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Abstract

A family of learning algorithms generated from additive models have attracted
much attention recently for their flexibility and interpretability in high dimensional
data analysis. Among them, learning models with grouped variables have shown
competitive performance for prediction and variable selection. However, the
previous works mainly focus on the least squares regression problem, not the
classification task. Thus, it is desired to design the new additive classification
model with variable selection capability for many real-world applications which
focus on high-dimensional data classification. To address this challenging problem,
in this paper, we investigate the classification with group sparse additive models
in reproducing kernel Hilbert spaces. A novel classification method, called as
group sparse additive machine (GroupSAM), is proposed to explore and utilize
the structure information among the input variables. Generalization error bound is
derived and proved by integrating the sample error analysis with empirical covering
numbers and the hypothesis error estimate with the stepping stone technique. Our
new bound shows that GroupSAM can achieve a satisfactory learning rate with
polynomial decay. Experimental results on synthetic data and seven benchmark
datasets consistently show the effectiveness of our new approach.

1 Introduction

The additive models based on statistical learning methods have been playing important roles for
the high-dimensional data analysis due to their well performance on prediction tasks and variable
selection (deep learning models often don’t work well when the number of training data is not
large). In essential, additive models inherit the representation flexibility of nonlinear models and
the interpretability of linear models. For a learning approach under additive models, there are two
key components: the hypothesis function space and the regularizer to address certain restrictions
on estimator. Different from traditional learning methods, the hypothesis space used in additive
models is relied on the decomposition of input vector. Usually, each input vector X € RP? is divided
into p parts directly [[17, 30, (6, 28] or some subgroups according to prior structural information
among input variables [27,126]]. The component function is defined on each decomposed input and
the hypothesis function is constructed by the sum of all component functions. Typical examples of
hypothesis space include the kernel-based function space [[16, 16, |11]] and the spline-based function
space [13L 15,10} 30]. Moreover, the Tikhonov regularization scheme has been used extensively for
constructing the additive models, where the regularizer is employed to control the complexity of
hypothesis space. The examples of regularizer include the kernel-norm regularization associated with
the reproducing kernel Hilbert space (RKHS) [5,16}[11] and various sparse regularization [[17 30} 26].

More recently several group sparse additive models have been proposed to tackle the high-dimensional
regression problem due to their nice theoretical properties and empirical effectiveness [[15} [10}
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20]. However, most existing additive model based learning approaches are mainly limited to the
least squares regression problem and spline-based hypothesis spaces. Surprisingly, there is no any
algorithmic design and theoretical analysis for classification problem with group sparse additive
models in RKHS. This paper focuses on filling in this gap on algorithmic design and learning theory
for additive models. A novel sparse classification algorithm, called as group sparse additive machine
(GroupSAM), is proposed under a coefficient-based regularized framework, which is connected to
the linear programming support vector machine (LPSVM) [22| 24]. By incorporating the grouped
variables with prior structural information and the ¢, ;-norm based structured sparse regularizer, the
new GroupSAM model can conduct the nonlinear classification and variable selection simultaneously.
Similar to the sparse additive machine (SAM) in [30], our GroupSAM model can be efficiently solved
via proximal gradient descent algorithm. The main contributions of this paper can summarized in
two-fold:

e A new group sparse nonlinear classification algorithm (GroupSAM) is proposed by extending
the previous additive regression models to the classification setting, which contains the
LPSVM with additive kernel as its special setting. To the best of our knowledge, this is the
first algorithmic exploration of additive classification models with group sparsity.

e Theoretical analysis and empirical evaluations on generalization ability are presented to sup-
port the effectiveness of GroupSAM. Based on constructive analysis on the hypothesis error,
we get the estimate on the excess generalization error, which shows that our GroupSAM
model can achieve the fast convergence rate O(n ') under mild conditions. Experimental
results demonstrate the competitive performance of GroupSAM over the related methods on
both simulated and real data.

