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Abstract

In this work, we present an additive model for space-time data that splits the data
into a temporally correlated component and a spatially correlated component. We
model the spatially correlated portion using a time-varying Gaussian graphical
model. Under assumptions on the smoothness of changes in covariance matrices,
we derive strong single sample convergence results, confirming our ability to es-
timate meaningful graphical structures as they evolve over time. We apply our
methodology to the discovery of time-varying spatial structures in human brain
fMRI signals.

1 Introduction

Learning structured models of high-dimensional datasets from relatively few training samples is an
important task in statistics and machine learning. Spatiotemporal data, in the form of n variables
evolving over m time points, often fits this regime due to the high (mn) dimension and potential
difficulty in obtaining independent samples. In this work, we develop a nonparametric framework
for estimating time varying spatiotemporal graphical structure using an `1 regularization method.
The covariance of a spatiotemporal array X = [x1, . . . , xm] ∈ Rn×m is an mn by mn matrix

Σ = Cov
[
vec([x1, . . . , xm])

]
, (1)

where xi ∈ Rn, i = 1, . . . ,m denotes the n variables or features of interest at the ith time point.
Even for moderately large m and n the number of degrees of freedom (mn(mn + 1)/2) in the
covariance matrix can greatly exceed the number of training samples available for estimation. One
way to handle this problem is to introduce structure and/or sparsity, thus reducing the number of
parameters to be estimated. Spatiotemporal data is often highly structured, hence the design of
estimators that model and exploit appropriate covariance structure can provide significant gains.

We aim to develop a nonparametric framework for estimating time varying graphical structure for
matrix-variate distributions. Associated with each xi ∈ Rn is its undirected graph G(i). Under the
assumption that the law L(xi) of xi changes smoothly, Zhou et al. (2010) introduced a nonparamet-
ric method to estimate the graph sequence G(1), G(2), . . . assuming that the xi ∼ N (0, B(i/m))
are independent, where B(t) is a smooth function over t ∈ [0, 1] and we have mapped the indices i
onto points t = i/m on the interval [0, 1]. In this work, we are interested in the general time series
model where the xi, i = 1, . . . ,m are dependent and the B−1(t) graphs change over time.

One way to introduce dependency into the xi is to study the following covariance structure. Let
A = (aij) ∈ Rm×m, B(t) = (bij(t)) ∈ Rn×n, t ∈ [0, 1] be symmetric positive definite covariance
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matrices. Let diag(v), v = (v1, . . . , vm) be the diagonal matrix with elements vi along the diagonal.
Consider the random matrixX with row vectors yj corresponding to measurements at the jth spatial
location, and columns xi corresponding to the m measurements at times i/m, i = 1, . . . ,m:

∀j = 1, . . . , n, yj ∼ Nm(0, Aj) where Aj = A+ diag(bjj(1), . . . , bjj(m)), and (2)

∀i = 1, . . . ,m, xi ∼ Nn(0, aiiI +B(i/m)) where B(t) changes smoothly over t ∈ [0, 1]; (3)

that is, the covariance of the column vectors xi corresponding to each time point changes smoothly
with time (if aii is a smooth function of i). This provides ultimate flexibility in parameterizing
spatial correlations, for example, across different geographical scales through variograms (Cressie,
2015), each of which is allowed to change over seasons. Observe that while we have used the normal
distribution here for simplicity, all our results hold for general subgaussian distributions.

The model (3) also allows modeling the dynamic gene regulatory and brain connectivity networks
with topological (e.g., Erdős-Rényi random graph, small-world graph, or modular graphs) con-
straints via degree specifications as well as spatial constraints in the set of {B(t), t = 1, 2, . . .}.
When A = 0, we return to the case of Zhou et al. (2010) where there is no temporal correlation, i.e.
y1, . . . , yn assumed to be independent.

We propose methodologies to study the model as constructed in (2) and (3). Building upon and
extending techniques of Zhou et al. (2010) and Rudelson & Zhou (2017); Zhou (2014), we aim to
design estimators to estimate graph sequence G(1), G(2), . . ., where the temporal graph H and spa-
tial graphsG(i) are determined by the zeros ofA−1 andB(t)−1. Intuitively, the temporal correlation
and spatial correlation are modeled as two additive processes. The covariance of X is now

Cov[vec(X)] = Σ = A⊗ In +
∑m

i=1
(eie

T
i )⊗B(i/m) (4)

where ei ∈ Rm, ∀i are the m-dimensional standard basis vectors.

