10−4, 0), (10−4, 10−6), and
(0, 10−6). For the former case, the objective is non-strongly convex, and for the latter two cases,

6Note that the required size is O(n
√
µ/L)(≤ O(n)), which is not O(n

√
L/µ) ≥ O(n).
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(a) a9a, (λ1, λ2) = (10−4, 0) (b) a9a, (λ1, λ2) = (10−4, 10−6) (c) a9a, (λ1, λ2) = (0, 10−6)

(d) rcv1, (λ1, λ2) = (10−4, 0) (e) rcv1, (λ1, λ2) = (10−4, 10−6) (f) rcv1, (λ1, λ2) = (0, 10−6)

(g) sido0, (λ1, λ2) = (10−4, 0) (h) sido0, (λ1, λ2) = (10−4, 10−6) (i) sido0, (λ1, λ2) = (0, 10−6)

Figure 1: Comparisons on a9a (top), rcv1 (middle) and sido0 (bottom) data sets, for regularization
parameters (λ1, λ2) = (10−4, 0) (left), (λ1, λ2) = (10−4, 10−6) (middle) and (λ1, λ2) = (0, 10−6)
(right).

the objectives are strongly convex. Note that for the latter two cases, the strong convexity of the
objectives is µ = 10−6 and is relatively small; thus, it makes acceleration methods beneficial.

Figure 1 shows the comparisons of our method with the different methods described above on several
settings. “Objective Gap” means P (x) − P (x∗) for the output solution x. “Elapsed Time [sec]”
means the elapsed CPU time (sec). “Restart_DASVRDA” means DASVRDA with heuristic adaptive
restarting (Section 4). We can observe the following from these results:

• Our proposed DASVRDA and Restart DASVRDA significantly outperformed all the other
methods overall.

• DASVRDA with the heuristic adaptive restart scheme efficiently made use of the local
strong convexities of non-strongly convex objectives and significantly outperformed vanilla
DASVRDA. For the other settings, the algorithm was still comparable to vanilla DASVRDA.

• UC+AccProxSVRG7 outperformed vanilla AccProxSVRG but was outperformed by our
methods overall.

7Although there has been no theoretical guarantee for UC + AccProxSVRG, we thought that it was fair
to include experimental results about that because UC + AccProxSVRG gives better performances than the
vanilla AccProxSVRG. Through some theoretical analysis, we can prove that UC + AccProxSVRG also has the
similar rate and mini-batch efficiency to our proposed method, although these results are not obtained in any
literature. However, our proposed method is superior to this algorithm both theoretically and practically, because
the algorithm has several drawbacks due to the use of UC as follows. First, the algorithm has an additional
logarithmic factor in its convergence rate. This factor is generally not negligible and slows down its practical
performances. Second, the algorithm has more tuning parameters than our method. Third, the stopping criterion
of each sub-problem of UC is hard to be tuned.
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• APCG sometimes performed unstably and was outperformed by vanilla SVRG. On sido0
data set, for Ridge Setting, APCG significantly outperformed all the other methods.

• Katyusha always outperformed vanilla SVRG, but was significantly outperformed by our
methods.

7 Conclusion

In this paper, we developed a new accelerated stochastic variance reduced gradient method for
regularized empirical risk minimization problems in mini-batch settings: DASVRDA. We have shown
that DASVRDA achieves the total computational costs of O(d(nlog(1/ε) + (b+

√
n)
√
L/ε)) and

O(d(n + (b +
√
n)
√
L/µ)log(1/ε)) in size b mini-batch settings for non-strongly and optimally

strongly convex objectives, respectively. In addition, DASVRDA essentially achieves the optimal
iteration complexities only with size O(

√
n) mini-batches for both settings. In the numerical

experiments, our method significantly outperformed state-of-the-art methods, including Katyusha
and AccProxSVRG.
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