Before ending this section, we discuss related works. In [3]], support vector machine (SVM) with
additive kernels was proposed and its classification consistency was established. Although this
method can also be used for grouped variables, it only focuses on the kernel-norm regularizer without
addressing the sparseness for variable selection. In [30], the SAM was proposed to deal with the
sparse representation on the orthogonal basis of hypothesis space. Despite good computation and
generalization performance, SAM does not explore the structure information of input variables and
ignores the interactions among variables. More important, different from finite splines approximation
in [30], our approach enables us to estimate each component function directly in RKHS. As illustrated
in [20,114], the RKHS-based method is flexible and only depends on few tuning parameters, but the
commonly used spline methods need specify the number of basis functions and the sequence of knots.

It should be noticed that the group sparse additive models (GroupSpAM in [26]) also address the
sparsity on the grouped variables. However, there are key differences between GroupSAM and
GroupSpAM: 1) Hypothesis space. The component functions in our model are obtained by searching
in kernel-based data dependent hypothesis spaces, but the method in [26] uses data independent
hypothesis space (not associated with kernel). As shown in [[19, [18] |4} 25]], the data dependent
hypothesis space can provide much more adaptivity and flexibility for nonlinear prediction. The
advantage of kernel-based hypothesis space for additive models is also discussed in [14]]. 2) Loss
function. The hinge loss used in our classification model is different from the least-squares loss in
[26]]. 3) Optimization. Our GroupSAM only needs to construct one component function for each
variable group, but the model in [26]] needs to find the component functions for each variable in a
group. Thus, our method is usually more efficient. Due to the kernel-based component function and
non-smooth hinge loss, the optimization of GroupSpAM can not be extended to our model directly. 4)
Learning theory. We establish the generalization bound of GroupSAM by the error estimate technique
with data dependent hypothesis spaces, while the error bound is not covered in [26].

Now, we present a brief summary in Table ] to better illustrate the differences of our GroupSAM
with other methods.

The rest of this paper is organized as follows. In next section, we revisit the related classification
formulations and propose the new GroupSAM model. Theoretical analysis on generalization error
bound is established in Section[3] In Section 4] experimental results on both simulated examples and
real data are presented and discussed. Finally, Section [5]concludes this paper.



Table 1: Properties of different additive models.
SAM [30] Group Lasso[27] GroupSpAM [26]  GroupSAM
Hypothesis space | data-independent data-independent data-independent data-dependent

Loss function hinge loss least-square least-square hinge loss
Group sparsity No Yes Yes Yes
Generalization bound Yes No No Yes

2 Group sparse additive machine

In this section, we first revisit the basic background of binary classification and additive models, and
then introduce our new GroupSAM model.

Let Z := (X,)) C RPFL, where X C RP is a compact input space and ) = {—1,1} is the set
of labels. We assume that the training samples z := {z;}" ; = {(x;,y;)}, are independently
drawn from an unknown distribution p on Z, where each z; € X and y; € {—1, 1}. Let’s denote
the marginal distribution of p on X" as py and denote its conditional distribution for given x € X as
)

For a real-valued function f : X — R, we define its induced classifier as sgn(f), where sgn(f)(x) =
1if f(z) > 0 and sgn(f)(x) = —1if f(x) < 0. The prediction performance of f is measured by
the misclassification error:

RI(f) = Prob{Y J(X) < 0} = [ Prob(y" £ sen()(a)la)dpr- ()

It is well known that the minimizer of R(f) is the Bayes rule:
felz) = sgn(/ ydp(y\a:)) = sgn(Prob(y = 1]z) — Prob(y = —1|x)).
Yy

Since the Bayes rule involves the unknown distribution p, it can not be computed directly. In machine
learning literature, the classification algorithm usually aims to find a good approximation of f. by
minimizing the empirical misclassification risk:

Ralf) = = 3" 1wf () < 0), @)

where I(A) = 1if Ais true and 0 otherwise. However, the minimization problem associated with
R.(f) is NP-hard due to the 0 — 1 loss I. To alleviate the computational difficulty, various convex
losses have been introduced to replace the 0 — 1 loss, e.g., the hinge loss, the least square loss, and
the exponential loss [29, [1, [7]. Among them, the hinge loss is the most popular error metric for
classification problem due to its nice theoretical properties. In this paper, following [} 30], we use
the hinge loss:

Uy, f(2)) = (1 = yf(2))4 = max{l —yf(x),0}

to measure the misclassification cost.The expected and empirical risks associated with the hinge loss
are defined respectively as:

E(f) = /2 (1 - yf () dp(z, ).

and
n

E(f) = %Z(l = yif(@i))+ -

i=1

In theory, the excess misclassification error R (sgn(f)) — R(f.) can be bounded by the excess convex
risk E(f) — E(f.) [29, 1L [7]. Therefore, the classification algorithm usually is constructed under
structural risk minimization [22]] associated with E,(f).



In this paper, we propose a novel group sparse additive machine (GroupSAM) for nonlinear clas-
sification. Let {1,---,p} be partitioned into d groups. For each j € {1, ...,d}, we set X\9) as the

grouped input space and denote f() : X()) — R as the corresponding component function. Usually,
the groups can be obtained by prior knowledge [26]] or be explored by considering the combinations
of input variables [11].

Let each K) : X x XU — R be a Mercer kernel and let 7 ;) be the corresponding RKHS
with norm || - || ). It has been proved in [5] that

{i ])GHK(7),1<]<d}

with norm
11 = it { DI+ 1 = D219}
j=1 j=1

is an RKHS associated with the additive kernel K = Z?:l KW),

For any given training set z = {(x;, y;) }_,, the additive model in  can be formulated as:

d
f.= argmin {Ez(f) +ﬂsz||f(j)||§<(j>}7 3)
f=S, f@en pst

where 1 = n(n) is a positive regularization parameter and {7;} are positive bounded weights for
different variable groups.
The solution f,, in (3)) has the following representation:

n

d
)= 3 RO =SS 0, o) € R 1650 1550
Jj=11=1

Observe that fz(j)( ) = 0 is equivalent to &g) = 0 for all . Hence, we expect ||a(J )||2 = 0 for

Oy () = (dg i . 649 7)1) € R™ if the j-th variable group is not truly informative. This motivation
pushes us to c0n31der the sparsity-induced penalty:

1nf{ZT]||a l2: f= ZZQ yK(J ))}

j=11i=1

This group sparse penalty aims at the variable selection [27]] and was introduced into the additive
regression model [26]].

Inspired by learning with data dependent hypothesis spaces [19], we introduce the following hypothe-
sis spaces associated with training samples z:

d
Ho= {1 =319 10 enp}, @
j=1
where

’ng) = {f(j) = Zaﬁj)K(j)(xEj),-) : ozl(»j) € R}.
i=1

Under the group sparse penalty and data dependent hypothesis space, the group sparse additive
machine (GroupSAM) can be written as:

n

fa :argmin{lZ(l —yif(xi))+ +)\Q(f)}, ®)

n
feHs i=1



where A > 0 is a regularization parameter.

Let’s denote o) = (o7, oY) T and K = (KO (21 29)) ... KO (2 29))T. The
GroupSAM in (5) can be rewritten as:

£, = ifz(j) = iiaml{m ),
j=1

j=1t=1

with

al@eRn, 1<5<d

n d
(0@} = argmin {%Z(l_yizw +A2nna 2} (6)
i=1 j=1

The formulation () transforms the function-based learning problem (3)) into a coefficient-based
learning problem in a finite dimensional vector space. The solution of (5) is spanned naturally by

the kernelized functions { K ) (-, xz(»J )))} rather than B-Spline basis functions [30]. When d = 1,
our GroupSAM model degenerates to the special case which includes the LPSVM loss and the
sparsity regularization term. Compared with LPSVM [22| 24] and SVM with additive kernels [5], our
GroupSAM model imposes the sparsity on variable groups to improve the prediction interpretation of
additive classification model.