In the context of this model, we aim to develop a nonparametric method for estimating time varying
graphical structure for matrix-variate normal distributions using an `1 regularization method. We
will show that, as long as the covariances change smoothly over time, we can estimate the spatial
and temporal covariance matrices well in terms of predictive risk even when n,m are both large. We
will investigate the following theoretical properties: (a) consistency and rate of convergence in the
operator and Frobenius norm of the covariance matrices and their inverse, (b) large deviation results
for covariance matrices for simultaneously correlated and non-identically distributed observations,
and (c) conditions that guarantee smoothness of the covariances.

Besides the model (4), another well-studied option for modeling spatio-temporal covariances Σ is
to introduce structure via the Kronecker product of smaller symmetric positive definite matrices, i.e.
Σ = A ⊗ B. The Kronecker product model, however, is restrictive when applied to general spatio-
temporal covariances as it assumes the covariance is separable (disallowing such simple scenarios
as the presence of additive noise), and does not allow for time varying spatial structure. When used
to estimate covariances not following Kronecker product structure, many estimators will respond to
the model mismatch by giving ill-conditioned estimates (Greenewald & Hero, 2015).

Human neuroscience data is a notable application where time-varying structure emerges. In neu-
roscience, one must take into account temporal correlations as well as spatial correlations, which
reflect the connectivity formed by the neural pathways. It is conceivable that the brain connectivity
graph will change over a sufficiently long period of measurements. For example, as a child learns to
associate symbols in the environment, certain pathways within the brain are reinforced. When they
begin to associate images with words, the correlation between a particular sound like Mommy and
the sight of a face becomes stronger and forms a well worn pathway. On the other hand, long term
non-use of connections between sensory and motor neurons can result in a loss of the pathway.

1.1 Datasets and Related Work

Estimating graphical models (connectomes) in fMRI data using sparse inverse covariance techniques
has enjoyed wide application (Huang et al., 2010; Varoquaux et al., 2010; Narayan et al., 2015; Kim
et al., 2015). However, recent research has only now begun exploring observed phenomena such
as temporal correlations and additive temporally correlated noise (Chen et al., 2015; Arbabshirani
et al., 2014; Kim et al., 2015; Qiu et al., 2016), and time-varying dynamics and graphical models
(connectomes) (Calhoun et al., 2014; Liu & Duyn, 2013; Chang & Glover, 2010; Chen et al., 2015).

2



We consider the ADHD-200 fMRI dataset (Biswal et al., 2010), and study resting state fMRIs for
a variety of healthy patients in the dataset at different stages of development. Using our methods,
we are able to directly estimate age-varying graphical models across brain regions, chronicling the
development of brain structure throughout childhood.

Several models have emerged to generalize the Kronecker product model to allow it to model more
realistic covariances while still maintaining many of the gains associated with Kronecker structure.
Kronecker PCA, discussed in Tsiligkaridis & Hero (2013), approximates the covariance matrix using
a sum of Kronecker products. An algorithm (Permuted Rank-penalized Least Squares (PRLS)) for
fitting the KronPCA model to a measured sample covariance matrix was introduced in (Tsiligkaridis
& Hero, 2013) and was shown to have strong high dimensional MSE performance guarantees. From
a modeling perspective, the strengths of Kronecker PCA lie in its ability to handle “near separable”
covariances and a variety of time-varying effects. While the Kronecker PCA model is very general,
so far incorporation of sparsity in the inverse covariance has not been forthcoming. This motivates
our introduction of the sparse model (4), which we demonstrate experimentally in Section 10 of the
supplement to enjoy better statistical convergence.

Carvalho et al. (2007) proposed a Bayesian additive time-varying graphical model, where the
spatially-correlated noise term is a parameter of the driving noise covariance in a temporal dynami-
cal model. Unlike our method, they did not estimate the temporal correlation, instead requiring the
dynamical model to be pre-set. Our proposed method has wholly independent spatial and temporal
models, directly estimating an inverse covariance graphical model for the temporal relationships of
the data. This allows for a much richer temporal model and increases its applicability.

In the context of fMRI, the work of Qiu et al. (2016) used a similar kernel-weighted estimator for the
spatial covariance, however they modeled the temporal covariance with a simple AR-1 model which
they did not estimate, and their estimator did not attempt to remove. Similarly, Monti et al. (2014)
used a smoothed kernel estimator for B−1(t) with a penalty to further promote smoothness, but did
not model the temporal correlations. Our additive model allows the direct estimation of the temporal
behavior, revealing a richer structure than a simple AR-1, and allowing for effective denoising of the
data, and hence better estimation of the spatial graph structures.

2 The model and method

Let the elements of A � 0 and B(t) be denoted as [A]ij := aij and [B(t)]ij := bij(t), t ∈ [0, 1].
Similar to the setting in (Zhou et al., 2010), we assume that bij(t) is a smooth function of time t
for all i, j, and assume that B−1(t) is sparse. Furthermore, we suppose that m� n, corresponding
to there being more time points than spatial variables. For a random variable Y , the subgaussian
norm of Y , ‖Y ‖ψ2

, is defined via ‖Y ‖ψ2
= supp≥1 p

−1/2(E|Y |p)1/p. Note that if E[Y ] = 0,
we also have E[exp(tY )] ≤ exp(Ct2‖Y ‖2ψ2

) ∀t ∈ R. Define an n ×m random matrix Z with
independent, zero mean entries Zij satisfying E[Z2

ij ] = 1 and having subgaussian norm ‖Zij‖ψ2 ≤
K. Matrices Z1, Z2 denote independent copies of Z. We now write an additive generative model
for subgaussian data X ∈ Rn×m having covariance given in (4). Let

X = Z1A
1/2 + ZB (5)

where ZB = [B(1/m)1/2Z2e1, . . . , B(i/m)1/2Z2ei, . . . , B(1)1/2Z2em], and ei ∈ Rm, ∀i are the
m-dimensional standard basis vectors. Then the covariance

Σ = Cov[vec(X)] = Cov[vec(Z1A
1/2)] + Cov[vec(ZB)]

= Cov[vec(Z1A
1/2)] +

∑m

i=1
(eie

T
i )⊗ Cov[B(i/m)1/2Z2ei]

= A⊗ In +
∑m

i=1
(eie

T
i )⊗B(i/m).

Thus (5) is a generative model for data following the covariance model (4).

2.1 Estimators

As in Rudelson & Zhou (2017), we can exploit the large-m convergence of Z1AZ
T
1 to tr(A)I to

project out the A part and create an estimator for the B covariances. As B(t) is time-varying, we
use a weighted average across time to create local estimators of spatial covariance matrix B(t).
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It is often assumed that knowledge of the trace of one of the factors is available a priori. For exam-
ple, the spatial signal variance may be known and time invariant, corresponding to tr(B(t)) being
known. Alternatively, the temporal component variance may be constant and known, corresponding
to tr(A) being known. In our analysis below, we suppose that tr(A) is known or otherwise estimated
(similar results hold when tr(B(t)) is known). For simplicity in stating the trace estimators, in what
follows we suppose that tr(B(t)) = tr(B) is constant, and without loss of generality that the data
has been normalized such that diagonal elements Aii are constant over i.

As B(t) is smoothly varying over time, the estimate at time t0 should depend strongly on the time
samples close to t0, and less on the samples further from t0. For any time of interest t0, we thus
construct a weighted estimator using a weight vector wi(t0) such that

∑m
t=1 wt(t0) = 1. Our

weighted, unstructured sample-based estimator for B(t0) is then given by

Ŝm(t0) :=
∑m

i=1
wi(t0)

(
xix

T
i −

tr(A)

m
In

)
, where wi(t0) =

1

mh
K

(
i/m− t0

h

)
, (6)

and we have considered the class of weight vectors wi(t0) arising from a symmetric nonnegative
kernel function K with compact support [0, 1] and bandwidth determined by parameter h. A list of
minor regularity assumptions on K are listed in the supplement. For kernels such as the Gaussian
kernel, this wt(t0) will result in samples close to t0 being highly weighted, with the “weight decay”
away from t0 scaling with the bandwidth h. A wide bandwidth will be appropriate for slowly-
varying B(t), and a narrow bandwidth for quickly-varying B(t).