For given {;}, the optimization problem of GroupSAM can be computed efficiently via an acceler-
ated proximal gradient descent algorithm developed in [30]. Due to space limitation, we don’t recall
the optimization algorithm here again.

3 Generalization error bound

In this section, we will derive the estimate on the excess misclassification error R(sgn(fz)) — R(fe)
Before providing the main theoretical result, we introduce some necessary assumptions for learning
theory analysis.

Assumption A. The intrinsic distribution p on Z := X x ) satisfies the Tsybakov noise condition
with exponent 0 < ¢ < co. That is to say, for some ¢ € [0, 00) and A > 0,

Px ({x € X : |Prob(y = 1|z) — Prob(y = —1|z)| < At}) <t?, vt > 0. (7

The Tsybakov noise condition was proposed in [21] and has been used extensively for theoretical
analysis of classification algorithms [24, [7] 23] [20]]. Indeed, holds with exponent ¢ = 0 for any
distribution and with ¢ = oo for well separated classes.

Now we introduce the empirical covering numbers [8]] to measure the capacity of hypothesis space.

Definition 1 Ler F be a set of funcnons on Z wzth u = {u;}¥_| C Z. Define the (-empirical

metric as U2 (f,g) = {+ Zt 1(flug) — gluy) } . The covering number of F with {y-empirical
metric is defined as ./\/2(.7: €)= supneN SUpyecxn Nou(F, €), where

l

Now(F, &) :inf{z eEN:IHfiYey CF st. F=|J{f € F:loulf fi) gs}}.

=1

Let B, = {f € Hx : ||f|lx <r}and BY = {fO) € Hyeir : ||/ g < 7).

Assumption B. Assume that k = E?leupwm KU (20),20)) < oo and for some s €
(0,2),¢s >0,

logNg(ng)@) <ece®, Vex>0, je{1,...,d}.

It has been asserted in [6] that under Assumption B the following holds:
log N3(By,¢) < cod 7%, Ve > 0.



It is worthy noticing that the empirical covering number has been studied extensively in learning
theory literatures [8} 20]. Detailed examples have been provided in Theorem 2 of [19], Lemma 3 of
[[18]], and Examples 1, 2 of [9]]. The capacity condition of additive assumption space just depends
on the dimension of subspace X'7). When K () € C¥(X0U) x X)) forevery j € {1,---,d}, the
theoretical analysis in [[19] assures that Assumption B holds true for:

2dg v e (0,1];

dBU—li-QV’
s=4 g3 VE[L1+do/2];
do ve (1+dy/2,00).

Here d denotes the maximum dimension among {X'()}.

With respect to (EI), we introduce the data-free regularized function f,, defined by:

d
fo= agmin {E(N) +0 > TNk b ®)
f=0 1 f@Oen j=1
Inspired by the analysis in [6], we define:
d .
D(n) = E(fs) = E(f) + )il 5w )
j=1

as the approximation error, which reflects the learning ability of hypothesis space H under Tikhonov
regularization scheme.

The following approximation condition has been studied and used extensively for classification
problems, such as [3L[7, 24, [23]]. Please see Examples 3 and 4 in [3]] for the explicit version for Soblov
kernel and Gaussian kernel induced reproducing kernel Hilbert space.

Assumption C. There exists an exponent 3 € (0, 1) and a positive constant ¢z such that:
D(n) < csn’,¥n > 0.

Now we introduce our main theoretical result on the generalization bound as follows.

Theorem 1 Let 0 < min7; < max7; < ¢o < oo and Assumptions A-C hold true. Take A = n=%in
J J

J
for 0 < 6 < min{ 22;8, ;’fgg }. Forany § € (0, 1), there exists a constant C independent of n, 0
such that

R(sgn(f2)) — R(fe) < Clog(3/6)n"
with confidence 1 — 6, where

g+1 B(20+1) (g+1)(2—5s—2s0) 3+5B+259—20}
qg+2" 28+2"° 4+ 2q+ sq ’ 4448

¥ = min {

Theorem [T|demonstrates that GroupSAM in (3] can achieve the convergence rate with polynomial

decay under mild conditions in hypothesis function space. When ¢ — oo, § — 1, and each
KU) € C, the error decay rate of GroupSAM can arbitrarily close to O(n~™n{1.*#*}) Hence,

the fast convergence rate O(n~!) can be obtained under proper selections on parameters. To verify
the optimal bound, we need provide the lower bound for the excess misclassification error. This is
beyond the main focus of this paper and we leave it for future study.

Additionally, the consistency of GroupSAM can be guaranteed with the increasing number of training
samples.

Corollary 1 Under conditions in Theorem|[l] there holds R(sgn(f)) — R(f.) — 0 as n — oc.

To better understand our theoretical result, we compare it with the related works as below:



1) Compared with group sparse additive models. Although the asymptotic theory of group sparse
additive models has been well studied in [[15} |10} [26], all of them only consider the regression task un-
der the mean square error criterion and basis function expansion. Due to the kernel-based component
function and non-smooth hinge loss, the previous analysis cannot be extended to GroupSAM directly.

2) Compared with classification with additive models. In [30]], the convergence rate is presented for
sparse additive machine (SAM), where the input space &’ is divided into p subspaces directly without
considering the interactions among variables. Different to the sparsity on variable groups in this
paper, SAM is based on the sparse representation of orthonormal basis similar with [15]. In [3]], the
consistency of SVM with additive kernel is established, where the kernel-norm regularizer is used.
However, the sparsity on variables and the learning rate are not investigated in previous articles.

3) Compared with the related analysis techniques. While the analysis technique used here is inspired
from [24] 23], it is the first exploration for additive classification model with group sparsity. In
particular, the hypothesis error analysis develops the stepping stone technique from the £;-norm
regularizer to the group sparse {3 1-norm regularizer. Our analysis technique also can be applied to
other additive models. For example, we can extend the shrunk additive regression model in [[11] to
the sparse classification setting and investigate its generalization bound by the current technique.

Proof sketches of Theorem 1

To get tight error estimate, we introduce the clipping operator 7(f)(z) = max{—1, min{ f(z),1}},
which has been widely used in learning theory literatures, such as [[7}[20] 24, [23]). Since R (sgn(fz))—
R(f.) can be bounded by E(7(f,)) — £(f.), we focus on bounding the excess convex risk.

Using f, as the intermediate function, we can obtain the following error decomposition.

Proposition 1 For f, defined in (3), there holds
R(sgn(fz)) — R(fe) < E(m(f2)) — E(fe) < Ex+ E2 + E5 + D(n),
where D(n) is defined in (9),
By = &(n(fa) —E(fe) = (Ealm(fa)) — Eal o)),
Ey Ealfn) = Ea(fe) — (Ealfy) — E(fe)),

and

d
E; = gz(ﬂ(fz)) + )‘Q(fz) - (gz(fn) + 7727—]”.]05])”%(0))

j=1

In learning theory literature, F'; + F5 is called as the sample error and F’5 is named as the hypothesis
error. Detailed proofs for these error terms are provided in the supplementary materials.

The upper bound of hypothesis error demonstrates that the divergence induced from regularization
and hypothesis space tends to zero as n — oo under proper selected parameters. To estimate the
hypothesis error E3, we choose f, as the stepping stone function to bridge E,(m(f2)) + AQ(f2)

and &,(f,) + A Z?zl ;|| f,(,j ) 1 ;- The proof is inspired from the stepping stone technique for

support vector machine classification [24]. Notice that our analysis is associated with the 5 ;-norm
regularizer while the previous analysis just focuses on the #;-norm regularization.

The error term F; reflects the divergence between the expected excess risk £(7(f,)) — £(f.) and
the empirical excess risk &, (7(f2)) — E4(fc). Since f, involves any given z = {(z;,y;)}1, we
introduce the concentration inequality in [23]] to bound E;. We also bound the error term Ej in terms
of the one-side Bernstein inequality [7]].