To enforce sparsity in the estimator for B−1(t0), we substitute Ŝm(t0) into the widely-used GLasso
objective function, resulting in a penalized estimator for B(t0) with regularization parameter λm

B̂λ(t0) := arg min
Bλ�0

tr
(
B−1
λ Ŝm(t0)

)
+ log |Bλ|+ λm|B−1

λ |1. (7)

For a matrix B, we let |B|1 :=
∑
ij |Bij |. Increasing the parameter λm gives an increasingly sparse

B̂−1
λ (t0). Having formed an estimator for B, we can now form a similar estimator for A. Under the

constant-trace assumption, we construct an estimator for tr(B)

t̂r(B) =
∑m

i=1
wi‖Xi‖22 −

n

m
tr(A),with wi =

1

m
. (8)

For a time-varying trace tr(B(t)), use the time-averaged kernel

t̂r(B(t0)) =

m∑
i=1

wi(t0)‖Xi‖22 −
n

m
tr(A),with wi(t0) =

1

mh
K

(
i/m− t0

h

)
. (9)

In the future we will derive rates for the time varying case by choosing an optimal h. These estima-
tors allow us to construct a sample covariance matrix for A:

Ã =
1

n
XTX − 1

n
diag{t̂r(B(1/m)), . . . , t̂r(B(1))}. (10)

We (similarly to B(t)) apply the GLasso approach to Ã. Note that with m > n, Ã has negative
eigenvalues since λmin

(
1
nX

TX
)

= 0. We obtain a positive semidefinite matrix Ã+ as:

Ã+ = arg min
A�0
‖Ã−A‖max. (11)

We use alternating direction method of multipliers (ADMM) to solve (11) as in Boyd et al. (2011),
and prove that this retains a tight elementwise error bound. Note that while we chose this method
of obtaining a positive semidefinite Ã+ for its simplicity, there may exist other possible projections,
the exact method is not critical to our overall Kronecker sum approach. In fact, if the GLasso is not
used, it is not necessary to do the projection (11), as the elementwise bounds also hold for Ã.

We provide a regularized estimator for the correlation matrices ρ(A) = diag(A)−1/2Adiag(A)−1/2

using the positive semidefinite Ã+ as the initial input to the GLasso problem
ρ̂λ(A) = argminAρ�0 tr(A−1

ρ ρ(Ã+)) + log |Aρ|+ λn|A−1
ρ |1,off , (12)

where λn > 0 is a regularization parameter and | · |1,off is the L1 norm on the offdiagonal.

Form the estimate forA as tr(A)
m ρ̂λ(A). Observe that our method has three tuning parameters, two if

tr(A) is known or can be estimated. If tr(A) is not known, we present several methods to choose it
in Section 7.1 in the supplement. Once tr(A) is chosen, the estimators (7) and (12) for A and B(t)
respectively do not depend on each other, allowing λm and λn to be tuned independently.
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3 Statistical convergence

We first bound the estimation error for the time-varying B(t). Since B̂(t) is based on a kernel-
smoothed sample covariance, B̂(t) is a biased estimator, with the bias depending on the kernel width
and the smoothness of B(t). In Section 12.1 of the supplement, we derive the bias and variance of
Ŝm(t0), using arguments from kernel smoothing and subgaussian concentration respectively.

In the following results, we assume that the eigenvalues of the matrices A and B(t) are bounded:

Assumption 1: There exist positive constants cA, cB such that 1
cA
≤ λmin(A) ≤ λmax(A) ≤ cA

and 1
cB
≤ λmin(B(t)) ≤ λmax(B(t)) ≤ cB for all t.

Assumption 2: B(t) has entries with bounded second derivatives on [0, 1].

Putting the bounds on the bias and variance together and optimizing the rate of h, we obtain the
following, which we prove in the supplementary material.
Theorem 1. Suppose that the above Assumption holds, the entriesBij(t) ofB(t) have bounded sec-
ond derivatives for all i, j, and t ∈ [0, 1], sb+n = o((m/ logm)2/3), and that h � (m−1 logm)1/3.
Then with probability at least 1− c′′

m8/3 , Ŝm(t0) is positive definite and for some C

maxij |Ŝm(t0, i, j)−B(t0, i, j)| ≤ C
(
m−1 logm

)1/3
.