4 Experiments

To evaluate the performance of our proposed GroupSAM model, we compare our model with the
following methods: SVM (linear SVM with ¢5-norm regularization), LISVM (linear SVM with /1 -
norm regularization), GaussianSVM (nonlinear SVM using Gaussian kernel), SAM (Sparse Additive
Machine) [30], and GroupSpAM (Group Sparse Additive Models) [26] which is adapted to the
classification setting.



Table 2: Classification accuracy comparison on the synthetic data. The upper half shows the results
with 24 features groups, while the lower half corresponds to the results with 300 feature groups. The
table shows the average classification accuracy and the standard deviation in 2-fold cross validation.

SVM GaussianSVM| LISVM SAM GroupSpAM | GroupSAM
o =0.8]0.943£0.011| 0.935+0.028 [0.9254+0.035|0.895+0.021 |0.880£0.021{0.953+£0.018
o =0.85/0.943+0.004| 0.938+0.011 |0.938+0.004| 0.783+0.088 |0.868+0.178|0.945+0.000
0 =0.910.935+0.014| 0.925+ 0.007 |0.9384+0.011{0.853+ 0.117]0.8834+0.011|0.945+-0.007
o = 0.8 10.975£0.035| 0.975+0.035 [0.97540.035| 0.700+0.071 {0.275+£0.106|1.000-£0.000
o =0.85/0.975+0.035| 0.975£0.035 |0.975+£0.035| 0.600£0.141 |0.953+0.004 |1.000+0.000
0 =0.910.975+£0.035| 0.97540.035 |0.97540.035| 0.525+0.035 |0.98340.004|1.000+-0.000

As for evaluation metric, we calculate the classification accuracy, i.e., percentage of correctly labeled
samples in the prediction. In comparison, we adopt 2-fold cross validation and report the average
performance of each method.

We implement SVM, L1SVM and GaussianSVM using the LIBSVM toolbox [2]]. We determine the
hyper-parameter of all models, i.e., parameter C' of SVM, L1SVM and GaussianSVM, parameter
A of SAM, parameter A of GroupSpAM, parameter X in Eq. (6) of GroupSAM, in the range of
{1073, 1072, ..., 10®}. We tune the hyper-parameters via 2-fold cross validation on the training
data and report the best parameter w.r.t. classification accuracy of each method. In the accelerated
proximal gradient descent algorithm for both SAM and GroupSAM, we set ;1 = 0.5, and the number
of maximum iterations as 2000.

4.1 Performance comparison on synthetic data

We first examine the classification performance on the synthetic data as a sanity check. Our synthetic
data is randomly generated as a mixture of Gaussian distributions. In each class, data points are
sampled i.i.d. from a multivariate Gaussian distribution with the covariance being o/, with I as
the identity matrix. This setting indicates independent covariates of the data. We set the number of
classes to be 4, the number of samples to be 400, and the number of dimensions to be 24. We set
the value of o in the range of {0.8, 0.85, 0.9} respectively. Following the experimental setup in
[31]], we make three replicates for each feature in the data to form 24 feature groups (each group
has three replicated features). We randomly pick 6 feature groups to generate the data such that we
can evaluate the capability of GroupSAM in identifying truly useful feature groups. To make the
classification task more challenging, we add random noise drawn from uniform distribution ¢/ (0, )
where 6 is 0.8 times the maximum value in the data. In addition, we test on a high-dimensional case
by generating 300 feature groups (e.g., a total of 900 features) with 40 samples in a similar approach.

We summarize the classification performance comparison on the synthetic data in Table 2] From
the experimental results we notice that GroupSAM outperforms other approaches under all settings.
This comparison verifies the validity of our method. We can see that GroupSAM significantly
improves the performance of SAM, which shows that the incorporation of group information is
indeed beneficial for classification. Moreover, we can notices the superiority of GroupSAM over
GroupSpAM, which illustrates that our GroupSAM model is more suitable for classiciation. We also
present the comparison of feature groups in Table[3} For illustration purpose, we use the case with 24
feature groups as an example. Table [3|shows that the feature groups identified by GroupSAM are
exactly the same as the ground truth feature groups used for synthetic data generation. Such results
further demonstrate the effectiveness of GroupSAM method, from which we know GroupSAM is
able to select the truly informative feature groups thus improve the classification performance.

4.2 Performance comparison on benchmark data

In this subsection, we use 7 benchmark data from UCI repository [12]] to compare the classification
performance of different methods. The 7 benchmark data includes: Ecoli, Indians Diabetes, Breast
Cancer, Stock, Balance Scale, Contraceptive Method Choice (CMC) and Fertility. Similar to the
settings in synthetic data, we construct feature groups by replicating each feature for 3 times. In each



Table 3: Comparison between the true feature group ID (used for data generation) and the selected
feature group ID by our GroupSAM method on the synthetic data. Order of the true feature group ID
does not represent the order of importance.

True Feature Group IDs | Selected Feature Group IDs via GroupSAM
=028 2,3,4,8,10,17 3,10,17,8,2,4
o =0.85 1,5,10,12,17,21 5,12,17,21,1,10
0c=09 2,6,7,9,12,22 6,22,7,9,2,12

Table 4: Classification accuracy comparison on the benchmark data. The table shows the average

classification accuracy and the standard deviation in 2-fold cross validation.

SVM GaussianSVM L1SVM SAM GroupSpAM | GroupSAM
Ecoli | 0.815+0.054 | 0.818-£0.049 |0.71140.051 | 0.81620.039 | 0.771=0.009 | 0.839+0.028
é?ift‘; 0.651-20.000 | 0.65240.002 |0.63840.018 | 0.652--0.000 | 0.643--0.004 | 0.660-0.013
gﬁiz 0.968+0.017 | 0.965--0.017 | 0.833-0.008 | 0.833--0.224 | 0.958--0.027 | 0.966--0.014
Stock | 0.91340.001 | 0.91140.002 | 0.873+0.001 | 0.617+0.005 | 0.875+0.005 | 0.917+0.005
B;Z‘ll:e 0.864+ 0.003 | 0.869-£0.004 | 0.870--0.003 | 0.763-0.194 | 0.848--0.003 | 0.893--0.003
CMC 0420+ 0.011] 0.445+0.015 | 0.437+0.014| 0.427+0.000 | 0.433+0.003 | 0.456+0.003
Fertility | 0.880= 0.000 | 0.880+-0.000 | 0.750+0.184 | 0.860+0.028 | 0.780-£0.000 | 0.880+0.000

feature group, we add random noise drawn from uniform distribution 2/ (0, ) where 6 is 0.3 times the
maximum value in each data.

We display the comparison results in Table [d We find that GroupSAM performs equal or better than
the compared methods in all benchmark datasets. Compared with SVM and L1SVM, our method
uses additive model to incorporate nonlinearity thus is more appropriate to find the complex decision
boundary. Moreover, the comparison with Gaussian SVM and SAM illustrates that by involving
the group information in classification, GroupSAM makes better use of the structure information
among features such that the classification ability can be enhanced. Compared with GroupSpAM, our
GroupSAM model is proposed in data dependent hypothesis spaces and employs hinge loss in the
objective, thus is more suitable for classification.

5 Conclusion

In this paper, we proposed a novel group sparse additive machine (GroupSAM) by incorporating the
group sparsity into the additive classification model in reproducing kernel Hilbert space. By develop-
ing the error analysis technique with data dependent hypothesis space, we obtain the generalization
error bound of the proposed GroupSAM, which demonstrates our model can achieve satisfactory
learning rate under mild conditions. Experimental results on both synthetic and real-world benchmark
datasets validate the algorithmic effectiveness and support our learning theory analysis. In the future,
it is interesting to investigate the learning performance of robust group sparse additive machines with
loss functions induced by quantile regression [0, [14].
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