This result confirms that themh temporal samples selected by the kernel act as replicates for estimat-
ingB(t). We can now substitute this elementwise bound on Ŝm(t0) into the GLasso proof, obtaining
the following theorem which demonstrates that B̂(t) successfully exploits sparsity in B−1(t).
Theorem 2. Suppose the conditions of Theorem 1 and that B−1(t) has at most sb nonzero off-

diagonal elements for all t. If λm ∼
√

logm
m2/3 , then the GLasso estimator (7) satisfies

‖B̂(t0)−B(t0)‖F = Op

(√
(sb + n) logm

m2/3

)
, ‖B̂−1(t0)−B−1(t0)‖F = O

(√
(sb + n) logm

m2/3

)
Observe that this single-sample bound converges whenever the A part dimensionality m grows.
The proof follows from the concentration bound in Theorem 1 using the argument in Zhou et al.
(2010), Zhou et al. (2011), and Rothman et al. (2008). Note that λm goes to zero as m increases, in
accordance with the standard bias/variance tradeoff.

We now turn to the estimator for the A part. As it does not involve kernel smoothing, we simply
need to bound the variance. We have the following bound on the error of Ã:
Theorem 3. Suppose the above Assumption holds. Then

maxij |Ãij −Aij | ≤ C(cA + cB)
√
n−1 logm

with probability 1− c
m4 for some constants C, c > 0.

Recall that we have assumed that m > n, so the probability converges to 1 with increasing m or
n. While Ã is not positive definite, the triangle inequality implies a bound on the positive definite
projection Ã+ (11):

‖Ã+ −A‖max ≤ ‖Ã+ − Ã‖max + ‖Ã−A‖max ≤ 2‖Ã−A‖max = Op

(√
n−1logm

)
. (13)

Thus, similarly to the earlier result for B(t), the estimator (12) formed by substituting the positive
semidefinite ρ(Ã+) into the GLasso objective enjoys the following error bound (Zhou et al., 2011).
Theorem 4. Suppose the conditions of Theorem 3 and that A−1 has at most sa = o(n/ logm)

nonzero off-diagonal elements. If λn ∼
√

logm
n , then the GLasso estimator (12) satisfies

‖Â−A‖F = Op

(√
sa logm

n

)
, ‖Â−1 −A−1‖F = Op

(√
sa logm

n

)
.

Observe that this single-sample bound converges whenever the B(t) dimensionality n grows since
the sparsity sa = o(n/ logm). For relaxation of this stringent sparsity assumption, one can use
other assumptions, see for example Theorem 3.3 in Zhou (2014).
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4 Simulation study

We generated a time varying sequence of spatial covariances B(ti) = Θ(ti)
−1 according to the

method of Zhou et al. (2010), which follows a type of Erdos-Renyi random graph model. Initially
we set Θ(0) = 0.25In×n, where n = 100. Then, we randomly select k edges and update Θ(t) as
follows: for each new edge (i, j), a weight a > 0 is chosen uniformly at random from [0.1, 0.3]; we
subtract a from Θij and Θji, and increase Θii,Θjj by a. This keeps B(t) positive definite. When
we later delete an existing edge from the graph, we reverse the above procedure.

We consider t ∈ [0, 1], changing the graph structure at the points ti = i/5 as follows. At each ti,
five existing edges are deleted, and five new edges are added. For each of the five new edges, a target
weight is chosen. Linear interpolation of the edge weights between the ti is used to smoothly add
the new edges and gradually delete the ones to be deleted. Thus, almost always, there are 105 edges
in the graph and 10 edges have weights that are varying smoothly (Figure 1).

t = 0/5 t = 1/5 t = 2/5

t = 3/5 t = 4/5 t = 5/5

Figure 1: Example sequence of Erdos-Renyi B−1(t) = Θ(t) graphs. At each time point, the 100
edges connecting n = 100 nodes are shown. Changes are indicated by red and green edges: red
edges indicate edges that will be deleted in the next increment and green indicates new edges.

In the first set of experiments we considerB(t) generated from the ER time-varying graph procedure
and A an AR-1 covariance with parameter ρ. The magnitudes of the two factors are balanced. We
set n = 100 and vary m from 200 to 2400. For each n,m pair, we vary the B(t) regularization
parameter λ, estimating every B(t), t = 1/m, . . . , 1 for each. We evaluate performance using the
mean relative Frobenius B(t) estimation error (‖B̂(t) − B(t)‖F /‖B(t)‖F ), the mean relative L2
estimation error (‖B̂(t)−B(t)‖2/‖B(t)‖2), and the Matthews correlation coefficient (MCC).

The MCC quantifies edge support estimation performance, and is defined as follows. Let the number
of true positive edge detections be TP, true negatives TN, false positives FP, and false negatives FN.
The Matthews correlation coefficient is defined as MCC = TP·TN−FP·FN√

(TP+FP)(TP+FN)(TN+FP)(TN+FN)
.

Increasing values of MCC imply better edge estimation performance, with MCC = 0 implying
complete failure and MCC = 1 implying perfect edge set estimation.

Results are shown in Figure 2, for ρ = .5 and 50 edges inB, ρ = .5 and 100 edges inB, and ρ = .95
and 100 edges in B. As predicted by the theory, increasing m improves performance and increasing
ρ decreases performance. Increasing the number of edges in B changes the optimal λ, as expected.
Figure 3 shows performance results for the penalized estimator Â using MCC, Frobenius error, and
L2 error, where A follows an AR(1) model with ρ = 0.5 and B follows a random ER model. Note
the MCC, Frobenius, spectral norm errors are improved with larger n. In the supplement (Section
11), we repeat these experiments, using an alternate random graph topologies, with similar results.

5 fMRI Application

The ADHD-200 resting-state fMRI dataset (Biswal et al., 2010) was collected from 973 subjects,
197 of which were diagnosed with ADHD types 1, 2, or 3. The fMRI images have varying numbers
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Figure 2: MCC, Frobenius, and L2 norm error curves for B a random ER graph and n = 100. Top:
A is AR covariance with ρ = .5 and 50 edges in B, Middle: A is AR(1) covariance with ρ = .5 and
B having 100 edges, Bottom: AR covariance with ρ = .95 and 100 edges in B.
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Figure 3: MCC, Frobenius, and L2 norm error curves for A a AR(1) with ρ = 0.5 when B is a
random ER graph. From top to bottom: m = 200 and m = 800.

of voxels which we divide into 90 regions of interest for graphical model analysis (Wehbe et al.,
2014), and between 76 and 276 images exist for each subject. Provided covariates for the subjects
include age, gender, handedness, and IQ. Previous works such as (Qiu et al., 2016) used this dataset
to establish that the brain network density increases with age, corresponding to brain development
as subjects mature. We revisit this problem using our additive approach. Our additive model allows
the direct estimation of the temporal behavior, revealing a richer structure than a simple AR-1, and
allowing for effectively a denoising of the data, and better estimation of the spatial graph structure.

We estimate the temporal A covariances for each subject using the voxels contained in the regions
of interest, with example results shown in Figure 5 in the supplement. We choose τB as the lower
limit of the eigenvalues of 1

nX
TX , as in the high sample regime it is an upper bound on τB .
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We then estimate the brain connectivity network at a range of ages from 8 to 18, using both our
proposed method and the method of Monti et al. (2014), as it is an optimally-penalized version
of the estimator in Qiu et al. (2016). We use a Gaussian kernel with bandwidth h, and estimate
the graphs using a variety of values of λ and h. Subjects with fewer than 120 time samples were
eliminated, and those with more were truncated to 120 to reduce bias towards longer scans. The
number of edges in the estimated graphs are shown in Figure 4. Note the consistent increase in
network density with age, becoming more smooth with increasing h.
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(a) Non-additive method of Monti et al. (2014) (optimally penalized version of Qiu et al. (2016)).
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(b) Our proposed additive method, allowing for denoising of the time-correlated data.

Figure 4: Number of edges in the estimated B−1(t) graphical models across 90 brain regions as a
function of age. Shown are results using three different values of the regularization parameter λ,
and from left to right the kernel bandwidth parameter used is h = 1.5, 2, and 3. Note the consistently
increasing edge density in our estimate, corresponding to predictions of increased brain connectivity
as the brain develops, leveling off in the late teenage years. Compare this to the method of Monti
et al. (2014), which successfully detects the trend in the years 11-14, but fails for other ages.

6 Conclusion

In this work, we presented estimators for time-varying graphical models in the presence of time-
correlated signals and noise. We revealed a bias-variance tradeoff scaling with the underlying rate
of change, and proved strong single sample convergence results in high dimensions. We applied our
methodology to an fMRI dataset, discovering meaningful temporal changes in functional connectiv-
ity, consistent with scientifically expected childhood growth and development.
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